2026/01/11 01:46 1/33

Handbuch Teil 2

Handbuch Teil 2

ROBOTRON
MikrorechnerbausatzZ101 3
Handbuch Teil Il

Inhaltsverzeichnis

5. Software des MRB Z1013

5.1. Monitor

5.1.1. Leistungen des Monitors

5.1.2. Erweiterungen des Monitors

5.2. Aufbau einer Programmbibliothek

5.3. BASIC

5.3.1. Programmiersprache BASIC

5.3.2. BASIC-Interpreter

5.3.3. Laden des BASIC-Interpreters

5.3.4. Arbeit mit dem BASIC-Interpreter

5.3.5. Kommandos des BASIC-Interpreters

5.3.6. Programmierbare Befehle bzw. Anweisungen
5.4. Hinweise fur die Erarbeitung von Anwenderprogrammen
5.4.1. Allgemeine Hinweise

5.4.2. Problemanalyse

5.4.3. Erarbeitung der Rechenanweisung (Algorithmus)
5.4.4. Programmierung

6. Erweiterungen des MRB Z1013

6.1. Allgemeine Hinweise

6.2. Speichererweiterungen

6.3. Anschluss von Steureinheiten

Bestandteile des Handbuches:

Handbuch Teil | Handbuch Teil Il Anlagenteil

5. Software des MRB 21013

5.1 Monitor

5.1.1. Leistungen des Monitors

Nach dem Einschalten bendétigt der Mikroprozessor eine definierte Befehlsfolge fur seine

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Arbeitsfahigkeit. Ohne ein Betriebsprogramm, dem sogenannten Monitorprogramm, das in einem
nichtflichtigen Speicher stehen muss, sind keinerlei Aktionen der CPU wie Tastaturabfrage oder
Ausgaben maglich. Der Monitor des MRB Z1013 umfasst eine Griosse von 2K Byte und belegt den
Adressbereich von FOOOH bis F700H. Mit diesem Monitor kann der Benutzer Speicherbereiche
ansehen, eigene Programme von Hand oder von Magnetband eingeben, diese eingegebenen
Programme austesten sowie auf Magnetband abspeichern. Weiterhin ist der Start eigener,
ausgetesteter Programme maglich.

Auch zum Austesten eigener Hardwareerweiterungen kann der Monitor verwendet werden. Um diese
Madglichkeiten umfassend nutzen zu kénnen, wurden bestimmte Kommandos festgelegt, die bereits
im Abschnitt 1.3. vorgestellt wurden.

Ausser dem unmittelbaren Aufruf bestimmter Monitorleistungen durch Kommandos, auf die hier nicht
mehr eingegangen werden soll, enthalt der Monitor noch eine Reihe weiterer, haufig verwendeter
Programmteile.

Im folgenden werden diese Monitorfunktionen beschrieben. Dazu wird ausserdem die Adresse, unter
der dieses Unterprogramm aufrufbar ist, und ein Datenbyte (DB), Uber dessen Verwendung weiter
unten noch etwas gesagt wird, angegeben. In verschiedenen Fallen missen dem Programm
bestimmte Parameter zur Verfigung gestellt werden.

Das ist einmal Uber die CPU-Register und zum anderen Uber bestimmte Arbeitszellen des Monitors,
die sich im RAM-Bereich befinden, méglich. In die letztgenannten Zellen werden die erforderlichen
Parameter mit dem M-Kommando geschrieben.

Die Adressen einiger ausgewahlter Arbeitszellen des Monitors sind:

Name Adresse Anzahl der Bedeutung

Byte
SOIL 0016 2 Anfangsadresse der Eingabe-
zeile (Eingabepuffer)
ARG1 001B 2 1. Parameter eines Kommandos
ARG2 001D 2 2. Parameter
ARO3 0023 2 3. Parameter
CURSR 002B 2 Kursoradresse

Nachfolgend die Monitorfunktionen:

OUTCH (OUT CHARACTER)
Adr. F21BH DB 00H

Ausgabe des im A-Register stehenden Zeichens Uber den Videotreiber. 4 Stelrzeichen werden vom
Z1013-Video-Treiber speziell verarbeitet:

08H - Kursor links

09H - Kursor rechts

OCH - Bildschirm l6schen

ODH - neue Zeile; bei Erreichen des unteren Bildschirmrandes wird gerollt

INCH (IN CHARACTER)
Adr. F20CH DB 01H

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 3/33 Handbuch Teil 2

Mit dieser Routine wird die Eingabe eines Zeichens von der Tastatur in das A- Register realisiert.
Dabei wird die Routine INKEY genutzt. Die Register BC, DE und HL werden gerettet. Der Rucksprurng
aus INCH erfolgt nur bei (A) ungleich 0. Ansonsten befindet sich der Monitor in einer
Eingabewarteschleife.

PRST7 (PRINT STRING mit dem 7. Bit als Endzeichen)
Adr. F2A5H DB 02H

Die der Datenbytedefinition (DB 2) folgende Bytekette wird ausgegeben, bis das 7. Bit gesetzt ist.
Graphikzeichen (80H..FFH) sind also mit dieser Routine nicht ausgebbar. Fur diesen Zweck ist ein
Unterprogramm mit OUTCH aufzubaun.

INHEX (Konvertierung einer max. 4-steillgen hexadezimalen Zeichenkette in das interne
Format)
Adr. F2F4H DB 03H

Die Routine realisiert die Konvertierung einer max. 4-stelligen hexadezimalen Zeichenkette in das
Format eines Doppelregisterinhaltes. Die Anfangsadresse muss im DE-Register Ubergeben werden.
FUhrende Leerzeichen werden Uberlesen. Das einer max. 4-stelligen hexadezimalen Zeichenkette
folgende Leerzeichen bzw. jedes andere Zeichen, welches verschiede von den Hexa-Zeichen ist, wird
als Trennzeichen interpretiert. Der konvertierte Wert steht im HL-Register. Bei langeren
Zeichenkettern erfolgt keine Fehlerausschrift, sondern im HL-Register befindet sich der gewandelte
Wert der letzten 4 Hexa-Zeichen.

INKEY (IN KEYBOARD/Tastatureingabe)
Adr. F130H DB 04H

Tabelle 1:

Shift-Ebene 0:

Zei-

len- Spalten-Nr.

Nr. © 1 2 3 4 5 6 7
0 @ A B C D E F G

HEX 40 41 42 43 44 45 46 47

1 H I J KL M N O
HEX 48 49 4A 4B 4C 4D 4E 4F

2 P Q RS T UV W
HEX 50 51 52 53 54 55 56 57

3 S1 S2 S3 S4 <- SP -> Enter
HEX 08 20 09 6D

Shift-Ebene 1:

© 1 2 3 4 5 6 7

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:

2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270

11:54

0 XY zZ [\

] N

HEX 58 59 5A 5B 5C 5D 5E 5F

HEX 30 31 32 33 34

2 8 9 : ; <
HEX 38 39 3A 3B 3C

0 xy z { |
HEX 78 79 7A 7B 7C

1 Sp I " # %
HEX 20 21 22 23 24

2 C) * +
HEX 28 29 2A 2B 2C

0 '"'a b c d
HEX 60 61 62 63 64
1 h i j k 1
HEX 68 69 6A 6B 6C

2 p g r s t
HEX 70 71 72 73 74

SHift-Ebene 4:
O 1 2 3 4

0 UA
HEX 10 11 12 13 14

1 STOP
HEX 00 01 02 03 04

2 C-L C-R CLS
HEX 08 09 OA 0B 0OC

05 06

ENT
0D OE

07

OF

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/11 01:46

2026/01/11 01:46 5/33 Handbuch Teil 2

Mit Shift 4 und der Taste G (17H) wird im INKEY auf Graphik umgeschaltet, d. h. es wird zum
ermittelten Hexa-Kode eine 80H aufaddiert. Die Umschaltung in die A-Ebene erfolgt mit Shift 4 und
der Taste A (91H).

C-L : Kursor links

C-R : Kursor rechts

CLS : Bildschirm ldschen
ENT : ENTER

STOP : Programmabarbeitungen stoppen

INLIN (Eingabe einer Zeile mit fithrendem Promptsymbol)
Adr. F2B3H DB 05H

Ausgabe eines Promptsymbols und anschliessende Eingabe einer Zeichenkette bis Enter (ODH). die
Startadresse fur die Eingabezeile wird in SOIL zwischengespeichert und kann nach Ruackkehr fur die
Auswertung, z. B. fir INHEX, verwendet werden. Da jedes eingegebene Zeichen durch die Folge
INCH/OUTCH bis ODH sofort auf dem Bildschirm ausgegeben wird, erfolgt beim Rollen am unteren
Bildschimrand automatisch eine Korrektur von SOIL um -20H.

OUTHX (OUT A-Register hexadezimal)
Adr. F301H DB 06H

Ausgabe des A-Registers hexadezimal. Es werden pro Byte zwei Zeichen ausgegeben.

OUTHL (OUT A-Register hexadeziamal)
Adr. F31AH DB 07H

Ausgabe des HL-Registers hexadezimal. Es werden 4 Zeichen ausgegeben.

CSAVE (Save to Cassette)
Adr. F369H DB 08H

Entspricht dem S-Kommando des Monitors, wobei die Anfangsadrese und die Endadresse vorher in
ARG1 und ARG2 einzutragen sind.

CLOAD (Load from Cassette)
Adr. F3F8H DB 09H

Die Routine entspricht dem L-Kommando des Monitors. Anfangs- und Endadresse mussen vorher in
ARG1 und ARG?2 eingetragen werden.

MEM (Modify Memory)
Adr. F325H DB OAH

Die Routine entspricht dem M-Kommando des Monitors. Vor Ansprung Uber RST 20H muss die
Anfangsadresse in ARG1 eingetragen werden.

WIND (Rollfenster fiir Bildschirmbereich)
Adr. F6D1H DB OBH

Entspricht dem W-Kommando des Monitors. In ARG1 und ARG2 sind Anfangsadresse und

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Endeadresse+1 fur das Rollfenster einzutragen.

OTHLS (Ausgabe von 2 Byte hexadezimal entspr. der Adresse im HL-Register)
Adr. F5C7H DB OCH

Entsprechend der Adresse im HL-Hegister werden 2 Byte = 4 Zeichen (erst High- Teil, dann Low-Teil)
und anschliessend ein Leerzeichen ausgegeben.

OUTDP (Ausgabe eines Doppelpunktes (:) und weiter wie OTHLS)
Adr. F5C4H DB ODH

siehe OTHLS

OUTSP (Ausgabe eines Leerzeichens)
Adr. F5CFH DB OEH

Ausgabe eines Leerzeiehens

TRANS (Transfer)
Adr. F51DH DB OFH

Die Routine entspricht dem T-Kommando des Monitors. In ARG1, ARG2 und ARG3 sind vorher die
Werte fur ,von Adresse”, ,auf Adresse” und Byteanzahl einzutragen.

INSTR (Eingabe einer Zeichenkette)
Adr. F2B9H DB 10H

Es wird die Eingabe einer Zeichenkette abgefordert, die mit Enter abzuschliessen ist. Wie in INLIN
steht in SOIL die Anfangsadresse der Zeichenkette fur eine anschliessende Auswertung. Im INSTR
wird kein fihrendes Promptsymbol ausgegeben.

KILL (Fullen eines Speicherbereichen mit einem Byte)
Adr. F50DH DB 11H

Die Routine entspricht dem K-Kommando des Monitors. ARG1, ARG2 und ARG3 sind vorher mit ,,von
Adresse”, ,bis Adresse” und dem zu fullenden Byte zu laden.

