
 NL5-1

 N E W S L E T T E R # 5

 September 1981

 Aloha from Hawaii! The Soft Warehouse Newsle tter provides you
with information on new Soft Warehouse product s, and software
extensions or corrections to existing products. In addition, the
newsletter is a medium for the exchange of ideas and application
programs within the growing community of muLISP and muMATH users.

 If you would like to subscribe, or extend you r subscription to
the Newsletter for three issues beyond the expirati on number on your
mailing label, please send $6 ($10 for orders from outside the U.S.
or Canada) by check, VISA, or Master Card to The Soft Warehouse,
P.O. Box 11174, Honolulu, Hawaii, 96828, U.S.A. A complete set of
back issues is available on request for $15.

 APPLE and TRS-80 Versions of muMATH Released

 Full versions of muMATH-80 for APPLE II comput ers equipped with
Microsoft's Z80 Softcard and TRS-80 Model I and Mo del III computers
are now available. muLISP-80 is also available fo r the APPLE. All
provide the functions available in the CP/M version s of the software
plus special graphics primitives to take advantage of the graphics
hardware on these machines. A "native" APPLE versi on of muMATH, not
requiring a Softcard, will be released within a mo nth or two. As a
Microsoft dealer, The Soft Warehouse has resumed direct end user
sales of muLISP and muMATH.

 muLISP and muMATH Reviews

 The semi-monthly microcomputer news mag azine InfoWorld
published a review of muLISP by Jeff Levinsky in th e July 27, 1981
issue. Jeff notes that since it is "written ent irely in muLISP,
muSTAR is easy to modify." As an example, he ment ions the addition
of a REDO command to muSTAR. A copy of the extens ion is printed in
The muLISPer section of this Newsletter.

 The September 1981 issue of BYTE magazine contains a compar-
ative review of muLISP and TLC LISP from The LISP Company. Also
reviewed is Cromemco LISP, which is a variant of T LC LISP. All you
muLISP users let us and BYTE know what you think!

 A well written review of muMATH-79 is publish ed in ACM SIGPC
Notes (Association for Computing Machines, Special Interest Group on
Personal Computing), Volume 4, Numbers 1/2, Spring/ Summer 1981. Dr.
David Shochat of Santa Monica College writes, "Whe n I first started
in with muMATH, it was the symbolic math which fasc inated me most...
What excites me most now is the muSIMP language its elf."

 NL5-2

* * * * * * * T h e m u M A T H e m a t i c i a n * * * * * *

 Floating Point Input for muMATH

 The ability to enter floating numbers is made possible by some
simple extensions to the muSIMP parser. The sourc e file FLOAT.ARI
establishes "." as an infix operator in order to p arse expressions
of the form X.Y where X and Y are integers. X an d Y are passed to
the function DOT which returns a rational equivalen t of the number.

 Unfortunately, there is a problem with the program. Since
muSIMP reads in the number following the decim al point as an
integer, leading zeros are ignored. Therefore t he input 3.08 is
converted to 3.8. Bear this in mind when using this package.

% File: FLOAT.ARI (c) 09/11/81 The Soft Warehouse %

% This package permits numbers to be entered using floating point
 notation. It can not be used in conjunction wit h the MATRIX.ARR
 package, because of the conflict in the use of " ." for the
 matrix dot product. If the number following the decimal point
 has leading zeros, the muSIMP scanner will ignor e the zeros and
 cause incorrect results. %

FUNCTION FLOAT (EX1, EX2)
 EX1 + EX2/RADIX()^LENGTH(EX2)
ENDFUN $

PROPERTY LBP, ".", 190 $

PROPERTY INFIX, ., COND (
 WHEN INTEGER (EX1) AND INTEGER (SCAN),
 FLOAT (EX1, SCAN, SCAN()) EXIT,
 WHEN SYNTAX () EXIT) $

RDS () $

 Floating Point Output for muMATH

 By modifying the muSIMP print routine it is po ssible to display
numbers in floating point instead of rational notat ion. The modifi-
cation to the function PRTMATH necessary to accom plish this is in
the file POINT.ARI. This package takes ARITH.MUS a s a prerequisite.

