
2026/01/09 15:22 1/10 VDIP/USB am TINY

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

VDIP/USB am TINY

„VDIP am TINY: Der USB-Stick-Anschluss“ von Uwe Nickel

 vdip s. http://www.vinculum.com/prd_vdip1.html

Den Artikel und alle Unterlagen gibt es als Download Paket vdip_jute_unickel.zip (2,5 MByte!)

Und nun kommt Uwe Nickel zu Wort:

TINY und der USB-Stick - Experimente mit Vinculum Vdip.
Erfahrungsbericht

Eingrenzung

Dieser Artikel soll keine kochrezeptartige Nachbauanleitung mit fertiger Leiterplatte und Software
sein, sondern Möglichkeiten aufzeigen am TINY mit relativ geringem Aufwand Vdip-Bastelexperimente
durchzuführen, ist also in diesem Sinne ein umfänglicher Erfahrungsbericht meiner eigenen
Entwicklungen am TINY, die nun letztendlich zu einer für mich dauerhaften Lösung als Unikat führten.
Ich stelle die dazu vorhandenen Unterlagen Interessenten frei zur Verfügung.

 Der Hardwareaufbau zwecks Experimente fand auf Uni-
Leiterplatte statt, also gibt es auch kein
Leiterplattenlayout. Die in mein bestehendes System,
das vollständig auf Uni-Leiterplatte aufgebaut ist,
integrierte Erweiterung erfolgte in gleicher Art. (s.Bild)

Da ich nach wie vor in reinem Hexcode am Tiny mit dem Prog-Kommando und einigen eigenen
Kommandoerweiterungen die Software entwickle, kann ich keinen „fertig kommentierten“ Quellcode
in höheren Programmiersprachen als Datei liefern, zumal sich meine Softwarerealisierung auf etliche
Routinen meiner Betriebssystemerweiterung stützt.

Ein aktuelles Speicherdump des Gesamtpakets (Bereich ab 0000h - 5FFFh) stelle ich auf Nachfrage
(u.nickel@lycos.com) jedoch gern zur Verfügung. Bedienung usw. können dann individuell geklärt
werden, das würde im Einzelnen den Rahmen dieses Artikels sprengen. Zu beachten: Die Software
hat experimentellen Charakter und ist auch noch behaftet mit etlichen Bugs.

http://www.vinculum.com/prd_vdip1.html
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip1-150.jpg?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/fetch.php/tiny/vdip_jute_unickel.zip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_vdip1.jpg?id=tiny%3Aerweiterungen%3Avdip
mailto:mailto:u.nickel@lycos.com

Last update: 2010/07/15 22:00 tiny:erweiterungen:vdip https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 15:22

Zum „Nur mal angucken“ läuft sie mit gewissen Einschränkungen auch im JTC-Emulator von Jens
Müller - Dank an dieser Stelle für seine Entwicklungsarbeit!

Wer sich abgescannte, bleistiftbeschriebene A4-Blättern des Listings als Quellcode (mit nicht ganz
normgerechter Mnemonic) antun möchte, kann diese Unterlagen gerne von mir erhalten. Ich gehe
davon aus, dass der Leser des Artikels sich die hier erwähnten Datenblätter und sonstigen Unterlagen
zum Modul von der Webseite der Firma selbst downloaded.

Auf bildliche Darstellungen oder Textauszüge aus o.g. Quellen Artikel verzichte ich, um ggf.
vorhandene Copyright- bzw. Urheberrechte etc. nicht zu verletzen.

Notwendige Hilfsmittel bei der Realisierung

Im Projekt werden GALs eingesetzt, also ist ein Galbrenner nebst Software notwendig, oder die
Möglichkeit, sich welche brennen zu lassen. Ich verwende einen GALBLASTER-Selbstbau incl. der
Software und zum Entwickeln des JEDEC-Files das kostenlose WinCupl. Weiterhin ist eben nur das
„normale“ Bastel-Equipment erforderlich. Der Schwierigkeitsgrad des Hardwareaufbaus ist also als
nicht sonderlich hoch einzuschätzen und dürfte demzufolge auch für ungeübtere TINY-Fans bei
Interesse machbar sein.