HEXUM (Hexa-Umschaltung)
Adr. F6B8H DB 12H

Die Routine entspricht dem H-Kommando des Monitors. Umschaltung der Tastatur auf die Zeichen
0..7, 8..7 in die Shift-Ebene Null. Diese Umschaltung ist z. B. vor Zifferneingabe sehr sinnvoll.

ALFA (Alpha-Umschaltung)
Adr. F6C5H DB 13H

Umschaltung der Tastencodetabelle auf die Zeichen H...W in der Shift-Ebene Null. Dieser RST 20H
entspricht dem A-Kommando des Monitors.

Ihre Anwendung in eigenen, selbst gefertigten Programmen erleichtert die Programmierung sehr
wesentlich und verklrzt den sonst erforderlichen Programmumfang. Der Anwender muss nur wissen,
wie diese Programmteile aufgerufen werden und auf welche Art die Ubermittlung der Parameter

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 7/33 Handbuch Teil 2

vorgenommen wird.

Diese aufgefuhrten Monitorfunktionen konnen ohne Einschrankungen aus beliebigen
Nutzerprogrammen aufgerufen werden.

Ihr Aufruf kann erfolgen in der Art: 'CALL adr', wobei als Adresse die Aufrufadresse der Monitorroutine
angegeben wird. Alle Routinen werden mit dem Befehl 'RET' beendet, so dass die
Programnfortsetzung im aufrufenden Programm gewarleistet ist.

In Anlage 4 sind wichtige Arbeitszellen des Monitors angegeben.

Allerdings muss bei einer eventuellen anderung des Monitors, die zwangslaufig zu neuen Adressen
der Rufe flhrt, in allen Nutzerprogrammen, die diese Aufrufe benutzen, diese neuen Adressen in den
'CALL'-Befehlen geandert werden.

Deshalb wurde noch eine andere Art des Aufrufs bereitgestellt, die unabhangig von anderungen im
Monitor stets den richtigen Anschluss garantiert Dazu wird anstelle des Aufrufes mit dem 'CALL'-
Befehl eine der Restart-Adressen verwendet. Beim Abarbeiten des Restart-Befehls 'RST 20' (E7H) wird
ein 'CALL'-Befehl zur Adresse 0020H ausgefuhrt, die Rucksprungadresse wurde vorher in den Keller
gerettet. Auf der Adresse 20H steht ein Sprungbefehl in den Monitor, der beim Programmstart oder
nach Reset automatisch dort eingetragen wird.

Im Monitor befindet sich dann eine Auswertelogik, die anhand der gekellerten Ricksprungadresse die
konkret geforderte Monitorroutine ermittelt und deren Realisierung einleitet. Die benétigte
Auswahlinformation steht in einem dem RST-Befehl folgenden Byte, die Rucksprungadresse kann also
direkt als Zeiger auf dieses Byte verwendet werden, muss dann aber zur Programmfortsetzung auf
den dem Byte folgenden Befehl gestellt werden.

Ein einfaches Beispiel soll das verdeutlichen:

In einem Programmstick so zurst der Bildschirm gel6scht und anschliessend eine beliebige Anzahl
von Zeichen eingegeben werden. Diese Zeichen sollen sofort wieder auf dem Bildschirm erscheinen,
die Betatigung der Entertaste beendet das Programm und kehrt in den Monitor zuruck.

Zum Vergleich wurde dieses Beispiel einmal unter Verwendung von 'CALL'- und einmal unter
Verwendung von 'RST'-Befehlen programmiert.

Befehls- Maschinen-
zahler code

.
’

; BEISPIEL MIT CALL-BEFEHLEN

OUTCH: EQU OF21B ; AUSGABE ZEICHEN
INCH: EQU OF20C ; EINGABE ZEICHEN

1000 3E 0C BSP: LD A,0CH ; LOGSCHEN BILD-
SCHIRM

1002 CD 1B F2 CALL OUTCH ; AUSGABE

1005 CD 6C F2 MI: CALL INCH ; EINGABE

1008 CD 1B F2 CALL OUTCH ; AUSGABE

100B FE 6D CMP ODH ; ENTER 7

106D C2 05 10 JPNZ M1 ; NEIN

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

1010 C9 RET ; JA-->MONITOR

yBEISPIEL MIT RST-BEFEHLEN

’

OUTCH: EQU 0 ; AUSGABE ZEICHEN
INCH: EQU 1 ; EINGABE ZEICHEN

1000 3E 0C BSP2: LD A,0CH ; LOSCHEN BILD

SCHIRM

1002 E7 RST 206H ; RUF

1003 00 DB OUTCH ; AUSGABE

1004 E7 ML: RST 206H ; RUF

1005 01 DB INCH ; EINGABE

1006 E7 RST 206H ; RUF

1007 00 DB OUTCH ; AUSGABE

1008 FE 6D CMP ODH ; ENTER 7

100A C2 04 10 JPNZ M1 ; NEIN

100D C9 RET ; JA -> MONITOR

Falls die Funktionen des Monitors durch eigene Programmteile realisiert werden sollen, muss der
Sprungbefehl auf der Adresse 20H, der auf drei Auswerteroutinen im Monitor zeigt, durch einen
Sprungbefehl in eine eigene Auswerteroutine ersetzt werden. Bleibt die Zuordnung der
Auswahlinformationen erhalten, so sind auch in diesem Fall keinerlei anderungen in den eigenen
Programmen notwendig die den Aufruf Uber den 'RST'-Befehl verwenden.

Damit ist es z. B. méglich, eigene Ein- and Ausgaberoutinen, mit denen die Bedienung anderer Gerate
realisiert wird, zu verwenden und damit die Ein- und Ausgaben Uber andere Gerate zu erreichen.

Abschliessend sei noch bemerkt, dass ein komplettes Assemblerlisting des Monitors mit Hilfe des im
Anhang abgedruckten Reassemblers durch Reassemblieren des ROM-Inhaltes erzeugt werden kann.

5.1.2. Erweiterungen des Monitors

Falls der Kommandoumfang und die Leistungen des Monitors nicht ausreichen, ist die Nutzung
eigener Programmteile zur Erweiterung maoglich. Damit diese auch aus der Kommandoschleife des
Monitors nutzbar sind, mussen diese Kommandos mit dem Zeichen '@' eingeleitet werden. Statt des
nun ublichen Leerzeichens steht nun ein ASCII-Zeichen, das das aufzurufende Programm spezifiziert.
Der Anschluss zur Kommandoschleife wird in folgender Weise hergestellt.

Ab der Adresse 00BOH werden die hexadezimale Verschlisselung des ASCIl-Zeichens sowie die
Anfangsadresse des zugehdrigen Programmteiles eingetragen. Als Beispiel sollen durch die
zusatzlichen Kommandos '@B' der BASIC-Interpreter (siehe Abschnitt 5.2.) ab der Adresse 0100H
gestartet werden bzw. durch '@C' ein Wiederstart ab der Adresse 0103H erfolgen.

Dazu wird ab Adresse 0BOH eingetragen:

00BO 42 Zeichen "B"
00B1 00 niederwertiger Teil der Startadresse
00B2 01 hoherwertiger Teil der Startadresse

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 9/33 Handbuch Teil 2

00B3 43 Zeichen "C"
00B4 03 niederwertiger Teil der Startadresse
00B5 01 hoherwertiger Teil der Startadresse

Die Eingabe zusatzlicher Programmteile kann z. B. im Adressbereich zwischen 0100H und 03FFH
erfolgen, da die meisten Programme nicht unterhalb von 0400H arbeiten und die Arbeitszellen des
Monitors unterhalb von 0100H liegen. Diese zusatzlichen Programmteile mussen allerdings immer
wieder in den Speicher gebracht werden, da sie mit Ausschalten des Gerates verlorengehen. In dem
nachfolgenden Abschnitt wird die Eingabe, Speicherung und Testung selbsterstellter Programme
beschrieben.

5.2. Hinweise zum Aufbau einer Programmbibliothek

Der Monitor allein als nutzbares Programm wird bald in all seinen Mdglichkeiten ausgeschopft sein, so
dass der Wunsch nach weiteren Programmen geweckt wird.

Da aber nur der Monitor in einem nichtflichtigen Speicher steht, gehen andere, meist sehr mihsam
eingegebene Programmteile nach dem Ausschalten wieder verloren. Aus diesem Grund ist es
notwendig, sich eine Programmbibliothek auf einem ex ternen Datentrager anzulegen, in die jedes
neue Programm aufgenommen wird, um es fur spatere Nutzung immer wieder zur Verfugung zu
haben. Im Monitor sind zu diesem Zweck die Kommandos ,L“ (load from cassette) und ,S“ (Save to
cassette) enthalten. Mit diesen Kommandos ist es maglich, Programme aus dem Speicher auf ein
Magnetband, auszulagern und wieder in den Speicher zu laden.

Die Eingabe der Programme erfolgt beim erstenmal meist mittels der Tastatur. Im allgemeinen wird
die hexadezimale Ziffernfolge, die in einem vorgegebenen Speicherbereich eingetastet werden soll,
einer Liste entnommen (z. B. die in diesem Buch enthaltenen Testbeispiele).

Diese Listen entstanden entweder als Resultat eines Ubersetzungslaufes auf einer EDV-Anlage oder
wurden durch mandlle Ubersetzung selbst gefertigt. In jedem Fall wird es sich um ein in sich
abgeschlossenes Programmteil handeln. Eine Programmanderung oder -erweiterung wahrend der
Eingabe wird kaum zu brauchbaren Ergebnissen fuhren.

Einige Programmteile, die als Liste geliefert werden, sind nur ein Speicherabzug in der Art, wie er
auch mit den D-Kommando auf dem Bildschirm zu sehen ist.

Damit konnen recht einfach Liste und tatsachlicher Speicher inhalt miteinander verglichen werden.
Zur Eingabe wird das M-Kommando des Monitors verwendet.

Mit dem Parameter wird die Anfangsadresse des Programmes an gegeben. Es ist zweckmassig, vorher
die Tastatur mit dem H-Kommando in die hexadezimale Eingabe zu schalten. Die Ziffern sind jetzt
ohne Benutzung der Shift-Taste direkt erreichbar. Anschliessend kann ein grosser Bereich der Liste
eingegeben werden.

Es empfielt sich, nach einer bestimmten Anzahl von hexadezimalen Ziffern die Eingabe mit dem
Semikolon ,;“ zu beenden und mit dem Kommando 'D :' den bis dahin eingetasteten Abschnitt zu
kontrollieren. Die zeilenweise mitausgegebenen Priafsummen (CS) kdnnen mit dem Listenausdruck
verglichen werden. Die weiteren Blocke werden dann wieder mit dem M-Kommando ab der
Abbruchadresse eingegeben.

Nach endlicher Zeit steht das Programm im gewunschten Speicherbereich und entspricht dem

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Original auf der Liste. Es ware nun grundfalsch, sofort mit der Abarbeitung zu beginnen, vielmehr
sollte das Programm zurst einmal auf Magnetband abgespeichert und somit gesichert werden. Das
erspart wiederholtes Eingeben von Programmteilen Uber Tastatur und erleichtert die Arbeit
wesentlich.

Meist wird man diese Abspeicherung nicht gleich auf dem Magnetband vornehmen, auf dem sich die
anzulegende Programmbibliothek befindet, sondern definiert ein anderes als , Arbeitsband”.

Auf jeden Fall sollte man sich sehr genau die Bandstellen zu Beginn und Ende sowie die im S-
Kommando verwendeten Parameter notieren. Das erleichtert ein spateres Wiederauffinden der
gespeicherten Informationen und gewahrleistet das ordnungegemasse Einlesen in den Speicher.

