
2026/01/20 20:52 1/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Hobby Computer, Sonderheft der ELO,Funkschau,Elektronik, S.72-79, 1978(?)

Rolf-Dieter Klein

RDK: 27 Apr 1999: mein Tiny Basic ist ein Derivat von einer Quelle die noch aelter ist. Sie koennen
auch gerne meine Quelle ins Netz stellen, leider habe ich die Sourcen nicht mehr im Zugang. gruss
rdk

BASIC für 8080-Systeme

Der Neuling auf dem Mikrocomputergebiet kommt am schnellsten zu einem lauffähigen Programm,
wenn er eine höhere Programmiersprache zur Verfügung hat. Mit dem beschriebenen Interpreter
haben Besitzer von 8080- und Z-80-Systemen die Möglichkeit, in BASIC, einer der leichtesten
Programmiersprachen überhaupt, zu arbeiten. Der Interpreter ist ein Übersetzungsprogramm, das aus
den BASIC-Befehlen den Maschinencode des Mikroprozessors erzeugt. Er braucht etwa 3 KByte an
Speicherplatz und kann zur Not noch von Hand eingetippt werden. Zusätzlich muß noch ungefähr 1
KByte RAM für das Benutzerprogramm zur Verfügung stehen. Weitere Voraussetzungen sind:
alphanumerische Eingabe- und Ausgabemöglichkeit.

1 Arbeitsweise des BASIC-Interpreters

Grundsatzlich gibt es bei der Realisierung einer höheren Programmiersprache auf einem
Mikrocomputer zwei verschiedene Möglichkeiten: Da wären zunächst einmal die sogenannten
Compiler. Sie übersetzen ein Programm direkt in Maschinensprache und fuhren es dann aus. Das
heißt, für einen BASIC-Befehl werden zunächst mehrere Befehle aus der Assemblersprache des
betreffenden Prozessors erzeugt, und es entsteht aus dem ursprunglichen BASIC-Programm ein
Programm in Assembler. Dieses wird dann in die entsprechenden Operationscodes übersetzt, und es
entsteht ein für den Prozessor verstandliches Programm, das in den Arbeitsspeicher geladen und
gestartet werden kann. Nun erst läuft das Programm, und eventuelle Fehler werden erkennbar, wenn
sie nicht schon vom Übersetzer erkannt wurden.

Ein Interpreter arbeitet etwas anders. Der vorliegende holt sich z. B. eine Zeile aus dem Programm,
analysiert sie und führt die entsprechenden Befehle aus. Nach Ausführung der Zeile holt er die
nächste und so fort. Ist eine Schleife vorhanden, das heißt, wird ein Programmteil öfters wiederholt,
so muß der Interpreter diesen Teil auch genauso oft übersetzen. Hier liegt auch schon der Nachteil
eines Interpreters gegenüber einem Compiler: Compiler-Programme sind in der Regel erheblich
schneller. Es gibt noch eine Mischform, ebenfalls Interpreter, die das Quellprogramm in einen
Zwischencode übersetzen und dann erst ausführen. Dabei werden Befehle wie PRINT einfach durch
einen Code, z. B. 85, ersetzt. Der Vorteil dieser Interpreter liegt darin, daß Programme
wenigerSpeicherplatz benötigen und daß die Ausfuhrungszeit etwas besser liegt. Der beschriebene
Interpreter arbeitet aber nicht so, sondern übersetzt jeden Befehl neu. Er besitzt dazu eine Tabelle, in
der sämtliche vorhandenen Befehle stehen. Hinter jedem Befehl steht dann noch eine Adresse. Sie
gibt an, an welcher Stelle im Programm sich das entsprechende Unterprogramm für die Abarbeitung
des jeweiligen Befehls befindet.

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

2 Laden, Starten und Modifizieren

2.1 Laden des Interpreters

Um den Interpreter in das System eingeben zu können, sind zwei Möglichkeiten der Eingabe
vorhanden Zunächst ist eine sedezimale Liste (Bild 1) vorhanden. Der Interpreter startet auf der
Adresse 1000. Die Codes können nun einfach entsprechend der Liste in den eigenen Computer
eingegeben werden. Am Schluß sollte dabei jedes Byte mit dem aufgelisteten Byte verglichen werden,
um Tippfehler, die das Programm zerstören konnten, zu vermeiden. Ferner sollte das Programm dann
auf ein externes Speichermedium gebracht werden (z. B. Lochstreifen, Kassette o. ä.).