Vorüberlegungen und Grundlagen-Experimente

Mein erstes Vinculum-Modul war/ist ein VDRIVE, also nicht das im Bastelbereich gern benutzte Dip-
Modul. Damit standen mir vorerst nur wahlweise die UART oder SPI-Schnitstelle zur Verfügung. Um
einen ersten einfachen Kontakt zwischen TINY und VDRIVE herzustellen, wollte ich mit der seriellen
Schnittstelle, wie ich sie auch für Druckeransteuerung (K6304) und Datenübertragung verwende,
beginnen. Bisher lief die serielle Schnittstelle, die analog zum Originalartikel in der Zeitschrift Ju+Te
aufgebaut ist, bei mir nur mit 1200 Baud. Der Vinculum arbeitet standardmäßig mit 9600/8/n/x und
Hardwarehandshake per CTS/RTS. Prinzipiell ist per Vinculum-Tools auch eine Veränderung der
Firmware-Baudrate und Flusskontrolle komfortabel möglich, darauf habe ich jedoch verzichtet um
nicht bei eventuell unbemerkten Misserfolg der Änderung weitere Fehlerquellen im Versuchsaufbau
einzubauen. Auch auf das Einspielen der aktuellsten Firmware habe ich verzichtet, obwohl es allerorts
empfohlen wird. Nach eigener Recherche auf der Vinculum-Seite die Update-Versionshistorie
betreffend, war festzustellen, dass für erste Schritte beim Kennenlernen des Moduls keine
wesentlichen Veränderungen der Firmware passiert sind. So galt es also festzustellen, ob der TINY
9600,8,n,x schafft, ohne Verwendung der UART, also mit rein softwarebasierter Ausgabe/Empfang
über allgemeine Portpins.

 Als erstes Experiment habe ich da einfach die seriellen
Leitungen des TINY an einen PC mit serieller Schnittstelle
(virtuelle USB - COM) angeschlossen und per
Terminalprogramm Bytes hin- und hergeschickt bei
unterschiedlichen Übertragungsraten. Natürlich war eine
Pegelanpassung notwendig, die erfolgte per MAX 232 in
Standardbeschaltung! Die Kopplung PC-TINY erwies sich
per Terminalprogramm als recht problemlos und es
zeigte sich, dass die benötigte Geschwindigkeit
erreichbar ist, auch ohne UART, Interruptbetrieb etc.
Klar, dass dabei der Bildschirminterrupt des TINY

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v2.gif?id=tiny%3Aerweiterungen%3Avdip

2026/01/09 15:22 3/10 VDIP/USB am TINY

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

ausgeschaltet sein muss, also während Senden oder Empfangen von einzelnen Bytes keine
Bildschirmdarstellung erfolgen kann.

Folgende Routine war dabei Empfangsroutine des TINY (RP beliebig, ich verwende Registergruppe 5,
Rückgabe des Zeichens in R5D Stoppbits werden nicht ausgewertet):