 The control variable POINT is used to activ ate printing of
numbers using floating point notation. If POINT i s a non-negative
integer, a maximum of POINT digits will be used to display numbers.
Otherwise, numbers will be displayed using rational notation.

 If the default value of POINT is FALSE in your version of
muSIMP, this package has already been integrated into the system.
Its use is available as soon as ARITH.MUS is loaded .

 NL5-3

% File: POINT.ARI (c) 09/11/81 The Soft Warehouse %

POINT: FALSE $

% POINT is used as both a flag to activate printing of numbers in
 floating point notation, and as the limit on the number of digits
 to be printed. Rational numbers are displayed in floating point
 notation if and only if POINT is a non-negative i nteger. This
 package has already been integrated into muSIMP i f the default
 value of POINT is FALSE instead of itself. %

MOVD ('PRTMATH, 'PRTMATH1) $

FUNCTION PRTMATH (EX1, RBP, LBP, PRTSPACE,
 %Local:% EX2, EX3),
 WHEN NOT ATOM(EX1) AND NUMBER(EX1)
 AND (POSITIVE(POINT) OR ZERO(POINT)),
 EX2: DEN (EX1), % EX2: denominato r %
 EX1: NUM (EX1), % EX1: numerator %
 PRTSPACE: FALSE, % PRTSPACE: sign flag %
 BLOCK
 WHEN NEGATIVE (EX1),
 BLOCK
 WHEN LBP > 130,
 PRTSPACE: TRUE,
 PRINT (LPAR) EXIT,
 ENDBLOCK,
 PRINT ('-), % print minus sign %
 EX1: -EX1 EXIT,
 ENDBLOCK,
 EX1: DIVIDE (EX1, EX2),
 PRINT (FIRST (EX1)), % print integer part %
 PRINT ('.), % print decimal point %
 EX3: POINT,
 LOOP
 WHEN ZERO (EX3) EXIT,
 WHEN ZERO (SECOND(EX1)) EXIT,
 EX1: DIVIDE (TIMES(SECOND(EX1),RADIX()), EX2) ,
 EX3: DIFFERENCE (EX3, 1),
 PRTDIG (FIRST (EX1)), % print a digit %
 ENDLOOP,
 WHEN PRTSPACE, PRINT (RPAR) EXIT EXIT,
 PRTMATH1 (EX1, RBP, LBP, PRTSPACE)
ENDFUN $

FUNCTION PRTDIG (EX1), % prin t one char digit%
 WHEN LENGTH (EX1) EQ 1, PRINT (EX1) EXIT,
 PRINT (SECOND (EXPLODE (EX1))),
ENDFUN $

RDS () $

 NL5-4

 Series Approximation of Natural Logarithms

 A prospective muMATH user was dubious about the advertised
accuracy of the system. Specifically, he wond ered if it was
possible to approximate the logarithm of 2 to a high degree of
accuracy. The result of this challenge is LOGAPX.A LG. The function
LOGAPX is based on the series

 LN(x) = 2 (z + z 3/3 + z 5/5 + z 7/7 + ...)

where z = (x-1)/(x+1). This series is valid for p ositive values of
x. For the curious, here are the first 100 dig its of LN(2) as
computed using LOGAPX:

 @: 0.69314718055994530941723212145817656807550 0134360255254120
 6800094933936219696947156058633269964186875

 Four minutes were required to compute the 10 5 terms of the
series necessary to obtain the desired accuracy. When displaying
the results of this function, you will probably want to use the
floating point option described elsewhere in this n ewsletter.

