2026/01/14 20:20 1/17 CHIP-8-Interpreter

CHIP-8-Interpreter

Das ist der komplette(!) originale CHIP-8-Interpreter des COSMAC VIP. Quelle: VIPER-Magazin 1-02
August 1978.

Der CHIP-8-Interpreter ist extrem platzsparend programmiert, er belegt nicht einmal 0.5 KByte! Diese
Kompaktheit spiegelt sich beispielsweise auch in den Hex-Werten der Maschinencode-Instruktionen
wieder: Die Befehle der F-Gruppe haben einen zweistellige Nummer, diese entspricht der Startadresse
der zugehdrigen Befehlsinterpretation. Damit sparte man sich die Bytes fur eine zusatzliche
Sprungtabelle.

CDP 1802

Das Handbuch zum COSMAC VIP enthalt auch das Datenblatt zum Prozessor CDP 1802 incl.
Befehlsliste.

* http://visual6502.0rg/images/pages/RCA 1802.html riesiges Bild des Chips (7164 x 5496 Pixxel,
19 MByte!)

e http://www.visual6502.org/wiki/index.php?title=RCA_1802E 1082 Beschreibung

COSMAC Register Summary

D 8 Bits Data Register (Accumulator)
N 4 Bits Holds Low-Order Instr. Digit
DF 1 Bit Data Flag (ALU Carry)
I 4 Bits Holds High-Order Instr. Digit
R 16 Bits 1 of 16 Scratchpad Registers
RO.1 RO.0O
R1.1 R1.0
RF.1 RF.0
T 8 Bits Holds old X, P after Interrupt (X is high byte)
P 4 Bits Designates which register is Program Counter
zeigt auf Registerarray
IE 1 Bit Interrupt Enable
X 4 Bits Designates which register is Data Pointer
zeigt auf Registerarray
Q 1 Bit OQutput Flip Flop

instruction set

MNEM NAME OPCODE
ADC Add with Carry 74
ADCI b Add with Carry Immediate 7C bb
ADD Add F4
ADI b Add Immediate FC bb
AND Logical AND F2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

http://visual6502.org/images/pages/RCA_1802.html
http://www.visual6502.org/wiki/index.php?title=RCA_1802E

Last update: 2023/06/08 homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
ANI b AND Immediate FA bb
Bl a Branch on External Flag 1 34 aa
B2 a Branch on External Flag 2 35 aa
B3 a Branch on External Flag 3 36 aa
B4 a Branch on External Flag 4 37 aa
BDF a Branch if DF is 1 33 aa
BN1 a Branch on Not External Flag 1 3C aa
BN2 a Branch on Not External Flag 2 3D aa
BN3 a Branch on Not External Flag 3 3E aa
BN4 a Branch on Not External Flag 4 3F aa
BNF a Branch if DF is 0 3B aa
BNQ a Branch if Q is off 39 aa
BNZ a Branch on Not Zero 3A aa
BQ a Branch if Q is on 31 aa
BR a Branch unconditionally 30 aa
BZ a Branch on Zero 32 aa
DEC r Decrement Register 2r

DIS Return and Disable Interrupts 71

GHI r Get High byte of Register 9r

GLO r Get Low byte of Register 8r

IDL Idle 00

INC r Increment Register 1r

INP p Input to memory and D (for p =9 to F) 6p

IRX Increment R(X) 60

LBDF aa Long Branch if DF is 1 C3 aaaa
LBNF aa Long Branch if DF is O CB aaaa
LBNQ aa Long Branch if Q is off C9 aaaa
LBNZ aa Long Branch if Not Zero CA aaaa
LBQ aa Long Branch if Q is on Cl aaaa
LBR aa Long Branch unconditionally CO aaaa
LBZ aa Long Branch if Zero C2 aaaa
LDA r Load D and Advance 4r

LDI b Load D Immediate F8 bb
LDN r Load D via N (for r = 1 to F) or

LDX Load D via R(X) FO

LDXA Load D via R(X) and Advance 72

LSDF Long Skip if DF is 1 CF

LSIE Long Skip if Interrupts Enabled CC

LSKP Long Skip Cc8

LSNF Long Skip if DF is 0 Cc7

LSNQ Long Skip if Q is off C5

LSNZ Long Skip if Not Zero (67)

