
 NL9-1

 N E W S L E T T E R # 9

 October 1983

 Aloha from Hawaii! The Soft Warehouse Newsle tter provides you
with information on new Soft Warehouse product s, and software
extensions or corrections to existing products. In addition, the
newsletter is a medium for the exchange of ideas and application
programs within the growing community of muMATH and muLISP users.

 If you would like to subscribe, or extend you r subscription to
the Newsletter for three issues beyond the expirati on number on your
mailing label, please send $6 ($10 for orders from outside the U.S.
or Canada) by check, VISA, or Master Card to The Soft Warehouse,
P.O. Box 11174, Honolulu, Hawaii, 96828, U.S.A. A complete set of
back issues is available on request for $15.

 Announcing muMATH-83 and muLISP-83

 Wondered why you haven't received a Newsletter since early this
year? Well, we've been concentrating our efforts on developing the
next generation of our product line. New featur es of muMATH-83
include implicit multiplication, a differential eq uation solver, a
vector algebra and calculus package, hyperbolic tri g simplification,
an interactive demonstration illustrating the capa bilities of each
muMATH source file, and an extensively revised man ual that includes
numerous examples. New features of muLISP-83 inc lude random and
sequential file I/O, read and splice macros, a m ulti-level break
debugging facility, a structured, non-local exit mechanism (CATCH
and THROW), and an on-line, interactive LISP tutorial system.
Contact The Soft Warehouse for details and upgrade discounts.

 Recent Reviews

 "muMATH," Marketalk Reviews, Softalk for t he IBM Personal
Computer , August 1983, p. 80. A short favorable review of muMATH-80
for the IBM PC.

 "muLISP/muSTAR-80 develops, edits, debugs LIS P," John Halamka,
InfoWorld , March 14, 1983, p. 54. An "Excellent" and three "Good"s
for muLISP-80 for CP/M!

 "LISP for CP/M," William G. Wong, Microsystems , August 1983, p.
30. A comparative review of muLISP-80, SuperSoft LISP, and Stiff
Upper LISP.

 "The Trapdoor Algorithm," David Block, Creati ve Computing , May
1983, p. 189. The application of muMATH to cryptog raphy problems.

 NL9-2

* * * * * * * T h e m u M A T H e m a t i c i a n * * * * * *

 A muMATH User Group

 The following people have expressed an interes t in establishing
an informal muMATH User Group for the exchange of m uMATH application
programs and user techniques:

Graeme F. Dennes Dr. Marjori e Vold
104 Whippoorwill Drive 17465 Plaza Animado #144
Warner Robins, GA 31093 San Diego, CA 92128
IBM muMATH TRS-80 Mode l 3 muMATH

Wade Ellis Jr. John Willis
4562 Alex Drive 248 W. Port ola Ave.
San Jose, CA 95130 Los Altos, CA 94022
Apple, SoftCard, and IBM muMATH Apple ADIOS muMATH

Donna Lalonde Grahame Wil son
Chemistry Department P.O. Box 14 5
University of Kansas Glebe, N.S. W. 2037
Lawrence, KS 66045 AUSTRALIA
8" CP/M muLISP, muMATH 8" CP/M muM ATH

Dr. Michael Perelman
Dept. of Economics
California State Univ., Chico
Chico, CA 95929
8" CP/M muMATH
Other economists?

 A Power-Series Powering
 Professor James Wendel, Dept. of Mathem atics,
 University of Michigan, Ann Arbor, Michiga n, 48109

 Although quite general, the muMATH TAYLOR function can be
extremely slow because it is unnecessarily time con suming to compute
high-order derivatives for mere substitution. Knu th describes more
efficient methods in Volume 2 of his book. The file PSPOW.MUS
contains an example of the algorithm for raising a truncated power
series to an arbitrary power, which need not be integer or even
numeric. As a special case, the function can be us ed to efficiently
raise univariate polynomials to integer powers.