 E6 5C F0 LD %5C, #%F0 Zeitkonst. für 1k2Bd, Einsprungadr. für
Empfang 1k2 Bd
 8B 03 JR LBL1
 E6 5C 1E LD %5C, #%1E Zeitkonst. für 9k6Bd, Einsprungadr. für
Empfang 9k6 Bd
LBL1 70 E9 PUSH R9 Einsprungadresse für wählbare Geschw.
 70 E8 PUSH R8 Zeitkonstantenübergabe in R5C
 B0 5D CLR %5D
 56 03 DF AND %3, #%DF RTS=L setzen
 8F DI Interruptsperre
LBL2 76 03 01 TM %3, #1 Startbit abwarten
 EB FB JRNZ, LBL2
 8C 08 LD R8, #8 Bitzahl
LBL5 98 5C LD R9, %5C Zeitkonstante nach r9
LBL3 9A FE DJNZ R9, LBL3 Zeitschleife
 66 03 01 TCM %3, #1 Bit = H ?
 EB 03 JRNZ, LBL4
 46 5D 80 OR %5D, #%80
LBL4 E0 5D RR %5D
 8A F0 DJNZ R8, LBL5 Wiederholung bis zum 8.Bit
 46 03 20 OR %3, #%20 RTS=H setzen
 50 E8 POP R8
 50 E9 POP R9
 9F EI
 AF RET

Die folgenden Zeitkonstanten in R5C habe ich experimentell ermittelt:

Baud Konstante Hex
1200 F0
2400 78
4800 3C
9600 1E
19200 0D

Die verwendete Senderoutine ist eine angepasste Version der in der Ursprungsliteratur (Zeitschrift
Ju+Te) angegebenen Routine zur Druckeransteuerung, die ich genauso umgeschrieben habe, dass ich
in R5C jeweils eine Zeitkonstante übergebe.

Während bei Verwendung des PC-Terminals zur ordentlichen Datenübertragung (Halbduplex) die 3
Leitungen (TxD, RxD, 1xHandshake) ausreichend sind, musste jedoch für den VDRIVE-Anschluss eine
weitere Portleitung als 2. Handshakesignal herhalten.

Last update: 2010/07/15 22:00 tiny:erweiterungen:vdip https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 15:22

TINY und Vinculum seriell

Obige Schaltung reicht für die Kommunikation zwischen TINY und Vinculum also nicht aus. Es ist voller
RTS-CTS Handshake (da ich ja keine andere Flusskontrolle per Tool einstellen wollte), nach folgender
Verdrahtung bei mir realisiert.

 Ursache ist logischerweise der Vollduplex-Datentransfer,
den der Vinculum seinerseits macht, während ja der TINY
keinen Sende und Empfangspuffer hat (bei der von mir
angestrebten UART- und interruptfreien Betriebsweise!).

Also „verpasst“ der gemächliche TINY regelmäßig Zeichen des Vinculum, wenn er diesem nicht
mitteilt, dass der doch bitte warten möge! Für meine Experimente opferte ich somit einfach eine
weitere Portleitung. Pegelwandlung zwischen TINY und Vinculum ist dabei nicht notwendig- Vdrive-
Modul liefert ja TTL-kompatible Signale, was den Anschluss schon sehr vereinfacht. Nach Anpassung
der Empfangsroutine konnte ich erste Gehversuche auch sofort machen. Die dazu erarbeitete
Minimalsoftware funktionierte einfach so:

Tastatureingaben am TINY werden 1:1 Byte für Byte zum VDRIVE übertragen (und natürlich auf dem
Bildschirm dargestellt) bis mit Enter 0D abgeschlossen wird. Dann wird sofort auf Antwort vom
VDRIVE gewartet, jedes empfangene Zeichen auf dem Bildschirm dargestellt, bis die Ausgabe
beendet ist. Und dann da capo al fine. Also einfaches Wechselspiel „Kommando → Antwort →
Kommando …“

Ging so halbwegs, war aber insgesamt nicht so ganz berauschend. Dabei tauchte softwareseitig
nämlich ein Problem auf, das sich eigentlich auch bei allen anderen Anschlussarten wiederholt: Wann
ist denn nun eigentlich ein Ausgabezyklus des Moduls (also „Antwort“) beendet? Woran ist das
erkennbar? Bei Nachfragen an Vinculum-Spezialisten im Internet lautete die lapidare Antwort
eigentlich immer: Wo ist denn da das Problem, natürlich mit Prompt gefolgt von „0DH“ - Enter. Ganz
so stimmt das aber nicht! Denn nur ein erfolgreiches Kommando erzeugt als Antwort o.g.
Rückgabeende. Bei Fehler kommt die entsprechende Meldung seitens des Moduls gefolgt von nur
Enter! Und nur Enter andererseits kommt auch bei einigen Antworten zwecks Ausgabeformatierung
„mittendrin“, siehe DIR o.ä.

