2026/01/20 20:52 1/15 BASIC fiir 8080-Systeme

Hobby Computer, Sonderheft der ELO,Funkschau,Elektronik, S.72-79, 1978(?)
Rolf-Dieter Klein

RDK: 27 Apr 1999: mein Tiny Basic ist ein Derivat von einer Quelle die noch aelter ist. Sie koennen
auch gerne meine Quelle ins Netz stellen, leider habe ich die Sourcen nicht mehr im Zugang. gruss
rak

BASIC fur 8080-Systeme

Der Neuling auf dem Mikrocomputergebiet kommt am schnellsten zu einem lauffahigen Programm,
wenn er eine héhere Programmiersprache zur Verflgung hat. Mit dem beschriebenen Interpreter
haben Besitzer von 8080- und Z-80-Systemen die Moglichkeit, in BASIC, einer der leichtesten
Programmiersprachen (berhaupt, zu arbeiten. Der Interpreter ist ein Ubersetzungsprogramm, das aus
den BASIC-Befehlen den Maschinencode des Mikroprozessors erzeugt. Er braucht etwa 3 KByte an
Speicherplatz und kann zur Not noch von Hand eingetippt werden. Zusatzlich mul8 noch ungefahr 1
KByte RAM fur das Benutzerprogramm zur Verfugung stehen. Weitere Voraussetzungen sind:
alphanumerische Eingabe- und Ausgabemaglichkeit.

1 Arbeitsweise des BASIC-Interpreters

Grundsatzlich gibt es bei der Realisierung einer héheren Programmiersprache auf einem
Mikrocomputer zwei verschiedene Maglichkeiten: Da waren zunachst einmal die sogenannten
Compiler. Sie Ubersetzen ein Programm direkt in Maschinensprache und fuhren es dann aus. Das
heilSt, fur einen BASIC-Befehl werden zunachst mehrere Befehle aus der Assemblersprache des
betreffenden Prozessors erzeugt, und es entsteht aus dem ursprunglichen BASIC-Programm ein
Programm in Assembler. Dieses wird dann in die entsprechenden Operationscodes Ubersetzt, und es
entsteht ein flr den Prozessor verstandliches Programm, das in den Arbeitsspeicher geladen und
gestartet werden kann. Nun erst lauft das Programm, und eventuelle Fehler werden erkennbar, wenn
sie nicht schon vom Ubersetzer erkannt wurden.

Ein Interpreter arbeitet etwas anders. Der vorliegende holt sich z. B. eine Zeile aus dem Programm,
analysiert sie und flhrt die entsprechenden Befehle aus. Nach Ausflihrung der Zeile holt er die
nachste und so fort. Ist eine Schleife vorhanden, das heilst, wird ein Programmteil 6fters wiederholt,
so muls der Interpreter diesen Teil auch genauso oft Ubersetzen. Hier liegt auch schon der Nachteil
eines Interpreters gegeniber einem Compiler: Compiler-Programme sind in der Regel erheblich
schneller. Es gibt noch eine Mischform, ebenfalls Interpreter, die das Quellprogramm in einen
Zwischencode ubersetzen und dann erst ausfuhren. Dabei werden Befehle wie PRINT einfach durch
einen Code, z. B. 85, ersetzt. Der Vorteil dieser Interpreter liegt darin, dall Programme
wenigerSpeicherplatz benétigen und dal die Ausfuhrungszeit etwas besser liegt. Der beschriebene
Interpreter arbeitet aber nicht so, sondern Ubersetzt jeden Befehl neu. Er besitzt dazu eine Tabelle, in
der samtliche vorhandenen Befehle stehen. Hinter jedem Befehl steht dann noch eine Adresse. Sie
gibt an, an welcher Stelle im Programm sich das entsprechende Unterprogramm flr die Abarbeitung
des jeweiligen Befehls befindet.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

2 Laden, Starten und Modifizieren

2.1 Laden des Interpreters

Um den Interpreter in das System eingeben zu kénnen, sind zwei Mdglichkeiten der Eingabe
vorhanden Zunachst ist eine sedezimale Liste (Bild 1) vorhanden. Der Interpreter startet auf der
Adresse 1000. Die Codes konnen nun einfach entsprechend der Liste in den eigenen Computer
eingegeben werden. Am SchluB sollte dabei jedes Byte mit dem aufgelisteten Byte verglichen werden,
um Tippfehler, die das Programm zerstéren konnten, zu vermeiden. Ferner sollte das Programm dann
auf ein externes Speichermedium gebracht werden (z. B. Lochstreifen, Kassette o. a.).