Es gibt aber noch eine zweite Möglichkeit. Dafür ist ein Listing im sogenannten „relocating“-Format
beigefügt (Bild 2), das es gestattet, den Interpreter auf eine beliebige Stelle im Speicher (allerdings <
8000sed) zu binden. Dies ist möglich, da in diesem besonderen Format die Information enthalten ist,
an welchen Stellen Adressen im Programm vorhanden sind.

Um von diesem Format Gebrauch machen zu können, ist es aber nötig, einen sogenannten Lader zu
schreiben, der diese Berechnung (addieren einer Konstanten auf alle Adressen) durchfuhrt.

Dazu das Aufzeichnungsformat:

Zeichen 0…1: CR (Wagenrücklauf), LF (Zeilenvorschub), um Blöcke voneinander zu trennen.

Zeichen 2: Strichpunkt, kennzeichnet den Anfang eines relokalisierbaren Blockes.

Zeichen 3…4: Dieses Byte (durch zwei ASCII-Zeichen, ISO-7-bit-Code nach DIN 66003, 0…9, A…F
dargestellt) gibt die Anzahl der Daten-Bytes an. Z. B. 19 an dieser Stelle bedeutet, es sind 25 Daten-
Bytes in diesem Block.

Zeichen 5…8: In den zwei Bytes steckt die relative Anfangsadresse des Blocks. Sie wird beginnend
mit dem höherwertigen Byte der Adresse angegeben.

Zeichen 9…10: Dieses Byte enthalt die Relokalisierinformation. Ist dieses Byte 0, so wird die
angegebene Anfangsadresse absolut verwendet. Ist dieses Byte 1, so wird die Adresse durch den
Relokalisierfaktor modifiziert.

Zeichen 11…12: Dieses Byte enthält die Relokalisierinformation für die nächsten 8 Daten-Bytes. Dabei
entspricht jedes Bit dieses Bytes einem Byte der nächsten 8 Daten-Bytes. Bit 7 ist für das erste Byte
zuständig und Bit 0 für das letzte. Ist das betreffende Bit 0, dann heißt dies, das Byte wird
unverändert geladen. Ist ein Byte auf 1 gefolgt von einem auf 0, dann sind die beiden dazugehörigen
Bytes eine relokalisierbare Adresse, und der Relokalisierfaktor muß aufaddiert werden. Ein Bit auf 1
gesetzt, von einem gefolgt, das ebenfalls auf 1 ist, stellt eine Information für den Linking Loader dar,
der aber hier nicht benötigt wird.

Zeichen 13…28: Hierin sind die eigentlichen Daten-Bytes enthalten. Die Gesamtzahl der Daten-Bytes
ist durch die Information am Anfang bestimmt. Nach jedem achten wird aber wieder die
Relokalisierinformation eingefügt, dann folgen wieder Daten-Bytes.

Zeichen N…(N+1): Dieses Byte enthält die Blockprüfsumme, die dem Zweierkomplement der Summe
über alle vorhergehenden Bytes in diesem Block entspricht, so daß nun die Summe aller Bytes 0
ergeben muß. Damit wird eine Blocksicherung erreicht.

2026/01/20 20:52 3/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Vom Benutzer muß ein Lader geschrieben werden, der speziell auf sein System abgestimmt ist und
alle diese Informationen auswertet. Der Vorteil des relokalisierbaren Programms liegt neben der frei
wählbaren Anfangsadresse bei der Überprüfbarkeit auf Eingabefehler durch die Prüfsumme.

2.2 Starten und Modifizieren des Interpreters

Um den Interpreter starten zu können, ist es nötig, zunächst die Ein/Ausgabe-Vektoren zu ändern.
Standardmäßig sind zwei Vektoren vorhanden, der eine führt auf die Adresse F003 und bedeutet
einen Sprung auf die Eingabe eines Zeichens vom Benutzer. Das Zeichen muß dabei über das
Register A an den Interpreter weitergegeben werden. Die anderen Register dürfen nicht verändert
werden. Ferner gibt es noch einen Sprung auf die Adresse F009, der die Ausgabe eines Zeichens
bewirken soll. Dabei ist das auszugebende Zeichen im Register C vorhanden. Am Schluß dieser
Routine muß das Zeichen im Register A stehen und C soll unverändert bleiben, wie auch die restlichen
Register.