Eine getimte Abfrage des Vdrive brachte auf die Schnelle keine wesentliche Verbesserung des
Gesamtverhaltens. Je nach Datenträger im Vdrive entstanden bei größeren Datenmengen
unterschiedlich lange „Denkpausen“ des Moduls. Das im Befehlssatz des Vinculum vorhandene „E“-
Kommando (Echo) kann hier jedoch als Synchronisationssignal zur Erkennung eingesetzt werden.
Zusammen mit der Tatsache, dass ich bei serieller Realisierung mir ja entweder die vorhandene
serielle Schnittstelle blockiere, oder mir eben eine weitere bauen muss, ließ mich dann von einer
seriellen Lösung doch Abstand nehmen.

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v3.gif?id=tiny%3Aerweiterungen%3Avdip

2026/01/09 15:22 5/10 VDIP/USB am TINY

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Ist vielleicht SPI besser?

Genau das hab ich dann nicht mehr probiert denn das hätte auch den Aufbau einer softwarebasierten
Schnittstelle mit entsprechenden Portanschlüssen bedeutet. Aber allgemein an SPI war ja mein
Interesse sowieso schon lange geweckt und unabhängig vom Vinculum wird das eine der nächsten
Basteleien werden.

Also doch Parallel?!

Auch wenn 9600 Byte/s ja nicht schlecht sind, die letztendliche Realisierung habe ich dann doch aus
o.g. Gründen nicht seriell gemacht. Inzwischen lag auch das VDip-Modul vor mir, somit waren
parallele Experimente möglich. Nach kurzer Recherche im Internet wurde ich auf einigen Seiten bzgl.
des Parallelbetriebs auch fündig. Insbesondere die für den KC 85-System verwendete Schaltung war
für erste Überlegungen sehr hilfreich. Der PIO-Aufwand - für das KC-System vollkommen richtig -
schreckte mich jedoch zuerst in Gedanken an das notwendige Löten an meinem Aufbau, zumal der
Platz für Erweiterungen auf der Leiterplatte langsam eng wird. Außerdem stand die Frage im Raum,
womit die Ports realisiert werden sollten. Wenn, dann wäre wahrscheinlich nur was in Standard-Logik
in Frage gekommen, denn eine Z80PIO anstricken scheitert schon mal an der Taktfrequenz (ich lasse
meinen Aufbau manchmal auch mit 16MHz laufen) und andere Spezialbausteine lagen mir nicht vor.
Erstes Betrachten des Datenblattes zeigte ja, dass es kein CE-Signal gibt. Also Anschluss über
irgendein E/A-Tor zwingend notwendig!? Beim zusätzlichen betrachten des Timingdiagramms des
Vdip drängte sich folgende Frage auf: Was machen eigentlich die Datenpins des Vdip, wenn sowohl
Schreib- als auch Lesesignal inaktiv sind? „Blackbox“- Testen ergab, sie verhalten sich elektrisch wie
Eingänge, obwohl natürlich dann datentechnisch im VDip nichts passiert.

Demzufolge also die Idee:

Ich schließe das Modul mit den Datenpins direkt an den Datenbus, versuche somit zusätzlichen1.
Hardwareaufwand für ein 8bit- E/A-Tor zu sparen,
erzeuge „lokale“ Schreib- bzw. Lesesignale, d.h. die nur bei der entsprechend für das Modul2.
vorgesehenen Adresse(n) aktiv werden, per Gal leicht möglich.
Über ein Mini-Eingabeport - es könnten auch x-beliebige schon vorhandene Portleitungen sein,3.
werden die beiden Statusleitungen (RxF, TxE) entsprechend abgefragt.