Es gibt aber noch eine zweite Mdglichkeit. Daflr ist ein Listing im sogenannten ,relocating“-Format
beigefugt (Bild 2), das es gestattet, den Interpreter auf eine beliebige Stelle im Speicher (allerdings <
8000sed) zu binden. Dies ist moglich, da in diesem besonderen Format die Information enthalten ist,
an welchen Stellen Adressen im Programm vorhanden sind.

Um von diesem Format Gebrauch machen zu konnen, ist es aber notig, einen sogenannten Lader zu
schreiben, der diese Berechnung (addieren einer Konstanten auf alle Adressen) durchfuhrt.

Dazu das Aufzeichnungsformat:
Zeichen 0...1: CR (Wagenrucklauf), LF (Zeilenvorschub), um Blocke voneinander zu trennen.
Zeichen 2: Strichpunkt, kennzeichnet den Anfang eines relokalisierbaren Blockes.

Zeichen 3...4: Dieses Byte (durch zwei ASCII-Zeichen, 1SO-7-bit-Code nach DIN 66003, 0...9, A...F
dargestellt) gibt die Anzahl der Daten-Bytes an. Z. B. 19 an dieser Stelle bedeutet, es sind 25 Daten-
Bytes in diesem Block.

Zeichen 5...8: In den zwei Bytes steckt die relative Anfangsadresse des Blocks. Sie wird beginnend
mit dem hoherwertigen Byte der Adresse angegeben.

Zeichen 9...10: Dieses Byte enthalt die Relokalisierinformation. Ist dieses Byte 0, so wird die
angegebene Anfangsadresse absolut verwendet. Ist dieses Byte 1, so wird die Adresse durch den
Relokalisierfaktor modifiziert.

Zeichen 11...12: Dieses Byte enthalt die Relokalisierinformation fur die nachsten 8 Daten-Bytes. Dabei
entspricht jedes Bit dieses Bytes einem Byte der nachsten 8 Daten-Bytes. Bit 7 ist fur das erste Byte
zustandig und Bit 0 fUr das letzte. Ist das betreffende Bit 0, dann heif3t dies, das Byte wird
unverandert geladen. Ist ein Byte auf 1 gefolgt von einem auf 0, dann sind die beiden dazugehérigen
Bytes eine relokalisierbare Adresse, und der Relokalisierfaktor mul§ aufaddiert werden. Ein Bit auf 1
gesetzt, von einem gefolgt, das ebenfalls auf 1 ist, stellt eine Information fur den Linking Loader dar,
der aber hier nicht bendtigt wird.

Zeichen 13...28: Hierin sind die eigentlichen Daten-Bytes enthalten. Die Gesamtzahl der Daten-Bytes
ist durch die Information am Anfang bestimmt. Nach jedem achten wird aber wieder die
Relokalisierinformation eingefligt, dann folgen wieder Daten-Bytes.

Zeichen N...(N+1): Dieses Byte enthalt die Blockprifsumme, die dem Zweierkomplement der Summe
Uber alle vorhergehenden Bytes in diesem Block entspricht, so dall nun die Summe aller Bytes 0
ergeben muf. Damit wird eine Blocksicherung erreicht.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 3/15 BASIC fiir 8080-Systeme

Vom Benutzer muB ein Lader geschrieben werden, der speziell auf sein System abgestimmt ist und
alle diese Informationen auswertet. Der Vorteil des relokalisierbaren Programms liegt neben der frei
wahlbaren Anfangsadresse bei der Uberpriifbarkeit auf Eingabefehler durch die Priifsumme.