 The function PSPOW represents the series as a list of succes-
sive coefficients, beginning with that of the 0-de gree term. If a
power series does not begin with 1 as its 0-degree term, then divide
the series by its lowest-degree nonzero term and u se the resulting
"normalized" series. For example, to compute (CO S x)^(1/3) to 6th
degree, issue the command

 ? PSPOW (LIST (1, 0, -1/2, 0, 1/24, 0, -1/720), 1/3, 6) &

 NL9-3

% File PSPOW.MUS 10/05/83 James Wendel %

% Non-integer problems require ARITH.MUS, irrationa l ALGEBRA.ARI. %

% PSPOW (v, a, n) returns a list of the coefficien ts for the power-
 series expansion of v^a, truncated to <n>th d egree. <a> is a
 rational number, <n> is a nonnegative integer, and <v> is a
 list of polynomial or truncated power-series c oefficients,
 starting with the zeroth degree coefficient, w hich must be 1
 unless <a> is 0 or 1. %

FUNCTION PSPOW (V, A, N,
 % Locals: % M, V1, W1, VAL, K),
 WHEN ZERO (A), LIST (1) EXIT,
 WHEN A EQ 1, V EXIT,
 WHEN POP (V) EQ 1,
 A: A + 1,
 W: LIST (1),
 M: 1,
 LOOP
 WHEN M - N EQ 1, REVERSE (W) EXIT,
 V1: V,
 W1: W,
 VAL: 0,
 K: 1,
 LOOP
 WHEN K - M EQ 1 OR EMPTY (V1) OR EMPTY (W1) EXIT,
 VAL: VAL + POP (W1) * POP (V1) * (K * A - M),
 K: K + 1,
 ENDLOOP,
 PUSH (VAL/M, W),
 M: M + 1,
 ENDLOOP EXIT,
ENDFUN$

RDS ()$

___ _________________

 Collection of Variables
 Daniel Bump, 1421 Rosearden Drive,
 Forest Grove, Oregon, 97116

 Given an expression that is a polynomial in a subset of its
variables, it is often desired to collect terms that are similar
with respect to this subset and perhaps also to extract the
resulting coefficients. The file STFORM.ALG accom plishes this, as
illustrated by the dialogue:

 ? STVAR: LIST (X, Y)$ % Assign desired subset to global STVAR %

 NL9-4

 ? STFORM ((X-A)*(X-B)*(Y+A)*(Y+B));
 @: A^2 B^2 + (-A B^2 - A^2 B) X + (A B^2 + A^2 B) Y
 + (-2 A B - A^2 - B^2) X Y + (-A - B) X Y^2 + (A + B) X^2 Y
 + X^2 Y^2 + A B X^2 + A B Y^2

 ? COEFFICIENT (X*Y);
 @: - 2 A B - A^2 - B^2

 ? COEFFICIENT (1);
 @ A^2 B^2

 STFORM and COEFFICIENT communicate via a globa l variable named
COEFLIST, which holds the coefficients most rece ntly produced by
STFORM. The argument of STFORM can be nonpolynom ial in variables
outside STVAR. The result produced by STFORM is not in standard
lexical order, so attempts to combine it with othe r expressions are
liable to yield incompletely simplified results.

% File STFORM.ALG 07/07/83 Daniel W. Bump %

% If APPEND is not primitively defined in your vers ion of muSIMP,
 it must be defined as described in the programmin g lessons. %

FUNCTION STSPLIT1 (EX1, EX2, LEX,
 % Local: % EX3),
 WHEN EMPTY (LEX),
 ADJOIN (EX1, EX2) EXIT,
 EX3: STSPLIT2 (EX1, 1, POP (LEX)),
 STSPLIT1 (EX1/EX3, EX2*EX3, LEX),
ENDFUN$

FUNCTION STSPLIT2 (EX1, EX2, EX3),
 WHEN FREE (EX1, EX3), EX2 EXIT,
 STSPLIT2 (EX1/EX3, EX2*EX3, EX3),
ENDFUN$

FUNCTION STFILT (LEX1),
 % Refers to outside var STVAR %
 WHEN EMPTY (LEX1), LEX1 EXIT,
 ADJOIN (STSPLIT1 (POP (LEX1), 1, STVAR), STFILT (LEX1)),
ENDFUN$