 Dazu reicht dann eine GAL völlig aus, als Minimalvariante, wie im Bild links ersichtlich.
Aber da ich ohnehin noch einige Erweiterungsideen habe, ist es eher angebracht etwas
mehr Aufwand zu treiben und einige weitere Ports zu organisieren. So sieht die
realisierte Schaltung dann entsprechend aus.

Die GAL-Files realisieren auch hier die Ansteuerung. Die Schaltung wurde dabei für Polling-Abfragen
(/TxE,RxF) ausgelegt. Interruptbetrieb, wie in der Schaltung für den KC, habe ich nicht vorgesehen.

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v5.gif?id=tiny%3Aerweiterungen%3Avdip

Last update: 2010/07/15 22:00 tiny:erweiterungen:vdip https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 15:22

Für das Schreiben und Lesen von Bytes mit dem VDip ist zuerst der jeweilige Status auf der
Statussignal- Adresse zu lesen und in Auswertung der Signale, die entsprechende Aktion auf der
Daten-Adresse durchzuführen.

Achtung! Wichtige Ergänzung im Nachhinein für zuverlässige Funktion:

Ich habe ganz viel Zeit bei der Suche nach einem vermeintlichen Fehler in Hard- bzw. Software
vergeudet, der sich wie folgt äußerte: Nachdem die Software fertig geschrieben war, inklusive der
Möglichkeit vom Stick zu booten, stellte sich heraus, dass Leseoperationen vom Stick bzw. Vdip
unregelmäßig auftretend, nicht zuverlässig funktionierten. Schreiboperationen auf den Stick waren
jedoch immer fehlerfrei. Es klappte aber eben das Laden von Dateien bzw. das booten vom Stick oft
nicht. Durch im Ausschlussverfahren geführte Experimente glaube ich das Problem nun zu kennen,
habe es zumindest erfolgreich beseitigt, Messungen kann ich dazu nicht nachweisen, es fehlt dazu
das Equipment:

Das Vdip-Modul ist eigentlich ja 3,3-Volt-Logik. Die Pins sind lediglich 5Volt-tolerant. Wenn der
Datenbus des Z8-Systems, wie in meinem Fall durch ungünstige Leitungslänge und viele
angeschlossene weitere Schaltkreise ?stark belastet? ist, dann tritt oben genanntes Problem auf, das
Vdip kann also scheinbar nicht bzw. nicht schnell genug ordentlich Pegel liefern. Ist die Busbelastung
geringer, dann funktioniert es ohne Probleme. Zur Abhilfe habe ich oben gezeigte Schaltung um einen
LS 245 erweitert, der als Busdriver zwischen Datenbus und Datenpins des Vdip's liegt. Damit hat dann
das Modul nur eine LS-Last zu treiben und das Problem tritt nicht mehr auf. Leider geht damit der
Vorteil ein 8-bit ?Tor in der Ansteuerung zu sparen verloren, aber das Ergebnis rechtfertigt den
Aufwand.

Und die Software?

Im „Probierfall“ also wieder einfach über Tastatur eingegebene Werte solange an das Modul
weitergeben incl. Enter als Abschluss, dann Bytes lesen und auf dem Bildschirm wiedergeben. Das
reicht ja dann schon um die Kommunikation zu testen.

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v6.gif?id=tiny%3Aerweiterungen%3Avdip

2026/01/09 15:22 7/10 VDIP/USB am TINY

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Weiter Eindrücke unter: http://picasaweb.google.de/unick59

Soll eine vernünftige Interaktion mit dem Benutzer erfolgen, ist natürlich ein wenig mehr Aufwand
angebracht.