2.2 Starten und Modifizieren des Interpreters

Um den Interpreter starten zu konnen, ist es notig, zunachst die Ein/Ausgabe-Vektoren zu andern.
Standardmafig sind zwei Vektoren vorhanden, der eine flhrt auf die Adresse FO03 und bedeutet
einen Sprung auf die Eingabe eines Zeichens vom Benutzer. Das Zeichen mul8 dabei Uber das
Register A an den Interpreter weitergegeben werden. Die anderen Register durfen nicht verandert
werden. Ferner gibt es noch einen Sprung auf die Adresse F009, der die Ausgabe eines Zeichens
bewirken soll. Dabei ist das auszugebende Zeichen im Register C vorhanden. Am Schlul§ dieser
Routine muB das Zeichen im Register A stehen und C soll unverandert bleiben, wie auch die restlichen
Register.

Hat der Benutzer an diesen beiden Adressen keinen Speicher, um entsprechende Sprungbefehle auf
seine eigenen E/A-Routinen durchzufiihren, so muls er im BASIC-Interpreter die Vektoren andern.

Dazu die Adressen: Auf Adresse 71DH (H bedeute; HEX also sedezimal) steht die Befehlsfolge CD 03
FO, sie ist in die entsprechende Folge zum Aufruf des eigenen Eingabe-Unterprogramms
umzuwandeln. Auf Adresse 70DH und 715H steht die Befehlsfolge CD 09 FO, hier ist der
entsprechende Aufruf flr die Ausgaberoutine einzutragen.

Nun gibt es noch die Méglichkeit, das Anwenderprogramm durch die Betatigung der Tastenfolge CTRL
C zu stoppen, genauso wie den Ausdruck langer Programme. Dazu hat der Benutzer eine Routine zu
schreiben, die seinen Status-Port der Eingabetastatur abfragt, ob ein Zeichen vorhanden ist und
wenn, ob es sich um CTRL C (Code 3) handelt. Ist das der Fall, muls das Programm auf die Adresse
00C6H springen (RESTART-Adresse des Interpreters), anderenfalls mull es mit einem Return-Befehl
zuruckkehren. Diese Routine wird von zwei Stellen des BASIC-Interpreters aus angesprungen. Der
Aufruf muB an die betreffenden Stellen eingetragen werden.

Dazu die Adresse: Auf AICH steht der Befehl C9 (Return), dieser mul8 durch einen JMP-Befehl auf die
eigene Routine ersetzt werden. Falls der Platz ausreicht, kann die Routine auch an diese Stelle
geschrieben werden. Es stehen dazu 10 Byte zur Verfigung. Die Adresse AICH wird von dem Teil, der
die Programme ausfuhrt, und von dem Teil, der Programme auflistet, bei Ausfuhrung jedesmal mit
dem Beginn einer neuen Zeile angesprungen.

Im beschriebenen BASIC gibt es einen Befehl BYE, der das System verlalst und dem Monitor die
Steuerung Ubergibt. Dies geschieht durch die Ausfihrung des Maschinenbefehls RST 7. Der Benutzer
kann einen direkten Sprung zu seinem Monitor einbauen, indem er an die Stelle 8DFH anstelle des
RST 7-Befehls einen Sprung zu seinem Monitor schreibt. Das BASIC-Programm kann dann vom Monitor
aus gestartet werden, indem ein Sprung auf den Speicherplatz C6 ausgefuhrt wird.

Alle angegebenen Adressen sind um den Relokalisierfaktor zu erhéhen, den der Anwender beim
Laden des Interpreters verwendet hat.

Bild 1. Programmliste

Bild 2. Programmliste fiir verschiebbares (relocating) Format

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

3 BASIC-Befehle

3.1 Steuerbefehle

Diese Befehlsgruppe dient der Steuerung des Interpreters. Es kann damit der Ablauf eines Programms
bestimmt werden (starten, Idschen, ausdrucken).

LIST

Mit Hilfe dieses Befehls kann ein zuvor eingegebenes Programm ausgedruckt werden. Dabei wird,
wenn der Befehl LIST CR (CR steht fur carriage return, also Wagenrucklauf) eingegeben wird, das
gesamte Programm ausgedruckt. Es kann auch eine zusatzliche Zeilennummer angegeben werden,
dann wird das Programm beginnend mit dieser Zeilennummer ausgegeben. Soll der Ausdruck eines
Programms abgebrochen werden, weil auf dem Datensichtgerat nicht das ganze Programm
dargestellt werden kann, so kann dies durch Eingeben des Zeichens CTRL C (Code 3) geschehen. LIST
200 zum Beispiel gibt das Programm beginnend mit der Zeilennummer 200 aus. Falls die
Zeilennummer 200 nicht vorhanden ist, wird nach der nachstgrofSeren gesucht und von da an gelistet.