FUNCTION STSORT (LEX1),
 % Sets outside var COEFLIST %
 COEFLIST: FALSE,
 LOOP
 WHEN EMPTY (LEX1), COEFLIST EXIT,
 COEFLIST: STMERG (POP (LEX1), COEFLIST),
 ENDLOOP,
ENDFUN$

FUNCTION STMERG (EX1, LEX1, % Optional: % LEX2,
 % Local: % EX2),
 WHEN EMPTY (LEX1),

 NL9-5

 REVERSE (LEX2, LIST (EX1)) EXIT,
 WHEN REST (EX1) = REST (EX2: POP (LEX1)), REVERS E (LEX2,
 ADJOIN (ADJOIN (POP (EX1) + FIRST (EX2), EX1) , LEX1)) EXIT,
 WHEN ORDERED (REST (EX1), REST (EX2)),
 REVERSE (LEX2, ADJOIN (EX1, ADJOIN (EX2, LEX1))) EXIT,
 STMERG (EX1, LEX1, ADJOIN (EX2, LEX2)),
ENDFUN$

FUNCTION STUNFILT (LEX1),
 WHEN EMPTY (LEX1), LEX1 EXIT,
 ADJOIN (STUNSPLT (POP (LEX1)), STUNFILT (LEX1)),
ENDFUN$

FUNCTION STUNSPLT (EX1,
 % Local: % EX2),
 WHEN (EX2: POP (EX1)) EQ 1, EX1 EXIT,
 WHEN EX1 EQ 1, EX2 EXIT,
 WHEN PRODUCT (EX2),
 WHEN PRODUCT(EX1),
 ADJOIN ('*, APPEND (REST (EX2), REST (EX1))) EXIT,
 ADJOIN ('*, APPEND (REST (EX2), LIST (EX1))) EX IT,
 WHEN PRODUCT (EX1),
 ADJOIN ('*, ADJOIN (EX2, REST (EX1))) EXIT,
 LIST ('*, EX2, EX1),
ENDFUN$

STVAR: FALSE$

FUNCTION STFORM (EX1),
 WHEN SUM (EX1: EXPAND (EX1)),
 EX1: STUNFILT (STSORT (STFILT (REST (EX1)))),
 WHEN EMPTY (REST (EX1)), FIRST (EX1) EXIT,
 ADJOIN ('+, EX1) EXIT,
 EX1
ENDFUN$

FUNCTION COEFFICIENT (EX1,
 % Local: % EX2, LEX1),
 % Refers to global COEFLIST %
 LEX1: COEFLIST,
 LOOP
 WHEN EMPTY (LEX1), 0 EXIT,
 WHEN REST (EX2: POP (LEX1)) = EX1,
 FIRST (EX2) EXIT,
 ENDLOOP,
ENDFUN$

RDS ()$

 NL9-6

 Symmetric Polynomials
 Daniel Bump, 1421 Rosearden Drive,
 Forest Grove, Oregon, 97116

 Any polynomial that is symmetric in a set o f variables R1,
R2, .., RN can be expressed as a polynomial fun ction of related
variables C1, C2, ..., CN, where

 C1 = R1 + R2 + ... + RN,
 C2 = R1 R2 + R1 R3 + ... + RNM1 RN,
 ...
 CN = R1 R2 ... RN.

Using the dummy variable X, these "elementary symme tric polynomials"
C1 through CN can be generated by the relation

 (X-R1)(X-R2) ... (X-RN) = X N - C1 X N-1 + ... + (-1) N CN.