Meine Realisierung des Ablaufes des Programms, das nun einen eigenen Menupunkt im TINY-
Startmenue bildet, habe ich „VDOS 1.x“ getauft. In der Grundroutine erfolgt die Statusabfrage des
VDip nicht „wartend“, sondern dynamisch. Nach Abfrage wird bei Ausgabe-Bereitschaft des Moduls
eben Bildschirmausgabe eines Zeichens gemacht, wenn keine Bereitschaft vorliegt nach
Tastaturabfrage eben wieder Bereitschaftsabfrage usw. Damit wird realisiert, dass z.B. auch das
Entfernen des Sticks aus dem Modul erkannt wird. Die Erkennung des Antwort-Ausgabeendes
(s.beschriebenes Problem weiter oben) ist im Parallelmode unkomplizierter, da das entsprechende
Statussignal /RxF dann dauerhaft H-Pegel führt, da keine neuen Daten mehr im Puffer anliegen. Aber
Achtung, H-Pegel ist auch immer dann, wenn während einer laufenden Datenausgabe eben mal
gerade keine neuen Daten anliegen, weil das Modul beschäftigt ist.

Etwas, zum Teil auch akademischen, Aufwand habe ich bei der Anpassung der Bildschirmausgaben
getrieben. Hintergrund war die Überlegung, dass bei Darstellung von Verzeichnissen etc. die
Zeilenzahl, die auf dem TINY-Bildschirm dargestellt werden kann, ja ganz schnell erreicht bzw.
überschritten wird, also Scrolling erfolgt. Damit geht dann logischerweise eben auch ggf. Information
für den Benutzer verloren. Deshalb habe ich Möglichkeiten eingebaut die Ausgabe anzuhalten (per
Druck auf bestimmte Taste). Durch Betätigung bestimmter Tasten(kombinationen) werden dann
Ausgabestoppbedingungen eingestellt, die ab dann bis zur nächsten Änderung gelten:

Bei Tastendruck „am Prompt“ wird sofort die erste Taste ausgewertet, so ihr eine bestimmte Funktion
in einer Tabelle zugeordnet ist. Z.B.

Sh + ET - Verlassen des Programms,
ET - neues Prompt
/ - Direktausgabe der Zeichen an das Vdip
Sh +Clr - Befehlspuffer auf Bildschirm ausgeben (s. F3 bei DOS)
! - in den ECS-Modus schalten, falls Vdip im SCS-Modus ist.

Wird die 1. Taste nicht als „gelistet“ erkannt, erfolgt einfach weitere Bildschirmausgabe bis mit Enter
abgeschlossen wird. Dann wird der zwischen aktueller Cursorposition und letztem „davor liegenden“
Prompt liegende Text als Kommando, von führenden und anhängigen Leerzeichen gesäubert, in den
Befehlspuffer übernommen. Also so ein wenig a la Full-Screen-Editor. Ist nun das erste Zeichen im
Puffer ein Punkt „.“, so wird der gesamte String ohne weitere Aktionen direkt an das Vdip gegeben
und auf Antwort per Bildschirmausgabe gewartet in der Hauptschleife. Alle anderen Befehlsstrings
werden vom TINy erst mal analysiert: Vom Stringanfang bis zum ersten Leerzeichen oder Enter wird
die Zeichenkette mit einer Tabelle von Befehlen verglichen. Wird kein gelisteter Befehl erkannt, geht
der String zum Vdip. Entweder ist es ein dem Vdip bekannter „interner“ Befehl mit richtiger Syntax,
oder es erfolgt Fehlermeldung und man ist wieder in der Hauptschleife mit neuem Prompt.

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v7.jpg?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v8.jpg?id=tiny%3Aerweiterungen%3Avdip
http://picasaweb.google.de/unick59

Last update: 2010/07/15 22:00 tiny:erweiterungen:vdip https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 15:22

Damit lassen sich erst mal alle Grundfunktionen des Moduls nutzen, ein Speichern oder Laden von
Daten ist nun aber kein einzelner Befehl sondern setzt sich ja aus mehreren Schritten zusammen
(öffnen der Datei, ggf. Pointer setzen, Bytes lesen bzw. Schreiben, Datei schliessen…) Genau diese
Abfolgen sind die Befehle, die Vdip- extern in der TINY-Befehlstabelle gespeichert sind und also dann
sozusagen, wie ein Macro abgearbeitet werden.