RUN

Nach Eingabe von RUN CR wird das Programm beginnend bei der niedrigsten Zeilennummer
gestartet.

NEW

Damit kann ein Programm gel6scht werden. Anschliefend ist es mdglich, ein neues Programm
einzugeben.

BYE

Bei der Ausflhrung dieses Befehls kehrt der Prozessor zum Monitorprogramm zurlck und verlaBt das
BASIC-System.

END

In der urspringlichen Bedeutung steht dieser Befehl am Ende eines Programmes. Dies ist bei dem
vorliegenden Interpreter nicht notwendig, somit konnte dieser Befehl mit einer anderen Bedeutung
versehen werden. Von Haus aus wird nach Laden des BASIC-Interpreters ein minimaler
Speicherbedarf von 700 Byte fiir den Anwender definiert. Bei der Uberschreitung dieses
Arbeitsraumes durch Eingabe langer BASIC-Programme wird eine Fehlermeldung vom Interpreter
(SORRY) ausgegeben, die darauf hinweisen soll, dal8 kein Platz mehr fur das Programm vorhanden ist.
Nun kann es aber sein, daB ein groRerer Speicher vorhanden ist. In diesem Fall kann der Benutzer mit
Hilfe des Befehls END den zunachst auf 700 Byte vorbesetzten Platz dynamisch erh6hen. Dazu erhalt
der Befehl END einen zusatzlichen Parameter, der die absolute Adresse der gewlnschten neuen
hochsten Adresse darstellt.

Zum Beispiel bedeutet die Anweisung END 8000, dals dem BASIC ab sofort Speicherplatz bis zur
Adresse 8000 (dezimal) zur Verfugung steht.

Dabei muB berucksichtigt werden, daR der Interpreter dartber hinaus einen Platz flr den Textpuffer
bendtigt, der Uber dem angegebenen Platz vorhanden sein muR. Er kann mit etwa 140 Byte

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 5/15 BASIC fiir 8080-Systeme

veranschlagt werden.

3.2 Programmierbare Befehle

Alle nun folgenden Befehle kdnnen im Gegensatz zu den Steuerbefehlen programmiert werden. Die
meisten kénnen auch im sogenannten ,Direct Mode,, verwendet werden, das heilt, einfach durch
Eingabe ohne vorangestellte Zeilennummer. Sie werden dann unmittelbar nach Eingabe von CR
ausgefuhrt.

LET
LET weist einer Variablen einen Wert zu.
Beispiel:

10 LET A=10
20 LET B=2*(3-9)*6/2
30 LET A=C

Dabei kann der Befehl LET auch weggelassen werden. Er dient eigentlich nur der besseren Lesbarkeit.
FOR TO NEXT

Damit ist es maoglich, Schleifen aufzubauen, das heilt, eine bestimmte Befehlsfolge n-mal zu
durchlaufen. Beispiel:

10 FOR A =1 TO 10 STEP 2
20 ...

30 ...

40 NEXT A

Der Bereich zwischen 10 und 40 wird dabei 5mal durchlaufen. Innerhalb der Schleife kann der
aktuelle Wert von A verwendet werden, er sollte jedoch nicht verandert werden. Die Angabe STEP legt
die Schrittweite fest Sie kann auch negativ sein, es missen dann allerdings auch die Variablen nach
FOR und TO entsprechend gewahlt werden.

Beispiel:

10 FOR A = 10 TO 1 STEP -2
20 ...

30 ...

40 NEXT A

Dieses Programm bewirkt genau das gleiche wie das erste Beispiel, nur dal$ hier die Variable zunachst
den Wert 10 erhalt, dann 8 dann 6 usw. Wird die Angabe STEP weggelassen, so wird eine Schrittweite
von | angenommen.

GOTO

Der Befehl GOTO bewirkt die Ausfihrung eines Sprungbefehls. Dabei wird hinter dem Befehl die

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Zeilennummer angegeben, die angesprungen werden soll. Diese Zellennummer kann auch berechnet
werden, indem eine Variable oder ein arithmetischer Ausdruck an diese Stelle geschrieben wird.