Mdéchte man das wiederholte Einlesen vom Band, das ja auch einen gewissen Aufwand erfordert, so
gering wie moglich halten und ist noch gentgend Speicherplatz frei, empfiehlt sich auch folgende
Methode:

Mit dem T-Kommando (Transfer) wird eine gleichartige Kopie des Programms in einem anderen, nicht
genutzten Speicherbereich erzeugt. Falls jetzt das Programm beim Testen zerstort, wird ist es
maglich, wieder mit dem T-Kommanda die Kopie auf den urspringlichen Speicherbereich
zurlckzuspeichern und damit das Programm wieder herzustellen.

Im allgemeinen werden Programme nach dem Eingeben nicht sofort richtig und fehlerfrei arbeiten,
dazu sind zu viele Fehlermdglichkeiten vorhanden. Sie reichen von einfachen Eingabefehlern tUber
falsche Anschlussstellen bishin zu Fehlern im Programmentwurf (insbesondere bei manull
assemblierten Programmen).

Damit ergibt sich die Notwendigkeit, diese Programme auszutesten. Der Monitor stellt dazu einige
Hilfen zur Verfigung, von denen Haltepunkt und Schrittbetrieb bereits erwahnt wurden.

Zum Testen von Programmen unter den fur diese Verhaltnisse typischen Bedingungen ergibt sich
etwa nachfolgende Herangehensweise, die mit fortschreitendem Erfahrungsstand individdll
modifiziert werden kann:

e Zu Beginn der Programmtestung wird mit dem I-kKommando der Registerrettebereich geldscht
und damit ein definiertes Laden der CPU-Register gewahrleistet.

e Der Haltepunkt wird mit dem B-Kommando auf den ersten zu testenden Befehl des Programmes
gesetzt und mit dem E-Kommando gestartet.

e Mit Erreichen des Haltepunktes wird mit dem N-Kommando eine schrittweise Abarbeitung
vorgenommen. Gegebenenfalls ist die Ausgabe der Registerinhalte auf Ausfuhrung der Befehle
zu kontrollieren.

¢ Auftretende Programmschleifen sowie haufig aufgerufene Routinen (Unterprogramme) sind
mindestens einmal im Schrittbetrieb abzuarbeiten. Sofern man danach von der Richtigkeit
dieser Programmteile Uberzeugt ist, wird bei wiederholtem Aufruf die Haltepunktadresse auf
den dem Aufruf oder dem Schleifenausgang folgenden Befehl gelegt und damit diese
Programmteile direkt abgearbeitet.

¢ Alle im schrittbetrieb abgearbeiteten Befehle werden bei richtiger Funktion in der Liste
abgehakt, damit ist jederzeit ein Uberblick Uber das zu testende Programm vorhanden.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 11/33 Handbuch Teil 2

e Falls die Testung des Programmes nicht auf einmal durchgangig erfolgen kann, sei es durch zu
grossen Programmumfang oder durch Programmabsturz (undefiniertes Verhalten), kann mittels
Aktivieren des letzten erfolgreich erreichten Haltepunktes oder der in Schrittbetrieb erreichten
Adresse das zu testende Programm jederzeit wieder neu gestartet werden. Der weitere Ablauf
ist dann genauso wie bereits beschrieben.

e Falls durch den Monitor nicht bereits die Protokollierung der Monitorbefehle bei Monitorrufen
verhindert wird, sollte durch Setzen der Haltpunktadresse auf den dem Monitorruf folgenden
Befehl diese Protokollierung ausgeschlossen worden.

Bei Beachtung dieser Hinweise ist die Austestung aller Programme maoglich. Sollten wahrend der
Testung in Programm Fehler festgestellt werden, die eine Vernanderung der Programmstruktur
erforderlich machen, ist das bei den im Maschinenkode vorliegenden Programmen besonders
schwierig. Entweder man bemuht sich um eine anderung mit anschliessender Neutbersetzung oder
es wird an der zu andernden Stllen eine Maschinenkodeeinflgung vorgenommen.

Dazu wird an Stelle von drei oder mehr Befehlsbyte ein 'CALL'-Befehl eingefligt, dessen Adresse auf
das erste freie Byte am Programmende oder in einen anderen freien Speicherbereich zeigt. Die dabei
verdrangten Befehlsbyte mussen vollstandige Befehle sein, erforderlichenfalls sind mehr als drei Byte
zu ersetzen und die nicht bendétigten durch 'NOP'-Befehle aufzufiillen. Keinesfalls darf ein
Relativsprungbefehl ersetzt werden, da dessen Sprungdistanz von seiner Position im Programm
abhangig ist.

An der durch den 'CALL'-Befehl adressierten Stelle stehen als erstes die durch die Einfugung
verdrangten Befehlsbyte sowie die geplante Erweiterung. Mit einem 'RET'-Befehl wird die Abarbeitung
wieder an der ursprunglichen Stelle im Programm fortgesetzt.

Diese Art der Maschinenkodeerweiterung ist zu Testzwecken durchaus maglich, sollte aber zu einem
spateren Zeitpunkt durch anderung im Programm und NeuUbersetzung Berlcksichtigung finden.

Wenn die Programme vollstandig ausgetestet sind, werden sie in die Programmbibliothek
aufgenommen. Auf diesem Magnetband befinden sich eine Reihe von bereits ausgetesteten
Programmen, die bei Bedarf in dcn Speicher geladen werden kénnen.

Allergrossten Wert ist auf ein genals Inhaltsverzeichnis zu legen, damit diese Programmteile
wiedergefunden und spater problemlos geladen werden kénnen.

Dieses Laden erfolgt mit dem L-Kommando des Monitors, nachdem zuvor die bendétigten Parameter
dem Inhaltsverzeichnis enthommen wurden. Von besonders wichtigen Programmteilen sollte man sich
noch eine weitere Kopie anlegen, um bei einer eventuellen Zerstdrung der Programmbibliothek diese
jederzeit wieder herstellen zu kdnnen.

5.3. BASIC

5.3.1. Programmiersprache BASIC

BASIC ist eine sogenannte hohere Programmiersprache, eine Sprache also, die sich nicht direkt auf

die Maschinensprache des Rechners bezieht. Diese Sprache wurde um 1965 von John G. Kemeny und
Thomas E. Kurtz im Dartmouth College in den USA entwickelt. Sie hatten dabei die Entwicklung einer
Computersprache vor Augen, die einerseits vom Anfanger leicht zu erlernen ist und andererseits viele

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Maglichkeiten bietet. Man sollte mit dier Sprache leicht numerische (Zahlen-) Probleme angehen
kénnen, aber ebenso sollten Verwaltungsaufgaben, bei denen die Textverarbeitung eine grosse Rolle
spielt, in der Sprache zu behandeln sein. Deshalb ersann man fur diese Sprache die Bezeichnung
BASIC, ein Wort, das konstruiert wurde aus den Anfangsbuchstaben von: Beginner's All purpose
Symboic Instruction Code (etwa: Anfanger-Allzweck-Symbolik-Instruktions-Code).

Neben den Wortern ,,Beginner's” und ,All purpose” (Allzweck), deren Bedeutung ohne weiterse
einleuchtet, kdnnen die Worter ,Symbolic Instruction Code” vielleicht ein wenig verwirren. Damit wird
nur gesagt, dass man mit einem sogenannten symbolischen Befehlekode arbeitet. Das sind
Schlusselworter, mit denen bestimmte Verarbeitungsbefehle mit Hilfe von Symbolen angegeben
werden, z. B. das Addieren oder Subtrahieren. Also nur wenige Worter, deren Bedeutung bei der
weiteren Beschaftigung mit der Sprache ohne weiteres einleuchten wird.

Kemeny und Kurtz haben mit ihrem einfachen Aufbau genau ins Schwarze getroffen. Die Erwartungen
haben sich erfullt: BASIC wurde eine sehr populare Programmiersprache. Sie hat sich im Unterricht
bewahrt, und auch im Laboratorien und in Betrieben gibt es zahllose Computer, die den Befehlen in
BASIC gehorchen.

5.3.2. Der BASIC-Interpreter

Die eingegebenen Programmzeilen mussen ihrem Inhalt entsprechend bestimmte
Verarbeitungsleistungen aufrufen. Diese Aufgabe Ubernimmt der BASIC-Interpreter. Dieser Interpreter
arbeitet Anweisung fur Anweisung interpretativ ab, d. h. jedem entschlisselten Befehl oder
Kommando wird ein entsprechendes Maschinenprogramm zugeordnet und mit den in der BASIC-
Anweisung angegebenen Zahlenwerten abgearbeitet. Diese interpretative Abarbeitung nutzt ein
Maschinenprogramm fur alle im gesamten Programm vorkommenden gleichen Kommandos bzw.
Befehle. Damit sind genau so viele verschiedene Maschinenprogramme notwendig, wie es
verschiedene Kommandos und Befehle gibt. Damit ist die Lange des BASIC-Interpreter festgelegt,
unabhangig von der Lange der abzuarbeitenden Programme. Als Nachteil ist die geringere
Rechengeschwindigkeit gegenlber Ubersetzten Programmen anzusehen.

Ein Vorteil ist die einfache Dialogfahigkiet, BASIC-Zeilen erscheinen so wieder auf dem Bildschirm, wie
sie eingegeben wurden. Ausserdem konnen einzelne Anweisungen sofort ausgefuhrt werden. Auf
diese Weise kann der Computer an Stelle eines Tischrechners verwendet werden. Auf diese
Betriebsart wird noch genauer eingegangen.

An dieser Stelle sei auch auf einen Nachteil des Interpreters hingewiesen. Wie spatere Beispiele
zeigen werden, kann ein Teil des BASIC-Programmes haufiger als nur einmal ausgefuhrt werden, z. B.
bei der Unterprogrammarbeit oder in Programmschleifen. Vom Interpreter wird aber jedesmal, wenn
der entsprechende Abschnitt an der Reihe ist, Anweisung um Anweisung neu interpretiert. Das hat zur
Folge, dass solche Programme langere Verarbeitungezeiten gegenuber gleichen Programmldsungen
in Maschinensprache erfordern. Im Extremfall kann das dazu flhren, dass besonders zeitkritische
Probleme nur in Maschinensprache I6sbar sein werden. Diese Maschinenprogramme kénnen dann
innerhalb einer BASIC- Anweisung aufgerufen werden.

5.3.3. Laden des BASIC-Interpreters

Da der BASIC-Interpreter selbst ein Maschinenprogranun darstellt, bendtigt er im Speicher des Z1013

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 13/33 Handbuch Teil 2

einen Speicherplatz von ca. 2.75 KByte. Dazu wird noch weiterer Speicherraum zum Ablegen der
BASIC-Programme gebraucht.

Im Anhang ist eine Liste des Maschinenkodes des BASIC-Interpreter-Programmes enthalten. Diese
Liste von Maschinenbefehlen muss beim ersten Mal per Hand in den Rechner eingetippt werden,
wobei bei Adresse 0100H zu beginnen ist. Diese mihsame Arbeit ist aber nur beim erstem Mal
notwendig. Deshalb soll an dieser Stelle darauf verwiesen werden, dass dabei entsprechende Sorgfalt
von Noten ist. Ein einziger Fehler kann das Interpreterprogramm funktionsunfahig machen.

Das Eintippen erfolgt mit dem in 1.3. kennengelernten M-Kom mando. Es wird immer ein kleiner
Abschnitt eingegeben und an schliessend mit dem D-Kommando wieder angezeigt. Durch Vergleich
mit den Prifsummen je Zeile auf dem Bildschirm und in der Liste wird die Fehlerfreiheit festgestellt.
Muss die Ar beit unterbrochen werden oder ist der Interpreter vollstandig eingegeben, kann er wie
jedes andere Maschinenkode-Programm auf Magnetband gespeichert werden und steht ab jetzt
immer zur Verflgung. Soll jetzt mit dem MRB Z1013 ein BASIC-Programm bearbeitet werden, so muss
vorher nur noch der BASIC-Interpreter von Magnetband in den Adressbereich 0100H bis OBFFH
geladen und mit dem J-Kommando ab Adresse 0100H gestartet werden.