% File: LOGAPX.ALG (C) 09/11/81 The Soft Warehous e %

% LOGAPX(x,n) approximates the natural logarithm of x using n terms
 of the series

 LN(x) = 2 (z + z^3/3 + z^5/5 + z^7/7 + ...)

 where z = (x-1)/(x+1). This series is valid for positive values
 of x. The rate of convergence of the series degr ades with
 increasing size of x. %

FUNCTION LOGAPX (X, N,
 % Locals: % Z, TOTAL, CTR),
 % X IS A NUMBER > 0 %
 % N IS THE NUMBER OF TERMS %
 % TOTAL IS THE LOCAL ACCUMULATOR %
 % CTR IS THE LOOP COUNTER %
 % Z IS THE CURRENT POWER OF (X-1)/(X+1) %
 TOTAL: CTR: 0,
 Z: (X-1)/(X+1),
 X: Z^2,
 LOOP
 TOTAL: TOTAL + Z/(2*CTR+1),
 WHEN CTR = N,
 2*TOTAL EXIT,
 Z: Z*X,
 CTR: CTR+1,
 ENDLOOP,
ENDFUN$

RDS ()$

 NL5-5

 Bug Found in Array Package

 Dr. Lynn Martin of St. John's University noticed a strange bug
when using the array package. When the expression SIN ([X,Y]) was
entered, muMATH returned a FALSE. This problem is corrected by
replacing APPLY with ADJOIN in the third from the last line of the
function SIMPU. SIMPU is defined around line 1 00 of the file
ARRAY.ARI. The revised line should read

 ADJOIN (POP(EX1), MAPFUN(LOP1,EX1)) EXIT,

 After making this change, revise the date gi ven on the first
line of ARRAY.ARI to 03/17/81. Naturally, if your copy of the file
is dated on or after this date, this bug has alread y been corrected.

 Vector Algebra Package

 File VECTOR.ARR provides facilities for simp lifying dot and
cross products of row vectors or of unbound varia bles declared to
represent nonscalars. ARRAY.ARI is a prerequisite for VECTOR.ARR;
however, the Optional Column portion of ARRAY.ARI is not used and
can be eliminated to save space. ALGEBRA.ARI shou ld also be loaded
if you are simplifying dot and cross products that contain unbound
variables.

 The dot "." is the vector dot product operator. The left and
right binding powers of "." are 125. Therefore, it has a higher
precedence than multiplication and division, but lo wer than exponen-
tiation.

 The tilde "~" is the vector cross product operator. The left
and right binding powers of "~" are 133 and 134 res pectively. Thus,
"~" associates right, meaning a~b~c is equivalent t o a~(b~c).

 The operands of the dot product and cross prod uct operators can
be row vectors (see ARRAY.ARI documentation) or unbound variable s
declared to be nonscalar by commands of the form

 NONSCALAR (variable, variable, ...)

 Simplifications involving such nonscalar u nbound variables
treat them as entities, without reference to compo nents in a parti-
cular coordinate system. However, expressions containing such
unbound nonscalars can be expressed in terms of corresponding
unbound components by using the functional form

 COMPONENTS (expression)

 COORDS, initially ['X, 'Y, 'Z], is used by COMPONEN TS to
replace unbound nonscalar variables such as A by c orresponding row
vectors such as [A[X], A[Y], A[Z]].

 NL5-6

 The control variables VECEXPD is initially FALSE. When VECEXPD
is TRUE, the transformations

 b~(c~d) --> b.d*c - b.c*d
 a*b.c~d --> b*a.c~d - c*a.b~d + d* a.b~c

are automatically applied for nonscalar expressions a, b, c, and d,
with a ordering ahead of the others.

 For examples of the use of VECTOR.ARR, run t he demonstration
program given at the end of the file. The demonst ration is started
by making the assignment RDS:TRUE$ after the initial part of the
file has been read in. The algorithms used in VECTOR.ARR are
described in "Symbolic Computer Vector Analysis" by David R. Stoute-
myer, (Computers & Mathematics with Applications , Vol. 5, pp. 1-9).

1. In vector algebra, there is customarily no di stinction between
 row and column vectors, and "." is commu tative but non-
 associative. Thus, files VECTOR.ARR and MATRIX .ARR are incompa-
 tible and should not both be loaded into the sa me environment.

2. As in file ARRAY.ARI, row vectors are treated a s having implicit
 trailing zero elements. File VECTOR.ARR supplements this
 convention by automatically deleting trailing zero components
 and by replacing the empty vector, [], by the scalar 0.
 Consequently, row vector operands need not hav e the same number
 of components.