Beispiel
10 GOTO 209

Dieser Befehl bewirkt einen Sprung zur Zeile 209.
Beispiel
20 GOTO 100*2+9

Hier wird ebenfalls zur Zeile 209 gesprungen.

Es ist auch maoglich den Befehl im Direkt-Modus zu verwenden Es wird dann zu der angegebenen Zeile
gesprungen und von da an das Programm ausgefuhrt.

GOSUB

Mit dem GOSUB-Befehl ist es mdglich, einen Unterprogramm-Aufruf durchzufuhren Dabei wird ahnlich
wie beim GOTO-Befehl die Zellennummer angegeben, die auch hier berechnet werden kann

RETURN

Dieser Befehl stellt das Gegenstuck zum GOSUB-Befehl dar. Nach Aufruf eines Unterprogramms, das
mit dem RETURN-Befehl enden mul3, kehrt das Programm wieder an die Stelle zurlick, von der aus
das Unterprogramm aufgerufen wurde.

IF

Mit diesem Befehl kann eine Entscheidung getroffen werden. IF wird von einem arithmetischen
Ausdruck gefolgt. Ist der Wert ungleich 0 so wird der nachfolgende Befehl ausgefuhrt, andernfalls die
nachste Zeile.

20 IF A = 2 GOTO 10

Wenn A den Wert 2 besitzt wird zur Zeile 10 gesprungen. (THEN darf nicht verwendet werden).
REM

Die Anweisung REM ermdglicht es, Kommentare in das Programm einzubauen Dabei wird der Text,
der hinter einer REM-Anweisung steht, bis zum Zellenende vom Interpreter ignoriert.

INPUT

Einen der wichtigsten BASIC-Befehle stellt der INPUT-Befehl dar. Er ermdglicht es, Daten in das
Programm im Dialogverfahren einzugeben. Will man zum Beispiel in einem Programm der Variablen C
einen Wert zuweisen, den der Benutzer eingeben soll, so lautet der Befehl folgendermalien

10 INPUT C

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 7/15 BASIC fiir 8080-Systeme

Bei der Ausflihrung des Programms druckt dann der Interpreter
C:

Nun muB der Benutzer eine Zahl eingeben (oder einen arithmetischen Ausdruck, der dann noch
berechnet wird). Will man erreichen, daB ein bestimmter Text anstatt des Vanablennamens
ausgedruckt wird, so gibt man diesen Text vor der Variablen in Anflhrungszeichen gesetzt an.

Beispiel:
10 INPUT "Geben Sie eine Zahl ein" C

Bei Ausfuhrung dieses Programms wird dann der angegebene Text gefolgt von einem Doppelpunkt
ausgedruckt.

Es ist auch moglich, mehrere Variable einzugeben. Dazu werden sie mit Kommas getrennt.
Beispiel
10 INPUT A,C, 'Zahl'F,K

PRINT

Mit Hilfe des PRINT-Befehls ist es méglich, Daten und Texte auszugeben. Dazu werden die
verschiedenen Variablen, Zahlen und Texte mit Kommas getrennt angegeben.

Beispiel:
10 PRINT 2 B 'Text',7

Dieses Programm bewirkt den Ausdruck der Zahl 2, dann des Inhalts der Variablen B, dann wird der
Text ausgegeben und die Zahl 7. Zahlen werden mit sechs Stellen ausgegeben. Dies kann aber
geandert werden. Dazu dient die sogenannte Formatanweisung. Sie kann auch mehrmals in der
PRINT-Anweisung angegeben werden und bleibt bis zur nachsten Formatanweisung innerhalb einer
PRINT-Anweisung wirksam. Bei der Ausfuhrung des nachsten PRINT-Befehls in einem Programm ist
wieder der Wert 6 voreingestellt. Die Formatanweisung wird mit dem Zeichen # eingeleitet und hat
als Parameter eine Zahl oder einen arithmetischen Ausdruck.

Beispiel
10 PRINT 1,#10,1,1

Die erste 1 wird hier mit insgesamt sechs Stellen ausgedruckt, die anderen beiden mit zehn Stellen.