Hat der Benutzer an diesen beiden Adressen keinen Speicher, um entsprechende Sprungbefehle auf
seine eigenen E/A-Routinen durchzuführen, so muß er im BASIC-Interpreter die Vektoren ändern.

Dazu die Adressen: Auf Adresse 71DH (H bedeute; HEX also sedezimal) steht die Befehlsfolge CD 03
F0, sie ist in die entsprechende Folge zum Aufruf des eigenen Eingabe-Unterprogramms
umzuwandeln. Auf Adresse 70DH und 715H steht die Befehlsfolge CD 09 F0, hier ist der
entsprechende Aufruf für die Ausgaberoutine einzutragen.

Nun gibt es noch die Möglichkeit, das Anwenderprogramm durch die Betätigung der Tastenfolge CTRL
C zu stoppen, genauso wie den Ausdruck langer Programme. Dazu hat der Benutzer eine Routine zu
schreiben, die seinen Status-Port der Eingabetastatur abfragt, ob ein Zeichen vorhanden ist und
wenn, ob es sich um CTRL C (Code 3) handelt. Ist das der Fall, muß das Programm auf die Adresse
00C6H springen (RESTART-Adresse des Interpreters), anderenfalls muß es mit einem Return-Befehl
zurückkehren. Diese Routine wird von zwei Stellen des BASIC-Interpreters aus angesprungen. Der
Aufruf muß an die betreffenden Stellen eingetragen werden.

Dazu die Adresse: Auf AlCH steht der Befehl C9 (Return), dieser muß durch einen JMP-Befehl auf die
eigene Routine ersetzt werden. Falls der Platz ausreicht, kann die Routine auch an diese Stelle
geschrieben werden. Es stehen dazu 10 Byte zur Verfügung. Die Adresse AlCH wird von dem Teil, der
die Programme ausführt, und von dem Teil, der Programme auflistet, bei Ausführung jedesmal mit
dem Beginn einer neuen Zeile angesprungen.

Im beschriebenen BASIC gibt es einen Befehl BYE, der das System verläßt und dem Monitor die
Steuerung übergibt. Dies geschieht durch die Ausführung des Maschinenbefehls RST 7. Der Benutzer
kann einen direkten Sprung zu seinem Monitor einbauen, indem er an die Stelle 8DFH anstelle des
RST 7-Befehls einen Sprung zu seinem Monitor schreibt. Das BASIC-Programm kann dann vom Monitor
aus gestartet werden, indem ein Sprung auf den Speicherplatz C6 ausgeführt wird.

Alle angegebenen Adressen sind um den Relokalisierfaktor zu erhöhen, den der Anwender beim
Laden des Interpreters verwendet hat.

Bild 1. Programmliste

Bild 2. Programmliste für verschiebbares (relocating) Format

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

3 BASIC-Befehle

3.1 Steuerbefehle

Diese Befehlsgruppe dient der Steuerung des Interpreters. Es kann damit der Ablauf eines Programms
bestimmt werden (starten, löschen, ausdrucken).

LIST

Mit Hilfe dieses Befehls kann ein zuvor eingegebenes Programm ausgedruckt werden. Dabei wird,
wenn der Befehl LIST CR (CR steht für carriage return, also Wagenrücklauf) eingegeben wird, das
gesamte Programm ausgedruckt. Es kann auch eine zusätzliche Zeilennummer angegeben werden,
dann wird das Programm beginnend mit dieser Zeilennummer ausgegeben. Soll der Ausdruck eines
Programms abgebrochen werden, weil auf dem Datensichtgerät nicht das ganze Programm
dargestellt werden kann, so kann dies durch Eingeben des Zeichens CTRL C (Code 3) geschehen. LIST
200 zum Beispiel gibt das Programm beginnend mit der Zeilennummer 200 aus. Falls die
Zeilennummer 200 nicht vorhanden ist, wird nach der nächstgrößeren gesucht und von da an gelistet.