5.3.4. Arbeit mit dem BASIC-Interpreter

Nach dem Start des BASIC-Interpreters erscheint auf dem vorher geléschten Bildschirm die Meldung
‘robotron Z 1013 BASIC 3.01', in der nachsten Zeile 'READY' und am Beginn der folgenden Zeile das
Zeichen '>' (grdsser als) als Promptsymbol.

Immer wenn das Zeichen '>' auf dem Bildschirm auftaucht, befindet sich der Interpreter in einer
Eingabeschleife, d. h., dass der Interpreter zur Eingabe von Befehlen, Kommandos oder
Programmzeilen bereit ist. Eine solche Programmzeile hat folgenden Aufbau: [ZInr] anweisung 1 [;
anweisung 2, ...]. Die eckige Klammer bedeutet, dass diese Eingaben nicht unbedingt getatigt
werden mussen.

Die Lange einer Programmzeile darf 64 Zeichen nicht Uberschreiten. Jede Programmzeile und jede
Kommandoingabe ist mit der Enter-Taste abzuschliessen

Beginnt die eingegebende Zeile mit einer Zeilennummer (ZInr), so wird diese Zeile als Programmzeile
interpretiert und abgespeichert. Diese Zeilennummern sind ganze Zahlen im Bereich zwischen 1 und
32767. Bei der Numerierung der Programmzeilen geht man sinnvollerweise in Zehnerschritten vor.
Dadurch ergibt sich die Mdglichkeit, noch genltigend Einfligungen in bereits bestehende Programme
vorzunehmen. Die Abarbeitung des BASIC-Programmes erfolgt in der Reihenfolge der Zeilennummern.

Alle anderen Eingaben ohne Zeilennunmmern werden als Befehl zur sofortigen Ausfuhrung
angesehen. Sind sie zulassig werden sie ausgefuhrt, sonst erfolgt eine Fehlermeldung. Danach kann
die nachste Eingabe erfolgen.

Die Arbeit ohne Zeilennummer nennt man auch Tischrechnermodus.

>A=66-20; PRINT A
46
READY

Innerhalb einer einzugebenden Zeile kann beliebig oft mit den Kursortasten , Kursor links '«'“ oder
~Kursor rechts '»'“ korrigiert werden. Der Kursor wird unter das fehlerhafte Zeichen bewegt und durch

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Eingabe des richtigen Zeichens der Fehler behoben. Danach muss der Kursor wieder an das
Zeilenende gebracht werden (auf die erste freie Zeichenstelle) und die Zeile kann mit der Enter- Taste
abgeschlossen werden.

Soll eine bereits im Programmspeicher abgespeicherte Programmzeile geandert werden, wird diese
einfach neu eingegeben (mit der gleichen Zeilennummer). Soll eine Zeile geléscht werden, so muss
nur ihre Zeilennummer angegeben werden.

Alle Befehle und Kommandos konnen mit einem Punkt nach dem ersten oder nach weiteren
Buchstaben abgekurzt werden. In der im Anhang befindlichen Befehlsliste sind die maglichen
Abkurzungen zu finden. Es sind auch kirzere Varianten der Befehle mdglich, aber dadurch kommt es
im Interpreter unter Umstanden zu Verwechslungen mit anderen Befehlen und zu fehlerhaften
Abarbeitungen.

Auch Leerzeichen zwischen den einzelnen Elementen der Programmzeilen kdnnen weggelassen
werden. Diese beiden Mdglichkeiten der Programmverkirzung erlauben es, den Programmspeicher
besser auszunutzen, um mehr Programmzeilen unterzubringen. Dadurch geht aber die
ubersichtlichkeit der Programme verloren.

Es durfen mehrere Anweisungen in einer Programmzeile untergebracht werden. Diese Anweisungen
sind durch ein Semikolon voneinander zu trennen.

Der BASIC-Interpreter realisiert eine einfache Ganzzahlarithmetik in den vier Grundrechenarten
Addition, Subtraktion, Multiplikation und Division (+ - * /) im Zahlenbereich von -32768 bis +32767.
Aus diesem Grund besitzt er nur einen Datentyp. Zu beachten ist, dass auch die Division nur
ganzzahlig ausgefuhrt wird, d. h., dass z. B. 9/4=2 ist. Der Teil des Resultates hinter dem Komma wird
einfach weggelassen.

Den meisten der Schlisselworte folgt ein weiterer Ausdruck. Das kdnnen Zahlen, Variable oder
arithmetische Konstruktionen mit diesen sein. Erforderlichenfalls sind derartige Konstruktionen mit
Klammern aufzubadn, um diese Konstruktionen mathematisch eindeutig zu machen. Der Interpreter
arbeitet nach

der bekannten Rechenregel: Punktrechnung geht vor Strichrechnung. Mehrere Klammern kénnen
dabei beliebig geschachtelt werden. Innerhalb eines Befehls kdnnen weitere Befehle oder Funktionen
verwendet werden.

Als Variable sind alle Buchstaben des Alphabets von A bis Z erlaubt. Eine Variable darf aber nur aus
einem einzelnen Buchstaben bestehen. Es kénnen nur Grossbuchstaben verwendet werden.

Mit dem Symbol '@' ist die Nutzung eines eindimensionalen Feldes (Vektor) moglich. Die
Teilanweisung @(A) stellt dabei das A-te Element des Feldes dar. Anstelle von A kann sowohl ein
anderer Buchstabe des Alphabetes als auch eine Zahl oder eine arithmetische Konstruktion stehen, d.
h. ein Ausdruck wie oben bereits beschrieben.

Werden bei der Arbeit mit dem BASIC-Interpreter Syntaxfehler gemacht, so werden diese Fehler
erkannt und angezeigt. Logische Fehler im Programm kann der Interpreter nicht finden, das bleibt
dem Geschick des Programmierers Uberlassen. Der BASIC-Interpreter kennt drei verschiedene
Fehlermeldungen:

WHAT? - Das Schliisselwort bzw. der Ausdruck sind nicht er-

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 15/33 Handbuch Teil 2

laubt bzw. fehlerhaft, d. h. der Interpreter versteht
die Anweisung nicht.

HOW? - Die Ausfuhrung der Anweisung ist im Rahmen der Mog-
lichkeiten dieses Interpreters nicht méglich (z. B.
bei einer Zahlenbereichsuberschreitung).

SORRY - Die Ausfuhrung der Anweisung ist zwar méglich, aber
nicht unter den aktuellen Voraussetzungen(z. B. der
Programmspeicher ist erschopft).

Tritt eine Fehlermeldung bei der Abarbeitung eines Programmes auf, so wird zur Fehlermeldung auch
die Zeile ausgegeben, in der der Fehler aufgetreten ist. An der fehlerhaften Stelle wird vom BASIC-
Interpreter ein Fragezeichen eingefligt. Das erleichtert die Fehlersuche.

5.3.5. Kommandos des BASIC-Interpreters

Im nachfolgenden sind alle Befehle und Kommandos, die der BASIC-Interpreter verstehen und
ausfuhren kann, aufgefuhrt und erlautert. Zusammen mit dem im vorhergehenden Abschnitt
gesagten ergeben sich daraus alle Mdglichkeiten der im MRB Z 1013 realisierten Programmiersprache
BASIC. Die im Anhang befindliche Befehlsliste beinhaltet auch die moglichen Kurzformen.

LIST

Dieses Kommando bewirkt das Auflisten des im Speicher stehen den BASIC- Programmes auf dem
Bildschirm. Dadurch lassen sich Programme leicht kontrollieren.

>LIST Auflisten des gesamten Programmes in aufsteigender
Reihenfolge der Zei~ennnunrnern.

>LIST 10 Auflisten des BASIC-Programmes ab der Zeile 10
Es werden genau 20 Zeilen aufgelistet.

RUN

Mit dem Kommando 'RUN' wird ein BASIC-Programm gestartet. Bei der Abarbeitung wird mit der
niedrigsten Zeilennummer begonnen. Ist die letzte Zeile abgearbeitet oder eine 'STOP'- Anweisung
erreicht, kehrt der Interpreter in die Eingabeschleife zurlick und meldet sich mit 'READY' und auf der
nachsten Zeile mit den Aufforderungszeichen '>'. Er erwartet jetzt weitere Kommando- oder
Befehlseingaben.

NEW

Das im Speicher vorhandene BASIC-Programm wird scheinbar geldscht. Tatsachlich ist es noch im
Programmspeicher enthalten, wird aber bei neueingabe eines Programmes Uberschrieben.

BYE

Mit 'BYE' wird die Arbeit mit dem BASIC-Interpreter beendet und ins Monitorprogramm zurtckgekehrt.
Das zuletzt eingegebene Programm befindet sich noch im Speicher. Wird an dessen Inhalt nichts

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

geandert, kann mit dem Monitorkommande ') 0103' wieder der BASIC-Interpreter aktiviert werden
(Restart). Jetzt erscheint nur ein 'READY' und in der nachsten Zeile das Aufforderungszeichen '>' auf
dem Bildschirm. Die Arbeit mit dem BASIC- Interpreter kann fortgesetzt und das vorher eingegebene
Programm wieder gestartet werden.

END

Dieser Befehl wird zum Vergréssern des vom Interpreter genutzten Programmspeichers verwendet.
Mit 'END' kann also das Programmspeicherende neu gesetzt werden, z. B. bei Speichererweiterung.
Lasst der augenblickliche Ausstattungsgrad des MRB Z1013 diesen Speicherbedarf nicht zu, weil er
real nicht vorhanden ist, wird die Fehlermeldung 'SORRY"' ausgegeben. Dabei ist zu beachten, dass ein
Bereich von 140 Byte hinter den Programmspeicher freibleibt, der vom BASIC-Interpreter intern
verwaltet wird.

Beispiel:
>END HEX(3FFF)-140

Die oben aufgefuhrten Kommandos dirfen in keinen Programm auftauchen, sie dienen nur zur Arbeit
mit dem Interpreter und werden prinzipiell sofort ausgefuhrt.

CSAVE

Mit dem Kommando CSAVE ,name” wird ein BASIC-Programm unter dem angegebenen Namen auf
Magnetband abgespeichert. Dabei kann der Name maximal 16 Zeichen umfassen und muss von
Anflhrungszeichen eingeschlossen sein.

CLOAD

Mit diesem Kommando wird ein durch CSAVE abgespeichertes BASIC-Programm wieder von
Magnetband eingegeben. Zur Kontrolle wird der im CSAVE-Kommande verwendete Name auf dem
Bildschirm ausgegeben.

5.3.6. Programmierbare Befehle bzw. Anweisungen

LET

Definiert den Anfang einer Ergibtanweisung, d. h. einer Wertzuweisung. 'LET' muss nicht vorangestellt
werden, es dient lediglich der besseren Ubersichtlichkeit.

Die im folgenden angegebenen Beispiele stellen nicht in jedem Fall Programme dar, sondern kdnnen
auch nur Varianten eines Anweisungstypes verdeutlichen.

>10 LET A=1

>20 A=50;B=30

>30 LET C=A-B+3

>40 LET X=3+A+(B-3)/C
>50 LET @(3)=24

IF

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 17/33 Handbuch Teil 2

Mit der 'IF'-Anweisung werden Bedingungen fur die Ausfuhrung einer der Anweisung folgenden
Anweisung festgelegt. Im Zusammenhang mit der GOTO-Anweisung lassen sich damit
Programmverzweigungen realisieren.