Wird bei der PRINT-Anweisung an die letzte Stelle ein Komma gesetzt, so wird der Zellenvorschub
unterdrickt. Der nachste Ausdruck wird dann an der letzten Position fortgesetzt.

STOP
Der STOP-Befehl beendet den Programmablauf.

CALL

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Mit dem Befehl CALL ist es mdglich, Unterprogramme in Maschinensprache aufzurufen. Daflr ist ein
Parameter anzugeben, der die absolute Adresse des Unterprogramms angibt.

Beispiel
10 CALL HEX(54FF)

Dieses Programm bewirkt, daR das Maschinenprogramm auf Adresse 54FFH ausgefuhrt wird. Mit
einem RET-Befehl (Code C9) kann wieder in das BASIC-System zurtckgekehrt werden.

OUTCHAR

Mit diesem Befehl werden Einzelzeichen ausgegeben, die auch Sonderzeichen und nicht darstellbare
Zeichen sein konnen. Dem Befehl wird als Parameter der dezimale Wert gegeben.

Beispiel:
10 OUTCHAR(64)

Bei der Ausflhrung dieses Programms wird das Zeichen 3 gedruckt.
ouT

Mit OUT wird einem 8080-Port direkt ein Wert zugewiesen. OUT wird dabei ahnlich wie eine Variable
verwendet. Will man zum Beispiel dem PORT mit der Adresse 18H den Wert 2 zuweisen, so sieht der
Befehl wie folgt aus:

10 OUT(HEX(18))=2

Mit der Funktion HEX wird hier wieder erreicht, dal® der sedezimale Wert 18 in einen dezimalen Wert
umgerechnet wird und dann dem OUT-Befehl zugefuhrt werden kann.

0$

Hierbei handelt es sich um einen speziellen Befehl, der eingeflhrt wurde, um auch schon in diesem
kleinen BASIC-System Stringverarbeitung durchfihren zu kdnnen. Der 0$-Befehl ermdglicht die
Ausgabe eines Textes, der auf einer beliebigen Adresse stehen kann und von 0 abgeschlossen wird
(siehe auch 1$, PEEK, POKE). Dazu erhalt der Befehl einen zusatzlichen Parameter, namlich die
Adresse.

Beispiel:
10 0% TOP

Hier wird ein Text ausgedruckt, der auf der ersten freien Adresse liegt und natlrlich zuvor eingegeben
werden muBte, z. B. mit I$ oder mit POKE.

I$

Dies ist das Gegenstuck zum O$-Befehl. Dieser Befehl erhalt eine Adresse als Parameter und legt
dann einen Text, der eingegeben wird (ahnlich wie bei INPUT fur Zahlen), auf die angegebene Adresse
ab. Die Eingabe des Textes wird durch ein CR beendet. Die Lange ist Uber den LEN-Befehl feststellbar.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 9/15 BASIC fiir 8080-Systeme

Beispiel:
10 I$ TOP

Dieses Programm legt einen Text, beginnend auf der ersten freien Adresse, ab.
POKE

POKE ist ein Befehl, mit dem Direktspeicherzugriff durchgefiihrt werden kann, wobei ein
automatischer Schreibschutz fir ein abgelegtes BASIC-Programm besteht. POKE besitzt zwei
Parameter: Der erste gibt die Adresse (absolut) an, der zweite bestimmt den Wert, der auf dieser
Adresse abgelegt werden soll.

Beispiel:

10 POKE TOP + 1,5
20 POKE 16000, 2*5
30 POKE TOP, 'T'

Bei Zeile 10 wird der Wert 5 (es wird nur ein Byte gespeichert, falls grolSere Zahlen als 255
eingegeben werden) auf die zweite freie Speicherzelle gelegt. Bei 20 wird auf die Adresse 16000
(dezimal) der Wert 10 und bei 30 auf die erste freie Adresse der ASCII-Code fur den Buchstaben T
abgelegt.

TAB

Mit TAB kann die aktuelle Schreibposition verandert werden. Dabei wird im Gegensatz zum Standard-
BASIC der TAB-Befehl nicht in eine PRINT-Anweisung geschrieben.