RUN

Nach Eingabe von RUN CR wird das Programm beginnend bei der niedrigsten Zeilennummer
gestartet.

NEW

Damit kann ein Programm gelöscht werden. Anschließend ist es möglich, ein neues Programm
einzugeben.

BYE

Bei der Ausführung dieses Befehls kehrt der Prozessor zum Monitorprogramm zurück und verläßt das
BASIC-System.

END

In der ursprünglichen Bedeutung steht dieser Befehl am Ende eines Programms. Dies ist bei dem
vorliegenden Interpreter nicht notwendig, somit konnte dieser Befehl mit einer anderen Bedeutung
versehen werden. Von Haus aus wird nach Laden des BASIC-Interpreters ein minimaler
Speicherbedarf von 700 Byte für den Anwender definiert. Bei der Überschreitung dieses
Arbeitsraumes durch Eingabe langer BASIC-Programme wird eine Fehlermeldung vom Interpreter
(SORRY) ausgegeben, die darauf hinweisen soll, daß kein Platz mehr für das Programm vorhanden ist.
Nun kann es aber sein, daß ein größerer Speicher vorhanden ist. In diesem Fall kann der Benutzer mit
Hilfe des Befehls END den zunächst auf 700 Byte vorbesetzten Platz dynamisch erhöhen. Dazu erhält
der Befehl END einen zusätzlichen Parameter, der die absolute Adresse der gewünschten neuen
höchsten Adresse darstellt.

Zum Beispiel bedeutet die Anweisung END 8000, daß dem BASIC ab sofort Speicherplatz bis zur
Adresse 8000 (dezimal) zur Verfügung steht.

Dabei muß berücksichtigt werden, daß der Interpreter darüber hinaus einen Platz für den Textpuffer
benötigt, der über dem angegebenen Platz vorhanden sein muß. Er kann mit etwa 140 Byte

2026/01/20 20:52 5/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

veranschlagt werden.

3.2 Programmierbare Befehle

Alle nun folgenden Befehle können im Gegensatz zu den Steuerbefehlen programmiert werden. Die
meisten können auch im sogenannten „Direct Mode„ verwendet werden, das heißt, einfach durch
Eingabe ohne vorangestellte Zeilennummer. Sie werden dann unmittelbar nach Eingabe von CR
ausgeführt.

LET

LET weist einer Variablen einen Wert zu.

Beispiel:

 10 LET A=10
 20 LET B=2*(3-9)*6/2
 30 LET A=C

Dabei kann der Befehl LET auch weggelassen werden. Er dient eigentlich nur der besseren Lesbarkeit.

FOR TO NEXT

Damit ist es möglich, Schleifen aufzubauen, das heißt, eine bestimmte Befehlsfolge n-mal zu
durchlaufen. Beispiel:

 10 FOR A = 1 TO 10 STEP 2
 20 ...
 30 ...
 40 NEXT A

Der Bereich zwischen 10 und 40 wird dabei 5mal durchlaufen. Innerhalb der Schleife kann der
aktuelle Wert von A verwendet werden, er sollte jedoch nicht verändert werden. Die Angabe STEP legt
die Schrittweite fest Sie kann auch negativ sein, es müssen dann allerdings auch die Variablen nach
FOR und TO entsprechend gewählt werden.

Beispiel:

 10 FOR A = 10 TO 1 STEP -2
 20 ...
 30 ...
 40 NEXT A

Dieses Programm bewirkt genau das gleiche wie das erste Beispiel, nur daß hier die Variable zunächst
den Wert 10 erhalt, dann 8 dann 6 usw. Wird die Angabe STEP weggelassen, so wird eine Schrittweite
von l angenommen.

GOTO

Der Befehl GOTO bewirkt die Ausführung eines Sprungbefehls. Dabei wird hinter dem Befehl die

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

Zeilennummer angegeben, die angesprungen werden soll. Diese Zellennummer kann auch berechnet
werden, indem eine Variable oder ein arithmetischer Ausdruck an diese Stelle geschrieben wird.

Beispiel

 10 GOTO 209

Dieser Befehl bewirkt einen Sprung zur Zeile 209.