>100 IF B=10 GOTO 200
>108 IF C=0 PRINT 'FERTIG'
>115 IF A+B<100 A=A+1;GOTO 100

Die 'IF'-Anweisung selbst darf keine Folgeanweisung in einer Programmzeile sein, muss also immer
am Zeilenanfang stehen. Die 'IF'-Anweisung ist damit einer Vergleichsoperation gleichzusetzen.

Nachfolgend sind alle erlaubten Vergleichsoperatoren aufgefuhrt:

>= grosser gleich

ungleich
> grosser
= gleich

< Kkleiner
<= kleiner gleich

Ist die in der IF-Anweisung angegebene Vergleichsoperation wahr, wird die in der gleichen
Programmzeile folgende Anweisung ausgeflhrt, sonst die nachfolgende Programmzeile abgearbeitet.

GOTO

Unbedingter Sprung zu einer Zeile, deren Zeilennummer direkt angegeben wird, oder sich aus den
angegebenen Ausdruck berechnet. 'GOTO zInr' als Direktanweisung (ohne vorangestellte
Programmzeilennummer) startet das Programm ab der angegebenen Zeilennummer. In Verbindung
mit 'IF' kann 'GOTO' zur Konstruktion von bedingten Sprunganweisungen verwendet werden (siehe
auch Beispiele der 'IF'-Anweisung).

>100 GOTO 120

>GOTO 120

>110 GOTO 120+B
>120 GOTO A

>120 IF A>0 GOTO 100

FOR...TO...STEP...NEXT

Damit lassen sich leicht Programmschleifen aufbadn, die mit einer freibestimmbaren Anzahl von
Schleifendurchlaufen abgearbeitet werden sollen. Jede mit 'FOR' erdffnete Schleife muss mit einer
NEXT-Anweisung, die die gleiche Zahlvariable wie die FOR-Anweisung beinhaltet, abgeschlossen
werden.

>100 N=10

>110 FOR I=0 to N
>120 LET a=I*10;b=I*I
>121 PRINT A,B, A*B

>150 NEXT I
>160 ...

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Der Programmabschnitt von Zeile 110 bis Zeile 150 wird N-mal durchlaufen, wobei '1' mit dem Wert
'0' beginnend in jedem Durchlauf um '1' erhdht wird, bis der Wert N Uberschritten wurde. Danach wird
die Schleife verlassen-

Eine Schrittweite wird mit dem Schlisselwort STEP gekennzeichnet. Wird STEP weggelassen, wird der
Standardwert 1 genommen.

In der 'FOR..NEXT'-Anweisung kénnen die Anfangs- und Endwerte sowie die Schrittweite der
Schleifendurchlaufe fur die Zahlvariable (im Beispiel das 'l') beliebige arithmetische Konstruktionen
bzw. Ausdrlcke sein. Bei jeden Schleifendurchlauf wird die Zahlvariable um den Wert der Schrittweite
verandert, bis der Endwert Uberschritten wird. Bei negativer Schrittweite ist auf die richtige Angabe
der Anfangs- und Endwerte zu achten.

>110 FOR X=A TO N+B STEP C
>120 ...

>150 NEXT X
Eine 'FOR-NEXT'-Schleife kann zu jedem beliebigen Zeitpunkt durch eine 'IF..GOTO'-Anweisung

verlassen werden. Es darf aber nicht in eine 'FOR...NEXT'- Schleife von ausserhalb der Schleife
hineingesprungen werden.

GOSUB...RETURN

Mit GOSUB erfolgt der Aufruf eines in BASIC geschriebenen Unterprogramms, welches mit 'RETURN'
beendet werden muss. Nach dem Befehl 'RETURN' wird mit dem, dem Unterprogrammruf folgenden
Befehl im BASIC-Programm fortgesetzt. Unterprogramme sind dort sinnvoll, wo gleiche Programmteile
an mehreren Stellen benotigt werden. Dadurch wird Speicherplatz eingespart. (@hnliche Problematik
der MC-Programmierung, siehe Abschnitt 4.) Innerhalb eines Unterprogrammes sind die Variablen des
rufenden Programmes ebenfalls gultig und werden zur Parameter- und Ergebnisibermittlung genutzt.

>120 C=25,;GOSUB 180;PRINT 'ZEIT',
>125 (C=60;GOSUB 180;PRINT 'SCHLEIFE'

>170 STOP
>180 REM ZEITPROGRAMM

>190 IF C#0 C=C-1; GOTO 190
>210 RETURN

REM

Dadurch werden in einen BASIC-Programm; Kommentarzeilen gekennzeichnet. Sie dienen der
besseren Ubersichtlichkeit der Programme und werden bei der Abarbeitung durch den Interpreter
Uberlesen. Die Programmzeile belegt aber entsprechend ihrer Lange Speicherplatz in RAM-Bereich
des Rechners.

>110 REM LET C=1024 >180 REM ZEITPROGRAMM
Diese Zeilen werden nicht mit abgearbeitet.

INPUT

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 19/33 Handbuch Teil 2

Dadurch wird die Eingabe von numerischen Werten mittels der Tastatur ermdglicht. Ein eingegebener
Wert wird dabei einer Variablen zugeordnet. Alle eingegebenen Zeichen werden wieder auf dem
Bildschirm ausgegeben. Korrekturen der Eingabe sind mit der Taste 'Kursor links' bzw. 'Kursor rechts'
maoglich. Die gesamte

Eingabe ist mit der Enter-Taste abzuschliessen (nach Korrekturen muss der Kursor auf die erste freie
Position in der Eingabezeile gestellt werden!).

Nach der 'INPUT'-Anweisung kann ein in Hochkomma eingeschlossener Text angegeben werden,
welcher bei der Ausfuhrung der Anweisung auf dem Bildschirm mit ausgegeben wird. Mittels einer
'INPUT'-Anweisung konnen mehrere Eingaben ausgeflhrt werden. Anstelle einer Zahl kann auch ein
Ausdruck eingegeben werden.

>10 INPUT X

>20 INPUT 'SPRUNGWEITE' S

>30 INPUT 'WERTEPAAR A'A,B

>RUN

X: eingabe

SPRUNGWEITE: eingabe

WERTEPAAR A: eingabe B: eingabe

Das Wort 'eingabe’ erscheint nicht auf dem Bildschirm, es wurde hier nur verwendet, um deutlich zu
machen, dass an dieser Stelle eine Eingabe mittels der Tastatur erfolgt.

>20 INPUT ' 'S
>RUN
: eingabe

PRINT

Damit wird die Ausgabe von numerischen Werten und von Textketten ermoglicht. Texte sind dabei in
Hochkomma einzuschliessen. Mehrere Ausgabeparaneter innerhalb einer 'PRINT'-Anweisung sind mit
Komma voneinander zu trennen. Zahlen werden bei fehlender Formatangabe sechsstellig mit
unterdrickten Vornullen rechtsbindig ausgegeben (d. h.: eine einstellige Ziffer beansprucht sechs
Zeichenpositionen auf den Bildschirm, wobei die ersten 5 leer bleiben und die auszugebende Ziffer
die sechste Position einnimmt).

Durch ein Doppelkreuz, gefolgt von einer Zahl 1...6), kann diese Formatisierung geandert werden. Die
Zahl gibt die maximal auszugebende Stellenzahl an. Die Formatisierung bleibt bis zur naschsten
'PRINT'-Ausgabe bestehen. Wird die 'PRINT' Anweisung mit einem Komma beendet, so beginnt die
Ausgabe der nachsten 'PRINT'-Anweisung in der gleichen Zeile nach der vorangegangenen Ausgabe.

>10 X=5;Y=50;Z=500
>20 PRINT 'ZAHL X=',X
>30 PRINT 'ZAHL X=',#2,X
>40 PRINT X,Y,
>50 PRINT Z
>RUN
ZAHL X=5
ZAHL X=5
5 50 500

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

STOP

Diese Anweisung beendet die Abarbeitung des BASIC-Programmes. Der Interpreter kehrt in die
Eingabeschleife zurlck. Eine 'STOP'-Anweisung muss nicht unbedingt als letzte Anweisung eines
BASIC-Programmes stehen. Gegebenenfalls kann diese Anweisung bei der Abarbeitung durch
bedingte Sprunge ('IF...GOTQ') oder Unterprogrammrufe Ubersprungen werden, ehe sie dann im
weiteren Programmlauf erreicht wird.

CALL

Mit 'CALL' und einer nachfolgenden, als Hexadezimalausdruck gekennzeichneten MC- Adresse wird
ein in Maschinensprache geschriebenes Unterprogramm vom BASIC- Interpreter aus gestartet. Soll
nach Abarbeitung des MC-Unterprogrammes die Arbeit des Interpreters mit der folgenden BASIC-
Anweisung fortgesetzt werden, so ist das MC-Unterprogramm mit einen 'RETURN'-Befehl (bedingt
oder unbedingt, z. b. 0C9H, siehe auch Abschnitt 4, Unterprogrammtechnik) abzuschliessen. Zur
Ubermittlung der Parameter werden die PEEK- und POKE-Befehle verwendet.

Beispiel:
>200 CALL (HEX (3000))

MC-Unterprogramne:
3000 3A FF 31 LD A, (31FFH)

3003 3C INC A

3004 27 DAA

3005 32 FF 31 LD (31FFH), A
3008 C9

Das durch die CALL-Anweisung in Zeile 200 aufgerufene MC-Unterprogramm (von Adresse 3000H bis
3009H) zahlt den Inhalt des Speicherplatzes 31FFH dezimal um '1' weiter. Auf diesem Speicherplatz
kénnte dann mit einer PEEK-Anweisung zugegriffen werden.

Mit diesem Befehl kénnen also auch die Routinen des Monitors aufgerufen werden. Das wird z. B. im
Anwendungsprogramm 'Telefonverzeichnis' beim Retten von Dateien praktiziert.

PEEK

Die PEEK-Anweisung ermoglicht den direkten Speicherzugriff zum RAM bzw. ROM des Rechners. Die
Anweisung enthalt eine Adresse als Parameter. Vom Speicherplatz, der durch die Adresse ausgewahlt
wurde, wird ein Byte als Wert einer Variablen dezimal zugewiesen.

>10 X=POK (1023)

Speicherplatz 1023 wird adressiert (dezimale Adresse)
>20 X=POK (HEX (3FF))

Speicherplatz 1023 wird adressiert (hexadezimale Adresse)

POKE

Mit Hilfe von POKE kann ein Speicherplatz beschrieben werden (wobei der Speicherplatz im RAM-
Bereich liegen muss). Der erste Parameter bestimmt die Adresse des Speicherplatzes, der zweite gibt
den Datenwert an, der abgespeichert werden soll.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 21/33 Handbuch Teil 2

>10 POKE HEX (EDO8),65

Der Wert 65 (dezimal) wird in den Speicherplatz mit der Adrtsse EDO8H (BWS) als 41H abgespeichert.
41H entspricht dem ASCII-Kode fur den Grossbuchstaben A.

>10 FOR I=0 TO HEX (3FF)

>20 POKE HEX (3000) + I, PEEK (HEX (F000) + I) ; NEXT I
ODER

>10 A=HEX (3000); B=HEX (F000)

>20 FOR I=0 TO 1023; POKE A + I, PEEK (B + I); NEXT I

Es wird der Monitor ab der Adresse FOOO in der Lange von 1K Byte nach Adresse 3000H
umgespeichert.

Dieses Programm entspricht dem Monitorkommande: T FO00 3000 3FF. Man beachte die
unterschiedlichen Ausflhrungszeiten.