Beispiel:
10 TAB(20)

Die Schreibposition wird um 20 Zeichen vorgeruckt.
RND

Die Funktion RND liefert einen Zufallswert, dabei kann noch angegeben werden, in welchem Bereich
dieser Wert liegen soll.

Beispiel:
10 A = RND(1000)

Die Variable A erhalt einen Wert zwischen | und 1000.
ABS
ABS bildet den Absolutbetrag einer Zahl. ABS(-2) entspricht dem Wert 2.

SIZE

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Mit SIZE kann der Speicherfreiraum ermittelt werden, der flr eigene Programme noch vorhanden ist.
PEEK

Mit PEEK kann ein Direktspeicherzugriff durchgefuhrt werden. Dazu gibt man die Absolutadresse mit
an.

Beispiel:
10 A=PEEK(HEX(2000))

A erhalt den Wert des Bytes, das an der Adresse 2000 (sedezimal) steht. Im Gegensatz zu POKE wird
bei PEEK ein Byte geholt.

INCHAR

Mit INCHAR kann ein Zeichen von der Konsole geholt werden Dabei wird dieses Zeichen nicht
ausgegeben. Dies ermdglicht es, Zeichen umzudefinieren oder Steuertasten zu definieren.

Beispiel:
10 B=INCHAR

HEX

Dem Befehl HEX wird in Klammern ein sedezimaler Wert gegeben, der dann in den dezimalen Wert
umgerechnet wird.

IN
Mit IN kann der Wert eines 8080-Ports gelesen werden.
Beispiel:

10 A=IN(HEX(18))

Hier wird der Variablen A der Wert des Ports 18H zugewiesen.
TOP

TOP ist eine Pseudovariable. Mit dieser Funktion erhalt man die Adresse des ersten freien
Speicherplatzes (dezimal). Vor diesem Speicher steht das BASIC-Anwenderprogramm.

LEN

LEN ist ebenso eine Pseudovariable Ihr Wert gibt die Lange des zuletzt mit I$ eingegebenen Textes
an.

4 Weitere Eigenschaften

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 11/15 BASIC fiir 8080-Systeme

4.1 Variable

Als Variable stehen A bis Z zur Verfigung. Als Array (Dimension 1) wird das Zeichen @ verwendet, z.
B.

10 @(10)=6

Die maximale GroRe des Arrays hangt dabei von der Lange des Anwenderprogramms ab.

4.2 Arithmetik

Zahlenbereich von -32767 bis + 32767, vier Grundrechenarten + * - /; Klammern kénnen beliebig
gesetzt und verschachtelt werden.

4.3 Logische Operatoren

< > & >= # = liefern den Wert 1, falls die Aussage wahr ist, und 0, falls sie falsch ist. Die Operatoren
kénnen beliebig mit * + ... verknupft werden.

4.4 Textoperator

Mit ' * kann der aquivalente Sedezimalwert eines ASCII-Zeichens berechnet werden. 'A' liefert
beispielsweise den Sedezimalcode 41.

4.5 Steuerzeichen

Mit verschiedenen Steuerzeichen kann man Fehler verbessern, die bei der Eingabe entstehen. CTRL
C (Code 03, d. h die Tasten ,,CTRL" und ,,C* werden gleichzeitig gedrlckt) z. B. unterbricht die
Ausflhrung eines Programmes oder eines Listings. Mit CTRL A wird das zuletzt eingegebene Zeichen
geloscht (Code 01). Mit ESC (Code 1B) wird die gerade eingegebene Zeile geldscht, wenn CR noch
nicht gegeben wurde. CTRL B besitzt eine besondere Bedeutung (Code 02): Wird CTRL B ausgefihrt,
so gibt der Interpreter keine Zeichen mehr aus, aber empfangt noch alle Zeichen. Damit ist es
maglich, Programme vom Kassettenrecorder aus einzulesen. Die Programme werden mit Hilfe des
LIST-Befehls ausgegeben, wahrend ein Kassettenrecorder mitlauft, der simultan tber ein Modem an
der Serienschnittstelle zum Datensichtgerat hangt. Bei der Wiedergabe wird CTRL B betatigt (zuvor
NEW eingeben), dann wird der Ausgang des Kassettenmodems mit der Serienschnittstelle des
Datensichtgerateausgangs parallel geschaltet. Das Programm kann dann eingelesen werden. Am
SchluB wird wieder CTRL B betatigt, so dall mit dem Interpreter wieder normal gearbeitet werden
kann. Diese Unterdriickung der Ausgabe ist ndtig, da sonst durch die Ausgabevorgange eine
Verlangsamung des Eingabevorgangs die Folge ware und das System aulSer Tritt kame.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13