 The relationships are of fundamental algeb raic importance.
Moreover, symmetric polynomials frequently arise in practical appli-
cations, and the problem is often substantial ly simpler when
expressed in this symmetric basis. File SYMMETRY. STF implements an
algorithm from Lang's Algebra book for converting from Rs to Cs.
The following dialogue computes the discriminant of a cubic:

 ? SYMMETRIC ((R1-R2)^2 * (R2-R3)^2 * (R3-R1)^2);
 @: 18 C1 C2 C3 + C1^2 C2^2 - 4 C1^3 C3 - 4 C2^3 - 27 C3^2

% File SYMMETRY.STF 07/07/83 Daniel W. B ump %

% Prerequisite file: STFORM.ALG %

% Uses outside indeterminates R1, R2, ... and C1, C2, ... %

FUNCTION R(N),
 COMPRESS (LIST ('R, N)),
ENDFUN$

FUNCTION C(N),
 COMPRESS (LIST ('C, N)),
ENDFUN$

FUNCTION SYMMETRIC (P,
 % Local: % N, NUMNUM, DENDEN, DENNUM, NUMDEN, E XPBAS, BASEXP,
 PWREXPD, COEFLIST),
 NUMNUM: DENDEN: DENNUM: EXPBAS: 30,
 BASEXP: -30,
 PWREXPD: 6,
 NUMDEN: N: 0,
 LOOP
 WHEN FREE (P, R (N: N+1)),
 SYMMETRIC1 (P, N-1) EXIT,

 NL9-7

 ENDLOOP,
ENDFUN$

FUNCTION SYMMETRIC1 (P, N,
 % Local: % P1, P2),
 WHEN N EQ 1,
 EVSUB (P, 'R1, 'C1) EXIT,
 WHEN FREE (P, 'R1), P EXIT,
 P1: SYMMETRIC1 (EVSUB (P, R(N), 0), N - 1),
 P2: SYMMETRIC2 ((P - P1) / C(N), N),
 P1 + C(N) * SYMMETRIC1 (P2, N),
ENDFUN$

FUNCTION SYMMETRIC2 (P, N,
 % Local: % COUNT, F),
 % Sets outside var STVAR to LIST (outside var X) %
 COUNT: N,
 F: 1,
 LOOP
 WHEN ZERO (COUNT) EXIT,
 F: F * (X + R (COUNT)),
 COUNT: COUNT - 1,
 ENDLOOP,
 STVAR: ADJOIN (X),
 STFORM (F),
 COUNT: N,
 LOOP
 WHEN ZERO (COUNT), P EXIT,
 P: EVSUB (P, C (COUNT), COEFFICIENT (X ^ (N - C OUNT))),
 COUNT: COUNT - 1,
 ENDLOOP,
ENDFUN$

RDS ()$

___ _________________

 Partial Fractions & Other Goodies
 Dr. Alan K. Head, CSIRO, Div. of Chem. Ph ysics,
 P.O. Box 160, Clayton, Victoria, 3168 AU STRALIA

 File PARFRAC.ALG contains functions for p artial fraction
decomposition, polynomial quotients and remain ders, polynomial
greatest common divisors, and cancellation of pol ynomial GCDs from
the numerator and denominator of a rational functio n.

The DIVOUT function cancels hidden factors having m ore than one term
and containing a specified variable:

 ? DIVOUT ((x^2 + 2*x + 1) / (x^2 - 1), x);
 @: (1 + x)/(-1 + x)

 NL9-8

The PREM function returns the polynomial remaind er of its first
argument divided by the second argument, with the third argument
considered as the main variable:

 ? PREM (x^3 + 3, x^2 + 1, x);
 @: 3 - x

The PQUOT function returns the quotient correspondi ng to PREM:

 ? PQUOT (x^3 + 3, x^2 + 1, x);
 @: x

The PGCD function returns the polyomimal gcd of its first two
arguments (polynomials) with respect to its th ird argument (a
variable) times a factor that does not depend upon the variable:

 ? FCTR (PGCD (x^2 + 2*x + 1, x^2 - 1, x));
 @: 2*(1 + x)

The PARFRAC function returns a Partial Fraction Expansion, with
respect to a given variable, relative to expli cit or one-term
factors in the denominator:

 ? PARFRAC (1 / ((x + 1)*(x - 1)), x);
 @: 1/(-2 + 2*x) - 1/(2 + 2*x)