BYTE

Damit wird der Wert des nachfolgenden Ausdrucks als Hexadezimalausdruck auf dem Bildschirm
ausgegeben. Es erfolgt nur die Ausgabe von dezimalen Werten bis 255 als zweistellige Hexadezimal
zahl.

>BYTE (16)
10

WORD

Diese Anweisung wirkt ahnlich wie Byte. Es werden aber hier 4 Stellen hexadezimal ausgegeben.

>10 N=1023
>20 WORD (N)
>RUN

O3FF

HEX

Mittels der HEX-Anweisung wird eine angegebene Hexadezimalzahl in eine Dezimalzahl umgewandelt.

>10 X=HEX (1000)
>20 PRINT X
>RUN

4096

"' (QUOTE)

Der durch ' '(Hochkomma) dargestellte Befehl QUOTE realisiert die Einzelzeichenunwandlung eines
ASCII-Zeichens in einen Dezimalwert. Das ASCII- Zeichen ist zwischen dem Hochkomma anzugeben.

>10 X='B'

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54
>20 PRINT X
>RUN
66

OUTCHAR

Der der OUTCHAR-Anweisung folgende dezimale Ausdruck wird als entsprechendes ASCII-Zeichen auf
dem Bildschirm ausgegeben. Bestimmte Sonderzeichen werden sofort ausgefuhrt (siehe OUTCH-
Funktion des Monitors).

>10 OUTCHAR 65
>20 X=66
>30 OUTCHAR X
>40 X='C'
>50 OUTCHAR X
>60 PRINT X
>RUN
ABC

67

OUTCHAR 12 léscht z. B. den gesamten Bildschirm.
INCHAR

Die INCHAR-Anweisung ermdglicht die Eingabe eines einzelnen Zeichens mittels der Tastatur. Bei der
Eingabe dieses Zeichens wird es nicht auf dem Bildschirm ausgegeben. Die Enter-Taste muss nach
dar Zeicheneingabe nicht betatigt werden. Der Wert des ASCII-Zeichens wird der in der Anweisung
mit angegebenen Variablen zugewiesen.

>10 PRINT INCHAR:; GOTO 10
oder
>10 X=INCHAR; PRINT X; GOTO 10

Mit dieser Programmzeile kann die gesamte Tastatur getestet werden. Es werden alle Tasten mit allen
Shift-Tasten kombiniert betatigt und dadurch der dezimale Zahlenwert auf dem Bildschirm angezeigt.
Ein Verlassen dieser Programmschleife ist nur mit S4/K (STOP) maglich.

ouT

Der in der OUT-Anweisung angegebene Wert des Ausdruckes wird an die in der Anweisung
zugewiesene E/A-Adresse des MRB Z1013 ausgegeben. Der Wert darf 255 nicht Uberschreiten (255 ist
bekanntlich die grosste Dezimalzahl, die mit 8 Bit darstellbar ist.).

>10 OUT (0)=10

Das Bitmuster fur 10 (00001010B) wird an die E/A-Adresse 0 ausgegeben. In der Grundvariante des
MRB ZI013 ist OH die mogliche E/A-Adresse des PIO-Port's A, die die freie Verwendung durch den
Anwender ermdoglicht.

Bei Verwendung der PIO als Port darf die entsprechende Initialisierung nicht vergessen werden, z. B.:

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 23/33 Handbuch Teil 2

>10 OUT (1)=HEX (CF)

>20 OUT (1)=0 (Ausgabe)
bzw.

>20 OUT (1)=255 (Eingabe)

Diese Anweisung ermdglicht die Eingabe von Werten von einer E/A-Adresse des MRB. (Adresse der
Grundvariante ist OH.) Der Wert, der an der E/A-Adresse anliegt, wird einer Variablen zugeordnet.

>10 X=IN (0)
I$
>10 I$ (TOP)

Eingabe einer Zeichenkette Uber Tastatur auf den ersten freien Speicherplatz nach einem BASIC-
Programm.

0$
>20 0% (TOP)

Ausgabe einer Zeichenkette, die ab dem ersten freien Speicherplatz nach dem BASIC-Programm
gespeichert ist, auf dem Bildschirm.

LEN

Stellt die Lange der zuletzt mit einer I$-Anweisung eingegebenen Zeichenkette zur Verfugunag.

>10 I$ (TOP)

>20 FOR I=0 TO LEN

>30 IF PEEK (TOP + I) = 'A' PRINT (TOP + I)
>40 NEXT I

Folgende Funktionen werden ausserdem durch den BASIC-Interpreter realisiert:
RND

Die RND-Funktion weist einer Variablen einen zufalligen Wert zwischen 1 und dem in der Anweisung
festgelegten Endwert zu.

>10 X=RND (2000)
>20 PRINT X
>RUN

1576

ABS

Es wird der Absolutbetrag des folgenden Ausdrucks gebildet und einer Variablen zugewiesen.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

>10 A=-120
>20 A=ABS (A)
>30 PRINT A
>RUN

120

TAB

Die TAB-Funktion stellt eine sogenannte Tabulatoranweisung dar. Die sich aus dem nachfolgenden
Ausdruck ergebende Anzahl von Leerzeichen wird auf dem Bildschirm ausgegeben. Die nachfolgende
Ausgabe von Zeichen beginnt nach diesen Leer- zeichen.

>10 PRINT 'ANWEISUNG:',

>20 X=5

>30 TAB (X)

>40 PRINT 'TAB',
>50 TAB (6)

>60 PRINT '(',#1,'X,")"

ANWEISUNG TAB (5)
Durch die TAB-Punktion wird die Darstellung von Kurven mag- lich.
>10 FOR I=-5 TO 5; TAB (I*I); PRINT '*'; NEXT I

TOP

Die TOP-Funktion ermittelt den zum Zeitpunkt der TOP-Funktion aktuellen ersten freien Speicherplatz
hinter dem soeben eingegebenen BASIC-Programm (dezimal).

>PRINT TOP
3561

SIZE

Damit wird der aktuelle freie RAM-Speicherbereich ermittelt, der fir ein BASIC-Programm noch zur
Verflgung steht.

>10 PRINT SIZE, 'FREIE BYTE'
>RUN
260 FREIE BYTE

Die ermittelte Anzahl freier Speicherplatze wird SIZE zugewiesen und kann im BASIC-Programm
weiterverwendet werden.

5.4. Hinweise fur die Erarbeitung Anwenderprogrammen

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 25/33 Handbuch Teil 2

5.4.1. Allgemeine Hinweise

In diesem Abschnitt soll dem Ungelbten die Mdglichkeit gegeben werden, sich anhand von einfachen
Beispielen mit grundsatzlichen Problemen der Programmierung zu befassen. Bevor wir beginnen
unserem Mikrorechner eine Leistung abzuverlangen, missen wir uns dartber im klaren sein, dass er
unsere Probleme erst dann I6sen hilft, wenn wir ihm eine eindeutige Rechenvorschrift in Form eines
Maschinenkode- oder BASIC-Programm geliefert haben.

Natdrlich kdnnen wir uns diese Denkarbeit ersparen und den Rechner mit fertigen Programmen
Jfuttern”, die sich ein anderer flr uns erdacht hat. Das ist bei der Lésung von hafig wiederkehrenden
Problemen zweckmassig. Hier sei als Beispiel nur das mitgelieferte BASIC-Interpreter-Programm
genannt, in dem eine Fulle geistiger Arbeit steckt und das einem breiten Anwenderkreis eine
vereinfachte Programmierung auf der Basis von einheitlichen BASIC-Befehlen ermdglicht. Wenn es
aber gilt, eigene spezifische Probleme rechentechnisch zu I16sen, kommen wir um die Aufbereitung
nicht herum. Diese notwendige Vorarbeit kann man im wesentlichen in drei Schritte einteilen:

1. Problemanalyse
2. Erarbeitung der Rechenanweisung (Algorithmus)
3. Programmierung

5.4.2. Problemanalyse

Um eine gestellte Aufgabe mit Hilfe unseres Mikrorechners I6sen zu kdnnen, gibt es ider Regel eine
Fllle von Méglichkeiten. Bei der Prazisierung unseres Problems und der Anpassung an die
rechentechnischen Gegebenheiten mussen folgende Gesichtspunkte in Einklang gebracht werden:

¢ Speicherplatzbedarf

e Verarbeitungszeit

e Ubersichtlichkeit

e Art der Datenein- und -ausgabe
e Bedienungskomfort.

Im folgenden soll das anhand eines Beispiels verdeutlicht werden:

Wir wollen den Inhalt unseres 2K-Zeichengenerators auf dem Bildschirm Ubersichtlich darstellen. Die
grafische Darstellung soll so erfolgen, dass der Kode aller Zeichen ersichtlich ist (siehe auch Anlage

7). Da fur die Darstellung eines Zeichens 8 Byte notwendig sind (8 x8 Bildpunkte), konnen prinzipiell
2048/8 - 256 verschiedene Zeichen dargestellt werden.

Das Bildschirmformat unseres Rechners bietet uns die Moglichkeit, 32 Zeilen mit jeweils 32 Zeichen
darzustellen, d. h. ein Bild kann aus max. 1024 Zeichen zusammengesetzt werden (siehe Anlage 8).
Wir kdnnten nun mit einem einfachen, kurzen Programm den Zeichengeneratorinhalt mit
ansteigender Kode-Zahl ,hintereinanderweg” abbilden, das ergibt 256/32 - 8 Zeilen. Darunter wirde
aber die Ubersichtlichkeit leiden, da in dieser gedrangten Darstellung insbesondere die Grafikzeichen,
die das 8x8-Bildpunkt-Format ausnutzen, Zum Teil ohne Ubergang ineinanderfliessen. Da wir mit
dieser Methode auch nur ein Viertel des Bildschirmes ausnutzen, bietet es sich an, die
Zeichendarstellung durch das Einflgen von Leerzeichen und Leerzeilen aufzuspreizen. Wir erhalten
damit 16 beschriebene Zeilen mit jeweils 16 Zeichen. Diese Darstellungsart deckt sich auch gut mit

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

der hexadezimalen Kodierung: In der ersten Zeile stehen die Zeichen OH.. FH, in der zweiten
(beschriebenen) Zeile die Zeichen 10h...1FH usw., so dass wir auf eine Beschriftung der Zeichen, fur
die ohnehin der Raum nicht ausreichen warde, verzichten kénnen.

Auf Probleme der Verarbeitungezeit verden wir bei der Programmierung noch zusprechen kommen.
Prinzipiell ware es moglich, den Bedienungekomfort zu steigern, z. B. eine Anwahl bestimmter
Zeichen oder Zeichengruppen Uber die Tastatur zu ermoglichen und parallel dazu den Zeichenkode
sowohl hexadezimal als auch dezimal darzustellen. Das wlrde aber unseren Forderungen nach
Einfachheit und Ubersichtlichkeit (Erfassung aller Zeichen auf einen Blick) widersprechen.

5.4.3. Erarbeitung der Rechnenanweisung (Algorithmus)

Nachdem wir unsere jeweilige Aufgabenstellung entsprechend den Empfehlungen des
vorhergehenden Abschnittes analysiert und prazisiert haben, messen wir flr unseren Rechner eine
exakte Rechenvorschrift aufstellen.

FUr unser gewahltes Beispiel kdnnte man den Algorithmus folgendermassen beschreiben:

1. Setze auf die Anfangsadresse des Bildschirms das Zeichen mit der Kode-Zahl 0!
2. Setze auf die nachfolgende Adresse ein Leerzeichen!

3. Wiederhole die beiden vorhergehenden Operationen mit wachsender Adresse und ansteigender
Kode-Zahl, bis eine Bildschirmzeile voll ist, d. h. 16 mal!