3. For the purposes of cross products, any elem ents beyond the
 third component of a row vector are ignored.

 NL5-7

% File VECTOR.ARR (c) 06/24/81 The Soft Warehouse %

FUNCTION DELLZ (LEX1),
 WHEN ATOM(LEX1) OR NOT ZERO(FIRST(LEX1)), LEX1 EX IT,
 DELLZ (REST(LEX1)),
ENDFUN $

FUNCTION [, LEX1,
 WHEN ATOM (LEX1: DELLZ (REVERSE(LEX1))), 0 EXIT,
 ADJOIN ('[, REVERSE(LEX1)),
ENDFUN $

PROPERTY RBP, ., 125 $
PROPERTY LBP, ., 125 $

PROPERTY RBP, ~, 133 $
PROPERTY LBP, ~, 134 $

PROPERTY SCALAR, ., TRUE $
PROPERTY SCALAR, DIV, TRUE $

FUNCTION NONSCALAR LEX1,
 LOOP
 WHEN ATOM (LEX1), EXIT,
 PUT (POP(LEX1), 'NONSC, TRUE),
 ENDLOOP,
ENDFUN $

NONSCALAR ('[, '~, 'GRAD, 'CURL) $

FUNCTION NONSC (EX1),
 WHEN NAME (EX1), GET (EX1, 'NONSC) EXIT,
 WHEN ATOM(EX1) OR GET(FIRST(EX1), 'SCALAR), FALSE EXIT,
 WHEN GET (POP(EX1), 'NONSC), EXIT,
 LOOP
 WHEN ATOM(EX1), FALSE EXIT,
 WHEN NONSC (POP(EX1)), EXIT,
 ENDLOOP,
ENDFUN $

FUNCTION HASSC (LEX1,
 % local: % EX2, EX3, EX4),
 EX2: EX3: 1,
 LOOP
 BLOCK
 WHEN NONSC (EX4:POP(LEX1)), EX3: EX3*EX4 EXIT ,
 EX2: EX2*EX4,
 ENDBLOCK,
 WHEN ATOM (LEX1),
 WHEN EX2 EQ 1, FALSE EXIT,
 ADJOIN (EX2, EX3) EXIT,
 ENDLOOP,
ENDFUN $

FUNCTION CROSS (EX1),

 NL5-8

 FIRST(EX1) EQ '~,
ENDFUN $

FUNCTION INPROD (LEX1, LEX2,
 % local: % EX1),
 EX1: 0,
 LOOP
 WHEN ATOM(LEX1) OR ATOM(LEX2), EX1 EXIT,
 EX1: EX1 + POP(LEX1) * POP(LEX2),
 ENDLOOP,
ENDFUN $

FUNCTION REORD3 (EX1, LEX1),
 WHEN ORDERED (EX1, FIRST(LEX1)), FALSE EXIT,
 WHEN ORDERED (SECOND(LEX1), EX1), POP(LEX1) . FIR ST(LEX1)~EX1 EXIT,
 WHEN EX1=FIRST(LEX1) OR EX1=SECOND(LEX1), 0 EXIT,
 EX1~POP(LEX1) . FIRST(LEX1),
ENDFUN $

FUNCTION . (EX1, EX2,
 % local: % EX3),
 WHEN ROW(EX1) AND ROW(EX2), INPROD (REST(EX1), RE ST(EX2)) EXIT,
 WHEN SUM(EX1),
 POP(EX1), EX3: 0,
 LOOP
 EX3: EX3 + POP(EX1) . EX2,
 WHEN ATOM(EX1), EX3 EXIT,
 ENDLOOP EXIT,
 WHEN PRODUCT(EX1) AND (EX3:HASSC(REST(EX1))), POP (EX3)*(EX2.EX3) EXIT,
 WHEN PRODUCT(EX2) AND (EX3:HASSC(REST(EX2))), POP (EX3)*(EX1.EX3) EXIT,
 WHEN CROSS(EX2) AND (EX3: REORD3(EX1,REST(EX2))), EX3 EXIT,
 WHEN CROSS(EX1) AND (EX3: REORD3(EX2,REST(EX1))), EX3 EXIT,
 WHEN SUM(EX2) OR ORDERED(EX2,EX1), EX2 . EX1 EXIT ,
 WHEN NONSC(EX1) AND NONSC(EX2), LIST ('., EX1, EX 2) EXIT,
 EX1 * EX2,
ENDFUN $