Beispiel

 20 GOTO 100*2+9

Hier wird ebenfalls zur Zeile 209 gesprungen.

Es ist auch möglich den Befehl im Direkt-Modus zu verwenden Es wird dann zu der angegebenen Zeile
gesprungen und von da an das Programm ausgeführt.

GOSUB

Mit dem GOSUB-Befehl ist es möglich, einen Unterprogramm-Aufruf durchzufuhren Dabei wird ähnlich
wie beim GOTO-Befehl die Zellennummer angegeben, die auch hier berechnet werden kann

RETURN

Dieser Befehl stellt das Gegenstuck zum GOSUB-Befehl dar. Nach Aufruf eines Unterprogramms, das
mit dem RETURN-Befehl enden muß, kehrt das Programm wieder an die Stelle zurück, von der aus
das Unterprogramm aufgerufen wurde.

IF

Mit diesem Befehl kann eine Entscheidung getroffen werden. IF wird von einem arithmetischen
Ausdruck gefolgt. Ist der Wert ungleich 0 so wird der nachfolgende Befehl ausgeführt, andernfalls die
nächste Zeile.

 20 IF A = 2 GOTO 10

Wenn A den Wert 2 besitzt wird zur Zeile 10 gesprungen. (THEN darf nicht verwendet werden).

REM

Die Anweisung REM ermöglicht es, Kommentare in das Programm einzubauen Dabei wird der Text,
der hinter einer REM-Anweisung steht, bis zum Zellenende vom Interpreter ignoriert.

INPUT

Einen der wichtigsten BASIC-Befehle stellt der INPUT-Befehl dar. Er ermöglicht es, Daten in das
Programm im Dialogverfahren einzugeben. Will man zum Beispiel in einem Programm der Variablen C
einen Wert zuweisen, den der Benutzer eingeben soll, so lautet der Befehl folgendermaßen

 10 INPUT C

2026/01/20 20:52 7/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Bei der Ausführung des Programms druckt dann der Interpreter

 C:

Nun muß der Benutzer eine Zahl eingeben (oder einen arithmetischen Ausdruck, der dann noch
berechnet wird). Will man erreichen, daß ein bestimmter Text anstatt des Vanablennamens
ausgedruckt wird, so gibt man diesen Text vor der Variablen in Anführungszeichen gesetzt an.

Beispiel:

 10 INPUT "Geben Sie eine Zahl ein" C

Bei Ausführung dieses Programms wird dann der angegebene Text gefolgt von einem Doppelpunkt
ausgedruckt.

Es ist auch möglich, mehrere Variable einzugeben. Dazu werden sie mit Kommas getrennt.

Beispiel

 10 INPUT A,C,'Zahl'F,K

PRINT

Mit Hilfe des PRINT-Befehls ist es möglich, Daten und Texte auszugeben. Dazu werden die
verschiedenen Variablen, Zahlen und Texte mit Kommas getrennt angegeben.

Beispiel:

 10 PRINT 2 B 'Text',7

Dieses Programm bewirkt den Ausdruck der Zahl 2, dann des Inhalts der Variablen B, dann wird der
Text ausgegeben und die Zahl 7. Zahlen werden mit sechs Stellen ausgegeben. Dies kann aber
geändert werden. Dazu dient die sogenannte Formatanweisung. Sie kann auch mehrmals in der
PRINT-Anweisung angegeben werden und bleibt bis zur nächsten Formatanweisung innerhalb einer
PRINT-Anweisung wirksam. Bei der Ausführung des nächsten PRINT-Befehls in einem Programm ist
wieder der Wert 6 voreingestellt. Die Formatanweisung wird mit dem Zeichen # eingeleitet und hat
als Parameter eine Zahl oder einen arithmetischen Ausdruck.

Beispiel

 10 PRINT 1,#10,1,1

Die erste 1 wird hier mit insgesamt sechs Stellen ausgedruckt, die anderen beiden mit zehn Stellen.

Wird bei der PRINT-Anweisung an die letzte Stelle ein Komma gesetzt, so wird der Zellenvorschub
unterdrückt. Der nächste Ausdruck wird dann an der letzten Position fortgesetzt.

STOP

Der STOP-Befehl beendet den Programmablauf.