An dieser Stelle ergab sich die Frage nach dem Dateiformat der abzuspeichernden Daten. Ich habe
prinzipiell unterschieden zwischen einem Headerlosen Format und einem Dateiformat in dem ein Kopf
mit zusätzlichen Informationen mit abgespeichert wird. Damit wird eine derartige Datei um 10H Bytes
länger und ich speichere die Information zur Herkunft der Daten -Anfangsadresse, Länge,
Speicherbank- und Page (da mein TINY dafür getrennte Speicherbereiche hat, Stichwort P34-
Einbeziehung in Adressdekodierung), sowie eine Startadresse ab. Ob die Datei einen Header hat, oder
nicht, wird durch die Dateinamenserweiterung verifiziert.

Momentan kennt mein TINY nun folgende:

*.dmp, *.bin - ohne Header
*.hex - mit Header, aber keine Startadresse
*. Exe, *.com, *.bas, *.fth, *.ox - Header incl. Startadresse.

Unbekannte Dateinamenserweiterungen werden als Headerbehaftet angesehen.

Für Datei-Speicheroperationen habe ich 3 Befehle implementiert:

SD ? interaktives Speichern aus dem externen Datenspeicher,
SP- analog SD für den aktuellen Programmspeicher
S_Dateiname.ext - setzt bei bekannten Erweiterungen, wie bas (BASIC), fth (FORTH) gültige
Vorgabewerte für Ablageadresse, Startadresse etc.

Analog existieren auch 3 Ladebefehle.

Bekannte Datei(-typen), die über ein Startadresse verfügen und per L_Dateiname.ext geladen
werden, werden dann ausgeführt. (das JUTE-Forth in 5 Sekunden geladen und gestartet ist schon ein
Vergnügen!)

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v9.jpg?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v10.jpg?id=tiny%3Aerweiterungen%3Avdip

2026/01/09 15:22 9/10 VDIP/USB am TINY

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

L_Dateiname.ox startet dann also auch ein auf dem Stick vorhandenes Betriebssystem.

Damit ist nun der Weg nicht mehr weit einfach dem Tiny per einzelnen Tastendruck im Grundmenue
zu sagen, nun lade mal schnell das Betriebssystem TINY.OX vom Stick, wenn du es findest, und starte
dich neu - bei mir jetzt Kommando „X“ im Grundmenue. Und nur ein kleiner Schritt weiter ist
logischerweise diesen Vorgang gleich beim Kaltstart zu erledigen und nur, wenn kein Stick vorhanden,
oder die benannte Datei fehlt, aus dem ROM zu starten. Also booten vom Stick.

Mit diesen Möglichkeiten arbeite ich nun schon eine Weile mit viel Spaß, habe mich inzwischen neuen
TINY_Projekten zugewandt und möchte den Komfort der schnellen Datenspeicherung nicht mehr
missen.

VGA-Anschluss und PC-Tastaturanschluss sind in der Zwischenzeit prinzipiell realisiert. Nach
Beseitigung der letzten Bugs, werde ich darüber berichten.

Hinweise für Verwendung des ROM-Images? Unterschiede zum Standard-TINY

weitere Bilder unter: http://picasaweb.google.de/unick59

Das ROM-Image läuft definitiv nicht ad hoc in einer Standard-Hardwareumgebung! D.h. es läuft schon,
nur es sind keine Tastatureingaben möglich, da ich zwecks Schaffung eines möglichst durchgehenden
RAM-Bereiches Alles, was I/O-Operationen anbelangt, in die obersten 2k „gepackt“ habe. In genau
diesem „System-RAM“-Bereich liegt also wie gehabt auch der Bildschirmspeicher, dort sind die BIOS-
Zellen, die RTC, die Adressen des Vinculum, Pufferspeicher für Flashroutinen etc… Für das
Ausprobieren im Emu von Jens Müller spielt es keine Rolle, deshalb empfehle ich für das „Mal schnell
angucken“ den Emu.