VECEXPD: FALSE $

PROPERTY *, ., FUNCTION (EX1, EX2, EX3),
 WHEN VECEXPD AND NONSC(EX1) AND CROSS(EX3) AND OR DERED(EX1,EX2),
 EX2*EX1.SECOND(EX3)~THIRD(EX3) - SECOND(EX3)*EX 1.EX2~THIRD(EX3)
 + THIRD(EX3)*EX1.EX2~SECOND(EX3) EXIT,
ENDFUN $

FUNCTION DOT (EX1),
 FIRST(EX1) EQ '.,
ENDFUN $

FUNCTION ~ (EX1, EX2,
 % local: % EX3),
 WHEN ZERO(EX1) OR ZERO(EX2), 0 EXIT,
 WHEN EX1 = EX2, 0 EXIT,
 WHEN ROW(EX1) AND ROW(EX2),
 APPLY ('[, LIST (EX1[2]*EX2[3] - EX1[3]*EX2[2],

 NL5-9

 EX1[3]*EX2[1]-EX1[1]*EX2[3], EX1[1]*EX2[2]-EX 1[2]*EX2[1])) EXIT,
 WHEN SUM (EX1),
 POP(EX1), EX3: 0,
 LOOP
 EX3: EX3 + POP(EX1) ~ EX2,
 WHEN ATOM(EX1), EX3 EXIT,
 ENDLOOP EXIT,
 WHEN SUM(EX2), EX2 ~ -EX1 EXIT,
 WHEN PRODUCT(EX1) AND (EX3:HASSC(REST(EX1))), POP (EX3)*EX3~EX2 EXIT,
 WHEN PRODUCT(EX2) AND (EX3:HASSC(REST(EX2))), POP (EX3)*EX1~EX3 EXIT,
 WHEN DOT(EX2) AND (EX3: REORD3(EX1,REST(EX2))), E X3 EXIT,
 WHEN DOT(EX1) AND (EX3: REORD3(EX2,REST(EX1))), E X3 EXIT,
 WHEN CROSS (EX2) AND VECEXPD,
 EX1.THIRD(EX2) * SECOND(EX2) - EX1.SECOND(EX2) * THIRD(EX2) EXIT,
 WHEN CROSS(EX1) AND VECEXPD OR ORDERED(EX2,EX1), EX2 ~ -EX1 EXIT,
 LIST ('~, EX1, EX2),
ENDFUN $

% * * * * * * * * * Optional COMPONENTS package * * * * * * * * * %

FUNCTION COMP (LEX1),
 % fluid: EX1 %
 WHEN ATOM(LEX1), FALSE EXIT,
 ADJOIN (EX1[POP(LEX1)], COMP (LEX1)),
ENDFUN $

COORDS: ['X, 'Y, 'Z] $

FUNCTION COMPONENTS (EX1),
 % fluid: COORDS %
 WHEN NUMBER(EX1), EX1 EXIT,
 WHEN ATOM (EX1),
 WHEN GET (EX1, 'NONSC), APPLY ('[, COMP (REST(C OORDS))) EXIT,
 EX1 EXIT,
 APPLY (POP(EX1), MAPFUN ('COMPONENTS, EX1)),
ENDFUN $