% File PARFRAC.ALG (c) 12/12/83 Alan K . Head %

FUNCTION DEGCOEF (EX1,
 % Local: % EX2, EX3, LEX1),
 % Fluid from PHIGH: INDET %
 WHEN FREE (EX1, INDET) EXIT,
 BLOCK
 WHEN PRODUCT (EX1),
 LEX1: REST (EX1) EXIT,
 LEX1: ADJOIN (EX1),
 ENDBLOCK,
 LOOP
 WHEN NOT FREE (EX3: POP (LEX1), INDET),
 WHEN BASE (EX3) = INDET
 AND NUMBER (EX2: EXPON (EX3))
 AND FREE (EX1: EX1/EX3, INDET),
 ADJOIN (EX2, EX1) EXIT EXIT,
 ENDLOOP
ENDFUN$

% PHIGH (EX1, INDET) returns FALSE if EX1 is not a term or sum of
 terms, each of which is free of INDET or is a num eric power of
 INDET, perhaps multiplied by a coefficient. Othe rwise returns
 (degree, coeff) for the term having the highest p ower of INDET
 in EX1 %

 NL9-9

FUNCTION PHIGH (EX1, INDET,
 % Local: % EX2, EX3),
 WHEN FREE (EX1: EXPAND (EX1), INDET),
 ADJOIN (0, EX1) EXIT,
 BLOCK
 WHEN SUM (EX1),
 POP (EX1) EXIT,
 EX1: ADJOIN (EX1),
 ENDBLOCK,
 LOOP
 WHEN EMPTY (EX2: DEGCOEF (POP (EX1))), FALSE EX IT,
 BLOCK
 WHEN ATOM (EX2) EXIT,
 WHEN EMPTY (EX3),
 EX3: EX2 EXIT,
 WHEN FIRST (EX2) < FIRST (EX3) EXIT,
 WHEN FIRST (EX2) > FIRST (EX3),
 EX3: EX2 EXIT,
 EX3: ADJOIN (POP (EX2), EX2 + REST (EX3)),
 ENDBLOCK,
 WHEN FREE (EX1, INDET), EX3 EXIT,
 ENDLOOP
ENDFUN$

% PDIV returns (quotient . remainder) of EX1/EX2 wr t INDET %

FUNCTION PDIV (EX1, EX2, INDET,
 % Locals % EX3, EX4, EX5, EX6, EX7, EX8),
 WHEN FREE (EX2, INDET),
 ADJOIN (EX1 / EX2, 0) EXIT,
 EX3: DEN (EX1: FCTR(EX1)),
 EX1: NUM (EX1),
 EX4: DEN (EX2: FCTR(EX2)),
 WHEN EX5: PHIGH (EX2: NUM (EX2), INDET),
 EX6: 0,
 LOOP
 WHEN EMPTY (EX7:PHIGH(EX1,INDET)),
 ADJOIN (EX1/EX2, 0) EXIT,
 WHEN NEGATIVE (EX8: FIRST (EX7) - FIRST (EX5)),
 ADJOIN (EX6 * EX4 / EX3, EX1 / EX3) EXIT,
 EX3: EX3 * REST (EX5),
 EX6: EX6 * REST (EX5) + INDET ^ EX8 * REST (E X7),
 EX1: EXPD (EX1 * REST (EX5) - INDET ^ EX8 * R EST (EX7) * EX2),
 ENDLOOP EXIT,
 ADJOIN (EX1 / EX2, 0),
ENDFUN$

FUNCTION PQUOT (EX1, EX2, INDET),
 FIRST (PDIV (EX1, EX2, INDET)),
ENDFUN$

FUNCTION PREM (EX1, EX2, INDET),
 REST (PDIV (EX1, EX2, INDET)),
ENDFUN$

 NL9-10

% PDCG returns (gcd(EX1, EX2), COFACTOR (EX1), COF ACTOR (EX2)) with
 respect to INDET %