z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Programmbeispiele

10 PRINT 'GEBEN SIE EINEN STRING EIN'
20 I$ ToP

30 FOR I=1 TO LEN
40 IF PEEK(TOP+I)="'
50 NEXT I

55 0% TOP

>RUN

GEBEN SIE EINEN STRING EIN
DIES IST EIN TESTSTRING
DIES-IST-EIN-TESTSTRING

' POKE TOP+I,'-"

10 FOR I=1 TO 10

20 FOR J=1 TO 10

30 @(I)=@(I)+RND(100)
40 NEXT J

50 NEXT I

60 FOR I=1 TO 10
70 PRINT @(I),

80 NEXT I
>RUN

479 612 269 685 379 496
READY
>RUN

872 1848 917 1143 983 952
READY
>RUN

1468 1578 1358 1711 1588 1472
READY
>PRINT A,B,A<B,A>B,A=B,A<==

32 13 0 1 0 0

READY

>PRINT A,B,A<B,A>B,A=B,A#B,A<=B,A>=B
32 13 0 1 0 1

READY

>PRINT (1=1)*(A<B)*100+A+A*('1'="'1")
64

>PRINT SIZE
602
READY

>END HEX(3F00)
READY

514

1857

1664

477

834

1358

338

899

1332

422

684

1147

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/20 20:52

2026/01/20 20:52 13/15 BASIC fiir 8080-Systeme

>PRINT SIZE
8995

>10 REM AUSDRUCKEN VON ZUFALLSZAHLEN ZWISCHEN O UND 9
>20 FOR I=1 TO 5

>30 PRINT RND(10)-1

>40 NEXT I

>RUN

U N O O

>10 INPUT 'GEBEN SIE ZAHL EIN'A,B
>20 PRINT A*A,B*B,A+B
>30 PRINT 'MIT ANDEREM FORMAT'
>40 PRINT #10,A+A,B*B,A+B
>RUN

GEBEN SIE ZAHL EIN:12+1

B:23-5

169 324 31
MIT ANDEREM FORMAT
26 324 31

10 REM ANWENDUNG VON INCHAR
20 A=INCHAR

30 IF A=" ' STOP

40 IF A='0Q' B="*"'

50 IF A='1" B="' "

60 IF A='2"' B=HEX(D)

70 OUTCHAR(B)

80 GOTO 20

>RUN

) >k %k % * X X X
* k% kX

10 REM GAUSSCHE VERTEILUNG
20 FOR I=1 TO 300
30 FOR J=1 TO 10

110 IF @(I)<@(I+1) H=@(I+1);@(I)+1=@(I);@(I)=H;A=1
120 I=I+1
130 IF I<300 GOTO 110

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

140 IF A=1 GOTO 100

150 FOR I=1 TO 300

160 IF @(I)=@(I+1) PRINT " ",
170 IF @(I)>@(I+1) PHINT *"*"
180 NEXT I

>RUN

*
*
*

*
*
*
*

READY
REM ZEITBEDARF ETWA 45 MIN

>REM DRUCKEN IN EINER ZEILE
READY
>10 FOR I=1 TO 5
>20 PRINT RND(10)-1,
>30 NEXT I
>RUN
7 4 4 7 5
READY

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2026/01/20 20:52 15/15 BASIC fiir 8080-Systeme

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Last update: 2012/12/03 08:13

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

	BASIC für 8080-Systeme
	1 Arbeitsweise des BASIC-Interpreters
	2 Laden, Starten und Modifizieren
	2.1 Laden des Interpreters
	2.2 Starten und Modifizieren des Interpreters

	3 BASIC-Befehle
	3.1 Steuerbefehle
	3.2 Programmierbare Befehle

	4 Weitere Eigenschaften
	4.1 Variable
	4.2 Arithmetik
	4.3 Logische Operatoren
	4.4 Textoperator
	4.5 Steuerzeichen

	Programmbeispiele