4. Schreibe eine Leerzeile, d. h. setze auf die nachsten 32 Adressen jeweils 1 Leerzeichen!
5. Beschreibe auf die gleiche Art die folgenden 30 Zeilen!

Dieser mit Worten beschriebene Algorithmus stellt eine Liste dar, die von oben nach unten
abgearbeitet wird. Dadurch wird es schwierig, sich wiederholende Programmabschnitte (Zyklen) und
Programmverzweigumgen (Springe) exakt zu beschreiben.

Hierflr erweist sich der Programmablaufplan (PAP) als ein gunstiges Hilfsmittel bei der Erarbeitung
eines Programms. Durch die Moglichkeit der zweidimensionalen Darstellung wer den zu lésende
Probleme anschaulicher und Uberschaubarer.

Fur die Gestaltung eines PAP werden folgende Elemente benotigt:

Bild Bedeutung
Anweisung einzelne oder mehrere
Operationen (Folge)
Verzweigung Variation des Programmab-

laufes in Abhangigkeit
einer oder mehrerer Be-
dingungen, dadurch Aufbau
von Zyklen moglich
Eingabe/Ausgabe beliebige E/A-Operationen
Grenzstelle Anfang (Start), Unterbre-
chung (Zwischenstop) oder
Ende (Stop) eines Programmes

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 27/33 Handbuch Teil 2

Verbindungsstelle Verbindung von Programm-
teilen
Unterprogramm Programmteil, das an dieser

Stelle aufgerufen wird

Um bei einem Programmentwurf durch die Vielfalt von Programmteilen und Gestaltungselementen
nicht die ubersicht zu verlieren, empfiehlt es sich, schrittweise den Abstraktionsgrad zu verfeinern.

Diese Methode soll an unserem gewahlten Beispiel demonstriert werden. Den vorhin angefihrten
verbalen Algorithmus konnte man in einer groben Abstraktion folgendermassen als PAP darstellen:

Dieser PAP enthalt viele Vereinfachungen, die noch nicht geeignet sind fur eine Ubersetzung in die
BASIC-Sprache. Insbesondere die Zyklen 1 und 2 sind soweit abstrahiert, dass ihr zyklischer Inhalt gar
nicht erkennbar ist. 31

Wir wollen deshalb zunachst Zyklus 1 prazisieren. Um eine Bildschirmzeile entsprechend unseren
Wiuinschen zu fullen, muss die Anweisungsfolge (Zeichen schreiben/Leerzeichen schreiben) mit
wachsender Kode-Zahl C jeweils 16 mal wiederholt werden. Fur die fortlaufende Adressierung des
Bildschirms wird die Variable X benutzt, flr die Anzahl der durchlaufenen Zyklen die Variable L.

Der Zyklus 1 stellt eine in sich abgeschlossene funktionelle Einheit dar, die auch als Modul bezeichnet
wird. Hier die Darstellung von Zyklus 1 als Teil-PAP:

Zyklus 2 besteht aus der 32fachen zyklischen Wiederholung des Schreibens eines Leerzeichens bei
ebenfalls fortlaufender Erhdhung der Adresse X und der Kode- Zahl C. Da der Zyklus 2 an den
abgeschlossenen Zyklus 1 anschliesst, kann die Variable L, nachdem ihr ein neuer Anfangswert
zugeordnet wurde, erneut fur das Zahlen der Zyklen-Anzahl benutzt werden:

Mit der einmaligen Realisierung der Folge (Zyklus 1/Zyklus 2) haben wir erst das Programm fur 2
Bildschirmzeilen abgearbeitet. Um das Gesamtprogramm zu realisieren, missen wir die genannte
Folge 16mal abarbeiten (Zyklus 3). Als Zahler verwenden wir jetzt die Variable K. Vorher sind noch die
Anfangsbedingungen festzulegen. Als erste Bildschirmadresse wird entsprechend Anlage 8 die
Adresse ECOOH festgelegt, als erste Kode-Zahl wird C = 0 gewahlt.

Der komplette PAP soll im folgenden aus Platzgriinden unter Verwendung der bereits aufgeflhrten
Programm-Module Zyklus 1 und Zyklus 2 dargestellt werden:

Damit ist unser PAP soweit aufbereitet, dass die Umsetzung in die Programmsprache erfolgen kann.
Daraus resultiert auch die wichtige Schlussfolgerung, dass ein Programmablaufplan auf die
verwendete Programmsprache und ihre Moglichkeiten ,,mallgeschneidert” werden muss, d. h. die
Erarbeitung des PAP setzt die grindliche Kenntnis der Elemente der beabsichtigten
Programmiersprache voraus.

5.4.4. Programmierung

Bei der eigentlichen Programmierung kdénnen wir die Vorteile nutzen, die uns das BASIC durch seine
Dialogfahigkeit bietet. Das bedeutet fur uns, dass wir unser Programm schrittweise aufbaun und
testen konnen.

Wir wollen das wieder an unserem Programmbeispiel Uben. Sicherheitshalber werden bei diesem
Beispiel noch einmal die wichtigsten Bedienungshinweise mit angegeben.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

Nachdem wir den Anfangszustand hergestellt haben (in Abschn. 1.2.3. ausfuhrlich beschrieben),
erwartet der Rechner, der sich jetzt im Betriebsprogramm befindet, eine Bedienereingabe. Es
signalisiert das durch Ausgabe des Zeichens ,#“ als Promptsymbol, gefolgt von einem Leerzeichen

u

und dem Kursor ,,_“.

Gehen wir davon aus, dass wir unseren BASIC-Interpreter entsprechend den Hinweisen von Abschn.
5.3.3. auf Magnetband gespeichert vorliegen haben. Durch Eintippen der Anweisung

L 100 BFF

geben wir dem Rechner zu verstehen, dass er in den Speicher adressraum von 100H bis BFFH Daten
einlagern soll. Nach dem Positionieren des Magnetbandes (optimal ist hier ein Bandlangenzahlwerk)
und Einschalten der Wiedergabe erwarten wir den Kennton. Sobald er ertont, aktivieren wir durch
Drucken der ENTER-Taste unsere vorbereitete Bedienereingabe. Der Rechner liest den BASIC-
Interpreter ein. Wahrend des Einlesens befindet sich der Kursor am Zeilenanfang. Nach fehlerfreiem
Einlesen des BASIC-Interpreters erscheint unter unserer Bedienereingabe wieder das Promptsymbol
WY

Sollte das nicht auf Anhieb klappen, z. B. durch zu spates Driicken der ENTER- Taste, erkennen wir
das an der Bildschirmausschrift.

Es ist z. B. maglich, dass durch Staubkdrnchen zwischen Band und Tonkopf oder durch Kontaktfehler
der Ubertragungsleitung einzelne ,Bits” verlorengehen. Das erkennt unser Rechner durch Kontrolle
der Ubereinstimmung der Summe aller Daten in einer Zeile mit den ebenfalls im Datensatz
ubermittelten Checksummen.

Durch Ausschrift z. B. von
CS < 0300

zeigt der Rechner uns an, dass im Ubertragenen Datenblock < Adresse 0300H ein
Checksummenfehler aufgetreten ist. Es kann auch vorkommen, dass der Rechner ,steckenbleibt”, d.
h. der Kursor bleibt am Bildanfang stehen, es erscheint kein Promptsymbol. Da hilft uns nichts weiter,
als nach Abstellen der Fehlerursachen und erneutem RESET von vorn anzufangen.

Prinzipiell ist es auch mdglich, beim Auftreten von einzelnen Checksummenfehlern mit dem D-
Kommando den angegebenen Datenblock durch Vergleich mit der BASIC- Interpreter-Liste nach
rehlern abzusuchen und diese mit dem N-Kommando zu korrigieren.

Im allgemeinen ist es aber weniger umstandlich, das Einlesen neu zu starten, vorausgesetzt, das auf
Band befindliche Maschinenkode-Programm ist fehlerfrei abgespeichert.

Haben wir diesen Schritt erfolgreich abgeschlossen, starten wir den BASIC- Interpreter ab der
Anfangsadresse 0100H, indem wir eingeben:

J 100.
Nach Ausfuhren von ENTER meldet sich der BASIC-Interpreter, wie in 5.3.4. beschrieben und fordert

mit dem neuen Promptsymbol ,,>“ eine Bedieneranweisung, jetzt in Form von gultigen BASIC-
Kommandos oder -Programmzeilen.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 29/33 Handbuch Teil 2

Beginnen wir jetzt, unseren PAP in die BASIC-Sprache umzusetzen. Als erstes legen wir die
Startadresse auf unserem Bildschirm fest. Sie ist uns als ECOOH bekannt. Der Interpreter erwartet
aber von uns eine dezimale Adressenangabe. Wir konnen die umstandliche Umrechnung dem
Rechner Uberlassen, indem wir den HEX-Befehl benutzen. Unsere erste Programmzeile, der wir
entsprechend der Vorschrift aus Abschn. 5.3.4. die Zeilennummer 10 zu ordnen, lautet:

10 X=HEX (ECO00).

Erst durch Betatigen von ENTER wird die Zeile als Programmzeile abgespeichert. Vorher ist es noch
maglich, eventuell notwendige Korrekturen durch Verschieben des Kursors mit ,,«<-“ und ,->*, durch
Uberschreiben mit anderen Zeichen oder durch Léschen mit der Leerzeichentaste ,, ,,anzubringen.
Wichtig ist es, dass nur die vor dem Kursor befindlichen Zeichen bei Abschluss mit ENTER in die
Programmzeile Ubernommen werden.

Also:
Vor dem ENTER noch einmal auf den Bildschirm schauen!

Die nachste Anweisung aus dem PAP ergibt eine neue Programmzeile:
20 C=0

Damit wird der Variablen C die Zahl 0 zugeordnet. Das ist unsere Anfangsbedingung, die sichert, dass
als erstes Zeichen das mit der Kode-Zahl 0 aus dem Zeichengenerator geholt wird.

Um anfanglichen Unsicherheiten bei fehlerhafter BedienerfUhrung von vornherein entgegenzutreten,
ist an dieser Stelle noch einmal der Hinweis angebracht, die Abschnitte 5.3.4. und 5.3.5. besonders
grundlich zu studieren und anzuwenden. Sollte z. B. durch mehrfache Fehlerausschriften, anderungen
usw. die Programdarstellung auf dem Bildschirm an Ubersicht verlieren, kann man jederzeit durch
Eingabe des LIST-Kommados den aktuellen Stand aller geordneten Programmzeilen erfahren.

Wenden wir uns nun zunachst der Programmierung von Zyklus 1 zu (vgl. PAP zu Zyklus 1).

Der Variablen L wird der Anfangswert 0 zugeordnet:
50 L=0

Da die Variable L als Zahler dient, muss sie in jeder Pro- grammschleife um den Wert 1 erhoht
werden:

60 L=L+1

Zum Beschreiben der Bildschirmdresse X mit dem Zeichen, Kode-Zahl C, wird der POKE-Befehl
angewendet:

70 POKE X,C

Die Kode-Nr. und die Bildschirmadresse werden anschliessend fur die nachste Programmschleife um 1
erhoht:

80 C=C+1

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

90 X=X+1

Auf diese neue Adresse schreiben wir ein Leerzeichen (Kode-Nr. 32) und erhohen anschliessend
wieder die Adresse:

100 POKE X, 32
110 X=X+1

Damit diese Befehlsfolge nach eimaligem Durchlauf beendet wird, verwenden wir den bedingten
Sprung IF..GOTO Als Abbruchbedingung wird der Stand unseres Zahlers L kontrolliert:

120 IF L<16 GOTO 60

Sind wir hier erfolgreich angelangt (zweckmassig ist hier noch einmal die Kontrolle des bisherigen
Programms mit LIST), kdnnen wir das Teilprogramm bereits durch Eingabe des Kommandos RUN
starten und damit das Beschreiben der ersten Bildschirmzeile auslosen.