Die Software hat noch alpha-Status, also etliche Bugs, viel internen Müll. So die konkrete VDip-
Hardware nicht vorhanden ist, wird die Routine abgebrochen. Deshalb läuft das auch nicht im
Emulator.

In meinem System sind Daten und Programmspeicher getrennt (P34 =/DM). Bei den meisten
Menupunkten und Befehlen ist deshalb die Einstellmöglichkeit für eine Speicherbank und -seite
vorgesehen. Das bleibt im Emu und im Standard-Tiny also wirkungslos. Das reale System verfügt über

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v11.jpg?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/unickel_tiny_v12.jpg?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v13.gif?id=tiny%3Aerweiterungen%3Avdip
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/tiny/vdip_tiny_v14.gif?id=tiny%3Aerweiterungen%3Avdip
http://picasaweb.google.de/unick59

Last update: 2010/07/15 22:00 tiny:erweiterungen:vdip https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 15:22

„Bios-Merkzellen“, untergebracht in einer Echtzeituhr. Davon ausgehend werden beim Starten bzw.
nach Reset erst etliche Such- und Überprüfungsvorgänge ausgeführt, um ggf. ein im Datenspeicher
oder im EPROM des Programmspeichers abgelegtes Betriebssystem zu laden. Ich habe, wie schon
oben erwähnt, durchgehenden RAM-Bereich im Programmspeicher, lade das Betriebssystem aus
einem Festwertwertspeicher (EPROM, FLASH, Zeropower-RAM…) in den RAM. Das Starten dauert also
länger. Im Startbildschirm erscheint Datum und Uhrzeit. Im Emu hat auch das sonst keine
lauffähigkeitsbedingte Auswirkung. Da ich per Echtzeituhr-Steuerung einen blinkenden Cursor habe,
kann im Emu es vorkommen, dass er verschwunden ist.

Seit geraumer Zeit benutze ich schon einen Zilog als CPU. Ich habe mir das R-Kommando neu
geschrieben um auch an alle Register und alle Speicherbereiche ranzukommen. Ich musste
feststellen, dass das mit der Originalroutine nicht ganz klappt. Sie war ja auch für den 8830 gedacht.
Altes „R“ ist bei mir „H“. Der Aufruf der einzelner Befehle aus dem Hauptbildschirm erfolgt durch den
zugeordneten Buchstaben, wie gewohnt. Zwischen den Menuseiten wird mit + bzw. - umgeschaltet.
Der Start eines Programms erfolgt aus dem Grundmenue heraus mit „Cxxxx“. Dabei ist xxxx- Adresse
in Hex. Damit wird das umständliche Prog aufrufen, G adr eingeben, L adr eingeben verkürzt, ist aber
auch möglich.

Für alle weiteren Erklärungen - bei Interesse einfach nachfragen!

Uwe Nickel, 06/2009

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

Last update: 2010/07/15 22:00

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/tiny/erweiterungen/vdip

	VDIP/USB am TINY
	TINY und der USB-Stick - Experimente mit Vinculum Vdip. Erfahrungsbericht
	Eingrenzung
	Notwendige Hilfsmittel bei der Realisierung
	Vorüberlegungen und Grundlagen-Experimente
	TINY und Vinculum seriell
	Ist vielleicht SPI besser?
	Also doch Parallel?!
	Demzufolge also die Idee:
	Achtung! Wichtige Ergänzung im Nachhinein für zuverlässige Funktion:
	Und die Software?
	Hinweise für Verwendung des ROM-Images? Unterschiede zum Standard-TINY