RDS: FALSE $ #ECHO: ECHO $ ECHO: TRUE $ % Demo. %

 % Dot Product: %
 [3, T] . [2, #PI];% Cross Product: %
 [3, T, 5] ~ [2, #PI, 7];% You can try some exampl es for yourself.
 Enter RDS:TRUE$ when ready to resume demo. %
 RDS:FALSE$ % Declaration of nonscalar unbound var iables: %
 NONSCALAR (A, B, C, D)$% Simplification of nonsca lar variables: %
 (A+B).C - C.B;A~B.C + B.A~C;% Try some examples f or yourself.
 Enter RDS:TRUE$ when ready to resume demo. %
 RDS:FALSE$% Simplifications requiring optional tr ansformations: %
 A ~ (B~C) + A.B * C; VECEXPD; VECEXPD:TRUE$ A ~ (B~C) + A.B * C;
 D*A.B~C - A*B.C~D - B*C.A~D;% Enter RDS:TRUE$ to resume demo.%
 RDS:FALSE$% Expanding nonscalar unbound variables into components: %
 COORDS; COMPONENTS (A~B); ECHO:#ECHO $

RDS() $

 NL5-10

* * * * * * * * * * T h e m u L I S P e r * * * * * * * * * *

 A REDO Command for muSTAR
 (Contributed by Jeff Levinsky)

 The following illustrates how to add a simple REDO facility to
the EVAL LISP command in muSTAR. The same idea cou ld be used to add
the facility to the EVAL-QUOTE command as well. Th e original muSTAR
code for the EVAL LISP command is:

 (PUTQQ E EXECUTIVE (LAMBDA ()
 (LINELENGTH LIN-LEN$)
 (LOOP
 (TERPRI)
 (PRIN1 *)
 ((EQ (PRINT (EVAL (READ))) EXIT)))))

 To implement a REDO command modify the cod e to read (the
changes to be made are in boldface):

 (PUTQQ E EXECUTIVE (LAMBDA (COMMAND)
 (LINELENGTH LIN-LEN$)
 (LOOP
 (TERPRI) (PRIN1 *)
 (SETQ COMMAND (READ))
 ((EQ (PRINT (EVAL (COND
 ((EQ COMMAND (QUOTE REDO)) OLDCOMMAND)
 ((SETQ OLDCOMMAND COMMAND))))) EXIT)))))

 NL5-11

 A Fractional Factorial Experiment Design Program
 (Contributed by David Dunthorn)

 To explain a bit about what the program is supposed to do,
suppose that you have a process which is a functi on of 4 factors
which can be controlled. For a specific choice of each of the four
factors, the process produces a value, and you wish to determine the
influence of each factor on that value. Now, a two -level experiment
design requires that you select what you consider t o be two distinct
levels for each factor; on-off for a switch, high-l ow for a tempera-
ture, present-absent for a chemical additive, etc.

 A two-level factorial experiment for the abo ve would use 16
(=2^4) experiments to run every possible combinat ion of factors.
The results could be analysed to determine not on ly the effect of
the factors on the value of the process but also t he effect of the
interaction of any two of the factors, any three o f the factors, or
the interaction of all four factors.

 A two-level fractional factorial design recogn izes that this is
more information than is really needed, since four th order or even
third order interactions of factors are rarely significant when
compared to the effects of the single factors . A fractional
factorial approach to the above problem would be t o run a 3 factor
factorial experiment with only 8 (=2^3) runs and c ontrol the fourth
factor so that it would have the same high-low patt ern as the third
order interaction of the first three factor s and thus be
"confounded" with it.

 Analysing the data from the three factor exper iment would thus
yield the effect of the fourth factor in place o f the hopefully
nonexistent third order interaction. The frac tional factorial
experiment design is not particularly easy to desc ribe. For more
information on the subject see the article by G. E. P. Box and J. S.
Hunter in Technometrics , Volume 3, Number 3, August 1961, pp. 311-
351.

 I have written a preliminary version of a frac tional factorial
design package in muLISP-80. If there is suffic ient interest in
such a package, I will round out the system with a manual and extend
the system to produce a FORTRAN program to analyse the results from
the experiment which was designed by the muLISP pro gram. [For more
information contact David Dunthorn at CF Systems , 908 W. Outer
Drive, Oak Ridge, TN, 37830, U.S.A.]

 NL5-12

 (This page intentionally left blank)