Sollten wir aber vorher bereits durch unser Programmieren die unterste Bildschirmzeile erreicht
haben, wird durch das infolge der Fertigmeldung mit READY und Erscheinen des Promptsymbols um 2
Zeilen weiterrollende Bild unser ,,Programmiererfolg” wieder verschwinden. Um das von vornherein zu
verhindern, wenden wir einen Trick an, indem wir den Rechner ,endlos” beschaftigen. Dazu kénnen
wir z. B. eine Programmeschleife konstruieren, die den Rechner zwingt, solange einen bedingten
Sprung auszufuhren, bis durch unseren Eingriff ein Abbruch erfolgt:

200 GOTO 200

Befindet sich der Rechner in einer solchen Schleife, reagiert er nicht mehr auf normale
Eingabebefehle. Einen Abbruch erreichen wir Jetzt nur durch gleichzeitiges Betatigen von 54 und K.
Dann erscheint auch wieder das Promptsymbol als Zeichen der Bereitschaft.

Wunschen wir Uber Bedienereingabe einen leeren Bildschirm, betatigen wir gleichzeitig S4 und T mit
anschliessendem ENTER.

Kommenn wir nun zum Zyklus 2. Mit unseren Erfahrungen vom Zyklus 1 konnen wir ihn jetzt sofort
umsetzen:

130 L=0

140 L=L+1

150 POKE X,HEX(20)
160 X=X+1

170 IF L<32 GOTO 140

Wer sich nicht damit abfinden kann, dass die zweite Zeile mit ihren 32 Leerzeichen ,unsichtbar"
bleibt, kann z. B. anstelle der Leerzeichen das Zeichen ,*" (Kode-Nr. 2AH) verwenden:

150 POKE X,HEX(2A)

Dieser Befehl Iasst sich spater auf Wunsch wieder zurickwandeln. Durch LIST kdnnen wir uns
uberzeugen, dass der neue Programmteil sich entsprechend der Zeilennumerierung in das

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 31/33 Handbuch Teil 2

Gesamtprogramm eingefugt hat.

Bei erneutem Starten des bisherigen Programms durch RUN werden jetzt die ersten beiden
Bildschirmzeilen Uberschrieben. (Nicht vergessen: vor dem Weiterarbeiten S4/K dricken!)

Um unser Gesamtprogramm zu verwirklichen, mussen wir noch den Zyklus 3 umsetzen:

30 K=0
40 K=K+1
180 IF K<16 GOTO 40

Wenn wir alles erfolgreich bewaltigt haben, erscheint jetzt nach RUN der komplette Zeichengenerator
in angemessenen Tempo auf dem Bildschirm. Damit ist unser kleines Programm fertig. Es soll aber
gezeigt werden, dass es auch andere Maoglichkeiten gibt, zum gleichen Ziel zu gelangen. Wir kdnnen
z. B. vor dem Zyklus 1 den gesamten Bildschirm l6schen. Damit entfallt der Zyklus 2.

Benutzen wir fur das Bildschirmloschen die entsprechende Monitorroutine, indem wir Uber den
OUTCHAR-Befehl das Steuerzeichen OCH = 12D abrufen (s.a. Abschnitt 5.1.1.), so haben wir den
Vorteil, dass das Loschen in wesentlich klrzerer Zeit realisiert wird. Zum Uben ist es zu empfehlen,
hierfUr den PAP abzuandern. Wenn wir zur Realisierung der Programmschleifen gleich noch die
elegantere FOR...TO...NEXT-Anweisung benutzen, kdnnen wir durch Loschen und Uberschreiben
einiger Programzeilen folgende Variante erhalten:

10 X=HEX (EC00)
20 C=0

30 OUTCHAR 12

40 FOR K=1 TO 16
60 FOR L=1 TO 16
70 POKE X,C

80 C=C+1

90 X=X+2

120 NEXT L

140 X=X+32

180 NEXP K
200 GOTO 200

Zeile 30 bewirkt das schlagartige Léschen des gesamten Bildschirmes. Zeile 60..120 realisiert Zyklus
1, Zeile 40..180 stellt den Zyklus 3 dar, Zeile 90 ruckt die Bildschirmadresse um jeweils 2 Platze
weiter, Zeile 140 bewirkt das Uberspringen einer Zeile.

Einen interessanten Aspekt bietet die Gegenuberstellung zu einem Maschinenprogramm, das nach
demselben Algorithmus arbeitet wie unser Ausgangsprogramm. Es soll im folgenden komplett
wiedergegeben werden (man beachte die Ausfuhrungezeit im Vergleich zum BASIC-Programm):

3000 3E 00 LD A, 00
3002 21 00 30 LD HL, ECOO
3005 06 10 LD B , 10

3007 C5 PUSH BC
3008 06 10 LD B , 10
300A 77 LD M, A
300B 23 INC HL

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update:
2013/06/25 z1013:handbuecher:handbuch_2a https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270
11:54

3000 36 20 LD M, 20
3003 23 INC HL

30Q7 30 INC A

3010 10 F8 DINZ 300A - #
3012 06 20 LD B , 20
3014 36 20 LD B , 20

3016 23 INC HL

3017 10 FB DINZ 3014 - #
3019 Cl POP BC

301A 10 EB DINZ 3007 - #
3010 76 HALT

6. Erweiterungen des MRB Z1013

6.1. Allgemeine Hinweise

Die Grundausbaustufe des MRB Z10I3 stellt das Kernstuck eines Mikrorechnersystems dar, welches
durch zusatzliche Baugruppen immer weiter komplettiert werden kann.

Diese Erweiterungsbaugruppen sollen ebenfalls industriell gefertigt und im Handel angeboten werden.
Dazu gehort ein Baugruppentrager mit Ruckverdrahtung, die ausser den Bauelementen zur
Verstarkung der Systemsignale eine Anzahl von Steckverbinderplatzen enthalt.

Versierte Bastler, die neben der Beschaftigung mit dem MRB Z1013 auch Freude am Selbstbau
elektronischer Baugruppen haben, werden sich ihre Erweiterungen vielleicht selbst bauen. Dieser
Selbstbau ist aber nur erfahrenen Elektronikern anzuraten, da tiefgrindiges Wissen und grosse
Erfahrung vorausgesetzt werden. Weiterhin ist zu beachten, dass aus Kostengrinden die
Grundausbaustufe nur die unbedingt notwendigen Bauelemente enthalt, die Systemsignale an den
Steckverbinderanschlussen meist unverstarkt und direkt von der CPU kommen und damit Fehler in
Erweiterungsschaltungen die Grundausbaustufe zerstoren kénnen.

Deshalb sollte bei umfangreichen Erweiterungen im Selbstbau die Verstarkung und Entkopplung der
Systemsignale sowie ein leistungsfahigeres Netzteil an erster Stelle stehen.

Aus den angefuhrten Grinden werden zu Hardwareerweiterungen nur einige grundsatzliche Hinweise
gegeben, die fur erfahrene Elektroniker ausreichen durften. Auf die Wiedergabe von Schaltungen wird
bewusst verzichtet.

ACHTUNG! Beachten Sie unbedingt den folgenden Hinweis. Es entfallen bei der Durchfliihrung von
Lotarbeiten auf der Z1013-Leiterplatte, ausgenommen das Anléten der Tastaturkabel, im
Garantiezeitraum alle Garantieanspruche.

6.2. Speichererweiterungen

Die Grundausbaustufe des MRB Z1013 besitzt standardmassig einen 2K Byte ROM mit dem
Monitorprogramm im Adressbereich FOOOH bis F7FFH und einen 1K Byte umfassenden statischen RAM
im Bereich ECOOH bis EFFFH als BWS. Zusatzlich ist er abhangig von der Bestlickungsvariante mit 16K

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 01:46

2026/01/11 01:46 33/33 Handbuch Teil 2

Byte dynamischen RAM (Z1013.01) oder mit 1K Byte statischen RAM (Z1013.12) ab Adresse 0000H
ausgerustet.

Die letztgenannte Variante erfordert fur die Nutzung des BASIC-Interpreters einen grdsseren
Arbeitsspeicher.

Achtung! Bei allen Erweiterungen ist zu beachten, dass die Belastbarkeit der Signalleitungen und der
Stromversorgung nur flr die Grundausbaustufe ausgelegt ist.

6.3. Anschluss von Steureinheiten

Flr kleine Stelr und Regelungsaufgaben steht als E/A-Port eine 8 Bit- Schnittstelle des PIO's zur
Verfugung (PIO-Port A). Dieser Peripherjeanschluss hat die EIAGrundadresse 0. Die erforderlichen
Anschllisse stehen am Steckverbinder X4 zur Verfliigung (siehe Anlage 6). Je nach Umfang der zu
stelrnden Aufgabe kann das bereits ausreichend sein. Das Fort wird im Modus bitgestelrte E/A
betrieben und kann sowohl Eingabesignale entgegennehmen als auch den Prozess béinflussende
Signale abgeben.

Sollte bei gewachsenen Anforderungen dieser 8 Bit breite Fort nicht ausreichen, kann zusatzlich mit
den Spaltenauswahlleitungen der Tastatur eine Auswahl der Signalqullen sowie der zu stelirnden
Einheiten vorgenommen werden. Es konnen damit 10 Jeweils 8 Bit breite E/A-Ports ausgewahlit
werden, ohne dass zusatzlicher Dekodieraufwand notwendig ist. Beispiel: Es wird eine Information auf
dem PIO-Fort A ausgegeben. Die auszugebenden Daten werden durch den PIO am Steckverbinder X4
zur Verflgung gestellt. Durch die Ausgabe einer Spaltennummer zwischen 0 bis 9 auf die E/A-Adresse
8 wird die entsprechende Spaltenleitung aktiviert (Low-aktiv) und gewahrleistet die Datenubernahme
in das ausgewahlte Port. Da durch den Spaltendekoder 10 Spaltenleitungen aktiviert werden kénnen,
ist der Anschluss von 10 verschiedenen E/A-Ports am Steckverbinder X4 moglich. Damit stehen einem
Anwender ohne grossen zusatzhohen Aufwand 80 Kommandoleitungen zur Verfligung, die nach
eigenem Ermessen in Ein- und Ausgabeleitungen eingeteilt werden konnen.

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270

Last update: 2013/06/25 11:54

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/z1013/handbuecher/handbuch_2a?rev=1372161270

	Handbuch Teil 2
	5. Software des MRB Z1013
	5.1 Monitor
	5.1.2. Erweiterungen des Monitors

	5.2. Hinweise zum Aufbau einer Programmbibliothek
	5.3. BASIC
	5.3.1. Programmiersprache BASIC
	5.3.2. Der BASIC-Interpreter
	5.3.3. Laden des BASIC-Interpreters
	5.3.4. Arbeit mit dem BASIC-Interpreter
	5.3.5. Kommandos des BASIC-Interpreters
	5.3.6. Programmierbare Befehle bzw. Anweisungen

	5.4. Hinweise für die Erarbeitung Anwenderprogrammen
	5.4.1. Allgemeine Hinweise
	5.4.2. Problemanalyse
	5.4.3. Erarbeitung der Rechnenanweisung (Algorithmus)
	5.4.4. Programmierung

	6. Erweiterungen des MRB Z1013
	6.1. Allgemeine Hinweise
	6.2. Speichererweiterungen
	6.3. Anschluss von Steüreinheiten