CALL

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

Mit dem Befehl CALL ist es möglich, Unterprogramme in Maschinensprache aufzurufen. Dafür ist ein
Parameter anzugeben, der die absolute Adresse des Unterprogramms angibt.

Beispiel

 10 CALL HEX(54FF)

Dieses Programm bewirkt, daß das Maschinenprogramm auf Adresse 54FFH ausgeführt wird. Mit
einem RET-Befehl (Code C9) kann wieder in das BASIC-System zurückgekehrt werden.

OUTCHAR

Mit diesem Befehl werden Einzelzeichen ausgegeben, die auch Sonderzeichen und nicht darstellbare
Zeichen sein können. Dem Befehl wird als Parameter der dezimale Wert gegeben.

Beispiel:

 10 OUTCHAR(64)

Bei der Ausführung dieses Programms wird das Zeichen 3 gedruckt.

OUT

Mit OUT wird einem 8080-Port direkt ein Wert zugewiesen. OUT wird dabei ähnlich wie eine Variable
verwendet. Will man zum Beispiel dem PORT mit der Adresse 18H den Wert 2 zuweisen, so sieht der
Befehl wie folgt aus:

 10 OUT(HEX(18))=2

Mit der Funktion HEX wird hier wieder erreicht, daß der sedezimale Wert 18 in einen dezimalen Wert
umgerechnet wird und dann dem OUT-Befehl zugeführt werden kann.

O$

Hierbei handelt es sich um einen speziellen Befehl, der eingeführt wurde, um auch schon in diesem
kleinen BASIC-System Stringverarbeitung durchführen zu können. Der O$-Befehl ermöglicht die
Ausgabe eines Textes, der auf einer beliebigen Adresse stehen kann und von 0 abgeschlossen wird
(siehe auch I$, PEEK, POKE). Dazu erhält der Befehl einen zusatzlichen Parameter, nämlich die
Adresse.

Beispiel:

 10 O$ TOP

Hier wird ein Text ausgedruckt, der auf der ersten freien Adresse liegt und natürlich zuvor eingegeben
werden mußte, z. B. mit I$ oder mit POKE.

I$

Dies ist das Gegenstück zum O$-Befehl. Dieser Befehl erhält eine Adresse als Parameter und legt
dann einen Text, der eingegeben wird (ahnlich wie bei INPUT für Zahlen), auf die angegebene Adresse
ab. Die Eingabe des Textes wird durch ein CR beendet. Die Länge ist über den LEN-Befehl feststellbar.

2026/01/20 20:52 9/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Beispiel:

 10 I$ TOP

Dieses Programm legt einen Text, beginnend auf der ersten freien Adresse, ab.

POKE

POKE ist ein Befehl, mit dem Direktspeicherzugriff durchgeführt werden kann, wobei ein
automatischer Schreibschutz für ein abgelegtes BASIC-Programm besteht. POKE besitzt zwei
Parameter: Der erste gibt die Adresse (absolut) an, der zweite bestimmt den Wert, der auf dieser
Adresse abgelegt werden soll.

Beispiel:

 10 POKE TOP + 1,5
 20 POKE 16000,2*5
 30 POKE TOP, 'T'

Bei Zeile 10 wird der Wert 5 (es wird nur ein Byte gespeichert, falls größere Zahlen als 255
eingegeben werden) auf die zweite freie Speicherzelle gelegt. Bei 20 wird auf die Adresse 16000
(dezimal) der Wert 10 und bei 30 auf die erste freie Adresse der ASCII-Code für den Buchstaben T
abgelegt.

TAB

Mit TAB kann die aktuelle Schreibposition verändert werden. Dabei wird im Gegensatz zum Standard-
BASIC der TAB-Befehl nicht in eine PRINT-Anweisung geschrieben.

Beispiel:

 10 TAB(20)

Die Schreibposition wird um 20 Zeichen vorgerückt.

RND

Die Funktion RND liefert einen Zufallswert, dabei kann noch angegeben werden, in welchem Bereich
dieser Wert liegen soll.

Beispiel:

 10 A = RND(1000)

Die Variable A erhält einen Wert zwischen l und 1000.

ABS

ABS bildet den Absolutbetrag einer Zahl. ABS(-2) entspricht dem Wert 2.