FUNCTION PDCG (EX1, EX2, INDET, EX3,
 % Locals % EX4, EX5, EX6, EX7),
 EX6: EX3, EX4: EX5: 0,
 LOOP
 WHEN ZERO (REST (EX7: PDIV (EX1, EX2, INDET))),
 LIST (EX2, EX5, EX3) EXIT,
 EX1: EX2,
 EX2: REST (EX7),
 EX3: EX4 - (EX4: EX3) * FIRST (EX7),
 EX5: EX6 - (EX6: EX5) * FIRST (EX7),
 ENDLOOP,
ENDFUN$

% PARFRAC returns the partial fraction expansion of EX1 relative
 to INDET %

FUNCTION PARFRAC (EX1, INDET,
 % Locals % EX2),
 FIRST (EX1: PDIV (NUM (EX1: FCTR (EX1)), EX2: DEN (EX1), INDET))
 + PARF (REST (EX1), EX2),
ENDFUN$

FUNCTION PARF (EX1, EX2,
 % Locals % EX3),
 WHEN ZERO (EX1: REST (PDIV (EX1, EX2: FCTR (EX2), INDET))), 0 EXIT,
 WHEN PRODUCT (EX2),
 WHEN FREE (FIRST
 (EX3: PDCG (EX2/SECOND(EX2), SECOND(EX2), I NDET, 1)), INDET),
 PARF (EX1*SECOND(EX3)/FIRST(EX3), SECOND(EX2))
 + PARF (EX1*THIRD(EX3)/FIRST(EX3), EX2/SECO ND(EX2)) EXIT,
 'PARFRAC/0 EXIT,
 REST (EX3: PDIV (EX1, BASE(EX2), INDET))
 / EX2 + PARF (FIRST (EX3), EX2 / BASE (EX2)),
ENDFUN$

% PGCD returns the polynomial gcd of EX1 & EX2 wrt INDET %

FUNCTION PGCD (EX1, EX2, INDET),
 FIRST (PDCG (EX1, EX2, INDET, 0)),
ENDFUN$

% DIVOUT (EX1, INDET) returns EX1 after canceling the gcd of its
 numerator & denominator with respect to INDET %

FUNCTION DIVOUT (EX1, INDET,
 % Locals: % EX2),
 WHEN FREE (EX2:
 NUM (FCTR (PGCD (NUM(EX1:FCTR(EX1)), DEN(EX1) ,INDET))), INDET),
 EVAL (EX1) EXIT,
 EVAL (FCTR (FIRST (PDIV (NUM(EX1), EX2, INDET))
 / FIRST (PDIV (DEN(EX1), EX2, INDET)))),
ENDFUN$

 NL9-11

* * * * * * * * * * T h e m u L I S P e r * * * * * * * * * *

 SOUNDEX Codes
 Dr. Stanley Schwartz, Department of Path ology,
 The Memorial Hospital, Pawtucket, Rhode Isla nd, 02860

 Function SOUNDEX in file SOUNDEX.LIB conv erts names into
SOUNDEX codes. A typical use is in keying a lar ge data base of
people's names. A SOUNDEX code consists of a fou r character code,
the first of which is the initial letter of the nam e, and the rest
of which are numbers chosen to group letters with similar sounds.
If a letter has a zero code or the same code as an adjacent letter,
it is dropped. A limitation of the SOUNDEX system is its inability
to deal with variant initial letters. Otherwise , surnames with
similar sounds or which are variants of the same name (such as
Carpenter and Charpentier), usually receive the sam e SOUNDEX code. A
SOUNDEX program written in BASIC appeared in BYTE magazine about two
years ago.