SIZE

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

Mit SIZE kann der Speicherfreiraum ermittelt werden, der für eigene Programme noch vorhanden ist.

PEEK

Mit PEEK kann ein Direktspeicherzugriff durchgeführt werden. Dazu gibt man die Absolutadresse mit
an.

Beispiel:

 10 A=PEEK(HEX(2000))

A erhält den Wert des Bytes, das an der Adresse 2000 (sedezimal) steht. Im Gegensatz zu POKE wird
bei PEEK ein Byte geholt.

INCHAR

Mit INCHAR kann ein Zeichen von der Konsole geholt werden Dabei wird dieses Zeichen nicht
ausgegeben. Dies ermöglicht es, Zeichen umzudefinieren oder Steuertasten zu definieren.

Beispiel:

 10 B=INCHAR

HEX

Dem Befehl HEX wird in Klammern ein sedezimaler Wert gegeben, der dann in den dezimalen Wert
umgerechnet wird.

IN

Mit IN kann der Wert eines 8080-Ports gelesen werden.

Beispiel:

 10 A=IN(HEX(18))

Hier wird der Variablen A der Wert des Ports 18H zugewiesen.

TOP

TOP ist eine Pseudovariable. Mit dieser Funktion erhalt man die Adresse des ersten freien
Speicherplatzes (dezimal). Vor diesem Speicher steht das BASIC-Anwenderprogramm.

LEN

LEN ist ebenso eine Pseudovariable Ihr Wert gibt die Länge des zuletzt mit I$ eingegebenen Textes
an.

4 Weitere Eigenschaften

2026/01/20 20:52 11/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

4.1 Variable

Als Variable stehen A bis Z zur Verfügung. Als Array (Dimension 1) wird das Zeichen @ verwendet, z.
B.

 10 @(10)=6

Die maximale Größe des Arrays hängt dabei von der Länge des Anwenderprogramms ab.

4.2 Arithmetik

Zahlenbereich von -32767 bis + 32767; vier Grundrechenarten + * - /; Klammern können beliebig
gesetzt und verschachtelt werden.

4.3 Logische Operatoren

< > ⇐ >= # = liefern den Wert 1, falls die Aussage wahr ist, und 0, falls sie falsch ist. Die Operatoren
können beliebig mit * + … verknüpft werden.

4.4 Textoperator

Mit ' ' kann der äquivalente Sedezimalwert eines ASCII-Zeichens berechnet werden. 'A' liefert
beispielsweise den Sedezimalcode 41.

4.5 Steuerzeichen

Mit verschiedenen Steuerzeichen kann man Fehler verbessern, die bei der Eingabe entstehen. CTRL
C (Code 03, d. h die Tasten „CTRL“ und „C“ werden gleichzeitig gedrückt) z. B. unterbricht die
Ausführung eines Programms oder eines Listings. Mit CTRL A wird das zuletzt eingegebene Zeichen
gelöscht (Code 01). Mit ESC (Code 1B) wird die gerade eingegebene Zeile gelöscht, wenn CR noch
nicht gegeben wurde. CTRL B besitzt eine besondere Bedeutung (Code 02): Wird CTRL B ausgeführt,
so gibt der Interpreter keine Zeichen mehr aus, aber empfängt noch alle Zeichen. Damit ist es
möglich, Programme vom Kassettenrecorder aus einzulesen. Die Programme werden mit Hilfe des
LIST-Befehls ausgegeben, während ein Kassettenrecorder mitläuft, der simultan über ein Modem an
der Serienschnittstelle zum Datensichtgerät hängt. Bei der Wiedergabe wird CTRL B betätigt (zuvor
NEW eingeben), dann wird der Ausgang des Kassettenmodems mit der Serienschnittstelle des
Datensichtgeräteausgangs parallel geschaltet. Das Programm kann dann eingelesen werden. Am
Schluß wird wieder CTRL B betätigt, so daß mit dem Interpreter wieder normal gearbeitet werden
kann. Diese Unterdrückung der Ausgabe ist nötig, da sonst durch die Ausgabevorgänge eine
Verlangsamung des Eingabevorgangs die Folge wäre und das System außer Tritt käme.