% File SOUNDEX.LIB 10/09/83 Dr. Stanl ey Schwartz %

(DEFUN SOUNDEX (LAMBDA (NAME
 % Local: % LENGTH)
 (SETQ LENGTH T)
 (SETQ NAME (UNPACK NAME))
 (PACK (CONS (CAR NAME) (REVERSE (S-FILL (S-AUX (C DR NAME))))))))

(DEFUN S-AUX (LAMBDA (NAME OUT
 % Local: % TEMP)
 ((NULL NAME) OUT)
 ((EQ (LENGTH OUT) 3) OUT)
 ((ZEROP (SETQ TEMP (S-TRANS (POP NAME) SOUNDEX))) (S-AUX NAME OUT))
 ((EQ TEMP (CAR OUT)) (S-AUX NAME OUT))
 (S-AUX NAME (CONS TEMP OUT))))

(DEFUN S-FILL (LAMBDA (LST)
 ((EQ (LENGTH LST) 3) LST)
 (S-FILL (CONS 0 LST))))

(DEFUN S-TRANS (LAMBDA (LETTER SOUND)
 ((NULL SOUND) 0)
 ((MEMBER LETTER (CAR SOUND)) (CAAR SOUND))
 (S-TRANS LETTER (CDR SOUND))))

(SETQ SOUNDEX (QUOTE ((0 A E I O U Y H W)
 (1 B F P V)
 (2 C G J K Q S X Z)
 (3 D T)
 (4 L)
 (5 M N)
 (6 R))))

(RDS)

 NL9-12

 Solving General Relativity Problems

 Professor Frederick Ernst at the Illinois Institute of
Technology in Chicago has developed a muLISP prog ram for solving
problems in general relativity. The article "Char ged Spinning-Mass
Field Involving Rational Functions" by Chen, Guo a nd Ernst describe
an original application of this program. It appea rs in the Journal
of Mathematical Physics, Vol. 24, No. 6, June 1983, pp. 1564-1567.

 Turtle Graphics
 Russell Sasamori, Dept. of Electrical Engi neering,
 University of Hawaii, Honolulu, Hawaii, 96822

 The file TURTLE.LIB defines some primitive fun ctions for doing
turtle graphics using algorithms described in the book Turtle
Graphics by Abelson and deSessa (MIT Press). The file also contains
some commented functions illustrating the use o f the primitive
turtle functions. The back cover of the Newsletter shows the result
of a call to the function OHM.

 In order to make the functions work on non graphics console
screens, character-level resolution is used and an gles are limited
to multiples of 45 degrees. Lesson 4 of the inte ractive, on-line
LISP programming lessons, distributed with muLISP- 83, indicates how
to handle arbitrary angles and provides an example of how to inter-
face to a graphics screen.

 TURTLE.LIB requires the function (CLRSCRN) to clear the console
screen and the function (CURSOR row col) to positi on the cursor to
<row> and <col> on the screen. If these two fu nctions are not
primitively defined in your version of muLISP, yo u can define them
in muLISP by using PRIN1 to send the appropriate s equence of char-
acters to your console screen.

 TURTLE.LIB also requires the utility function s ADD1 and SUB1.
They are defined in the file UTILITY.LIB.

 NL9-13

% File TURTLE.LIB 10/08/83 Russel l Sasamori %

% The following assignments set the turtle to point "EAST" at the
 center of a 24 by 80 character screen: %

(SETQ ROW 12) (SETQ COL 39) (SETQ DIR 2)

% NEWDRAW clears the screen, centers the turtle on the screen, and
 evaluates its first argument. %

(DEFUN NEWDRAW (NLAMBDA (FUNFORM ROW COL DIR)
 (CLRSCRN)
 (((NULL (SETQ ROW (EVAL ROW))) (SETQ ROW 12)))
 (((NULL (SETQ COL (EVAL COL))) (SETQ COL 39)))
 (((NULL (SETQ DIR (EVAL DIR))) (SETQ DIR 2)))
 (EVAL FUNFORM)))

% The following assignment establishes "@" as the c haracter to use
 for displaying the path of the turtle: %

(SETQ CH (QUOTE @))

(SETQ NULLSTR (QUOTE ""))

(DEFUN LOCATE (LAMBDA (R C)
 (SETQ ROW R) (SETQ COL C)
 NULLSTR))

(DEFUN RIGHT (LAMBDA (N)
 (((NULL N) (SETQ N 1)))
 (SETQ DIR (REMAINDER (PLUS DIR N) 8))
 NULLSTR))

(DEFUN LEFT (LAMBDA (N)
 (((NULL N) (SETQ N 1)))
 (SETQ DIR (REMAINDER (DIFFERENCE DIR N) 8))
 NULLSTR))

(DEFUN PLOT (LAMBDA (ROW COL LINELENGTH)
 ((GREATERP ROW 23))
 ((GREATERP COL 79))
 ((LESSP ROW 0))
 ((LESSP COL 0))
 (CURSOR ROW COL)
 (PRIN1 CH)
 NULLSTR))

(DEFUN FORWARD (LAMBDA (N)
 (((NULL N) (SETQ N 1)))
 ((MINUSP N) NULLSTR)
 (SETQ DIR (REMAINDER DIR 8))
 (LOOP
 (((EQ DIR 0) (SETQ ROW (SUB1 ROW)))
 ((EQ DIR 1) (SETQ ROW (SUB1 ROW)) (SETQ COL (ADD1 COL)))
 ((EQ DIR 2) (SETQ COL (ADD1 COL)))

 NL9-14

 ((EQ DIR 3) (SETQ ROW (ADD1 ROW)) (SETQ COL (ADD1 COL)))
 ((EQ DIR 4) (SETQ ROW (ADD1 ROW)))
 ((EQ DIR 5) (SETQ ROW (ADD1 ROW)) (SETQ COL (SUB1 COL)))
 ((EQ DIR 6) (SETQ COL (SUB1 COL)))
 (SETQ ROW (SUB1 ROW)) (SETQ COL (SUB1 COL)))
 (PLOT ROW COL)
 ((ZEROP (SETQ N (SUB1 N))) NULLSTR))))

% A space filling curve function, e.g. (NEWDRAW (O HM 6) 23 0) %

(DEFUN OHM (LAMBDA (N)
 ((LESSP N 2) NULLSTR)
 (LEFT 2) (MHO (SUB1 N))
 (FORWARD 2) (RIGHT 2) (OHM (SUB1 N))
 (FORWARD 2) (OHM (SUB1 N))
 (RIGHT 2) (FORWARD 2) (MHO (SUB1 N)) (LEFT 2)))

(DEFUN MHO (LAMBDA (N)
 ((LESSP N 2) NULLSTR)
 (RIGHT 2) (OHM (SUB1 N))
 (FORWARD 2) (LEFT 2) (MHO (SUB1 N))
 (FORWARD 2) (MHO (SUB1 N))
 (LEFT 2) (FORWARD 2) (OHM (SUB1 N)) (RIGHT 2)))

% A space filling curve function, e.g. (NEWDRAW (S 2) 0 0) %

(DEFUN S (LAMBDA (N)
 ((MINUSP N) NULLSTR)
 (S (SUB1 N))
 (FORWARD 2) (LEFT 2) (S (SUB1 N))
 (RIGHT 2) (FORWARD 2) (S (SUB1 N))
 (RIGHT 2) (FORWARD 2) (S (SUB1 N))
 (RIGHT 2) (FORWARD 2) (S (SUB1 N))
 (FORWARD 2) (LEFT 2) (S (SUB1 N))
 (FORWARD 2) (LEFT 2) (S (SUB1 N))
 (FORWARD 2) (LEFT 2) (S (SUB1 N))
 (RIGHT 2) (FORWARD 2) (S (SUB1 N))))

% Pretty crosses, eg: (NEWDRAW (CROSSES 3) 23 0) %

(DEFUN CROSSES (LAMBDA (N)
 ((LESSP N 1)
 (FORWARD 3)
 (LEFT 2)
 (FORWARD 3))
 (CROSSES (SUB1 N))
 (RIGHT 2) (FORWARD 2) (RIGHT 2)
 (CROSSES (SUB1 N))
 (FORWARD 2) (LEFT 2) (FORWARD 2)
 (CROSSES (SUB1 N))
 (RIGHT 2) (FORWARD 2) (RIGHT 2)
 (CROSSES (SUB1 N))))

(RDS)