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

Programmbeispiele

10 PRINT 'GEBEN SIE EINEN STRING EIN'
20 I$ T0P
30 FOR I=1 TO LEN
40 IF PEEK(TOP+I)=' ' POKE TOP+I,'-'
50 NEXT I
55 O$ TOP
>RUN
GEBEN SIE EINEN STRING EIN
DIES IST EIN TESTSTRING
DIES-IST-EIN-TESTSTRING

10 FOR I=1 TO 10
20 FOR J=1 TO 10
30 @(I)=@(I)+RND(100)
40 NEXT J
50 NEXT I
60 FOR I=1 TO 10
70 PRINT @(I),
80 NEXT I
>RUN
 479 6l2 269 685 379 496 514 477 338 422
READY
>RUN
 872 1848 917 1143 983 952 1857 834 899 684
READY
>RUN
 1468 1578 1358 1711 1588 1472 1664 1358 1332 1147
READY

>PRINT A,B,A<B,A>B,A=B,A<==
 32 13 0 1 0 0 0

READY

>PRINT A,B,A<B,A>B,A=B,A#B,A<=B,A>=B
 32 13 0 1 0 1 0 1

READY

>PRINT (1=1)*(A<B)*100+A+A*('1'='1')
 64

>PRINT SIZE
 602
READY

>END HEX(3F00)
READY

2026/01/20 20:52 13/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

>PRINT SIZE
 8995

>10 REM AUSDRUCKEN VON ZUFALLSZAHLEN ZWISCHEN 0 UND 9
>20 FOR I=1 TO 5
>30 PRINT RND(10)-1
>40 NEXT I
>RUN
 9
 7
 9
 2
 5

>10 INPUT 'GEBEN SIE ZAHL EIN'A,B
>20 PRINT A*A,B*B,A+B
>30 PRINT 'MIT ANDEREM FORMAT'
>40 PRINT #10,A+A,B*B,A+B
>RUN
 GEBEN SIE ZAHL EIN:12+1
 B:23-5
 169 324 31
 MIT ANDEREM FORMAT
 26 324 31

10 REM ANWENDUNG VON INCHAR
20 A=INCHAR
30 IF A=' ' STOP
40 IF A='0' B='*'
50 IF A='1' B=' '
60 IF A='2' B=HEX(D)
70 OUTCHAR(B)
80 GOTO 20
>RUN
**** * * * *
 * ** **

10 REM GAUSSCHE VERTEILUNG
20 FOR I=1 TO 300
30 FOR J=1 TO 10
40 @(I)=@(I)+RND(60)
50 NEXT J
60 NEXT I
70 FOR I=1 TO 300
80 @(I)=@(I)/10
90 NEXT I
100 A=0
105 I=1
110 IF @(I)<@(I+1) H=@(I+1);@(I)+1=@(I);@(I)=H;A=1
120 I=I+1
130 IF I<300 GOTO 110

Last update: 2012/12/03 08:13 z1013:software:tinybasic:rdk https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/20 20:52

140 IF A=1 GOTO 100
150 FOR I=1 TO 300
160 IF @(I)=@(I+1) PRINT " ",
170 IF @(I)>@(I+1) PHINT "*"
180 NEXT I
>RUN
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
*
*
*
READY
REM ZEITBEDARF ETWA 45 MIN

>REM DRUCKEN IN EINER ZEILE
READY
>10 FOR I=1 TO 5
>20 PRINT RND(10)-1,
>30 NEXT I
>RUN
 7 4 4 7 5
READY

2026/01/20 20:52 15/15 BASIC für 8080-Systeme

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

Last update: 2012/12/03 08:13

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/z1013/software/tinybasic/rdk

	BASIC für 8080-Systeme
	1 Arbeitsweise des BASIC-Interpreters
	2 Laden, Starten und Modifizieren
	2.1 Laden des Interpreters
	2.2 Starten und Modifizieren des Interpreters

	3 BASIC-Befehle
	3.1 Steuerbefehle
	3.2 Programmierbare Befehle

	4 Weitere Eigenschaften
	4.1 Variable
	4.2 Arithmetik
	4.3 Logische Operatoren
	4.4 Textoperator
	4.5 Steuerzeichen

	Programmbeispiele