LSQ Long Skip if Q is on CDh

LSZ Long Skip if Zero CE

MARK Save X and P in T 79

NOP No Operation C4

OR Logical OR F1

ORI b OR Immediate F9 bb
OUT p Output from memory (for p =1 to 7) 6p

PHI r Put D in High byte of register Br

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/14 20:20

2026/01/14 20:20

3/17 CHIP-8-Interpreter

PLO r Put D in Low byte of register Ar
REQ Reset Q 7A
RET Return 70
SAV Save T 78

SD Subtract D from memory F5
SDB Subtract D from memory with Borrow 75
SDBI b Subtract D with Borrow, Immediate 7D bb
SDI b Subtract D from memory Immediate byte FD bb
SEP r Set P Dr
SEQ Set Q 7B
SEX r Set X Er
SHL Shift D Left FE
SHLC Shift D Left with Carry 7E
SHR Shift D Right F6
SHRC Shift D Right with Carry 76
SKP Skip one byte 38

SM Subtract Memory from D F7
SMB Subtract Memory from D with Borrow 77
SMBI b Subtract Memory with Borrow, Immediate 7F bb
SMI b Subtract Memory from D, Immediate FF bb
STR r Store D into memory 5r
STXD Store D via R(X) and Decrement 73
XOR Exclusive OR F3
XRI b Exclusive OR, Immediate FB bb
Interpreter

2023: s.a. https://laurencescotford.com/chip-8-on-the-cosmac-vip-index/ An in-depth disassembly and
analysis of the original CHIP-8 interpreter on the COSMAC VIP.

0000: 91
page no.
0001: BB
0002: FF
0004: B2
0005: B6
0006: F8
0008: A2
where Y=
0009: F8
000B: Bl
000C: F8

; J.W. Wentworth's Analysis of VIP CHIP 8 Interpreter

; retyped vpl30331

cpu 1802

; '*' before opcode marks branch destination

GHI R1
as determined
PHI RB
01 SMI 01h
PHI R2
PHI R6
CF LDI CF
PLO R2
X-1)
81 LDI 81h
PHI Rl
46 LDI 46h

’

’

; OX -> RB.1 (where 0X is then highest memory

; by Operating System) -- designates display page

; 0X-1 -> R2.1 (stack pointer)
0X-1 -> R6.1 (VX pointer)
CF -> R2.0 (stack pointer set to OYCF,

; Set R1 (PC for Interrupt Routine) to 8146

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://laurencescotford.com/chip-8-on-the-cosmac-vip-index/

Last update: 2023/06/08 homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
000E: Al PLO R1
000F: 90 GHI RO ; Pre-set R4 to 001B in preparation for
assignment as PC
0010: B4 PHI R4
0011: F8 1B LDI 1Bh
0013: A4 PLO R4
0014: F8 01 LDI 01h ; 01 -> R5.1
0016: B5 PHI R5
0017: F8 FC LDI FC ; FC -> R5.0 (R5 now set to O1FC; will serve
as PC for CHIP-8
0019: A5 PLO R5 ; instructions, commencing with two
instructions included on page 01
001A: D4 SEP R4 ; 4 -> P (R4 becomes PC at this point)
; FETCH AND DECODE ROUTINE
001B: 96 * GHI R6 ; 0Y -> R7.1 (high byte of VY pointer)
001C: B7 PHI R7
001D: E2 SEX R2 ;2 > X
001E: 94 GHI R4 ; 00 -> RC.1
001F: BC PHI RC
0020: 45 LDA R5 ; Load by R5 and advance (Fetch first byte of
Chip-8 Instruction)
0021: AF PLO RF ; Put in RF.0 (temporary storage)
0022: F6 SHR ; Shift right 4 times (MSD to LSD position)
0023: F6 SHR
0024: F6 SHR
0025: F6 SHR
0026: 32 44 BZ 44h ; If D=0 (i.e., if Op Code digit is zero),
branch to 0044
0028: F9 50 ORI 50h ; OR Immediate with 50
002A: AC PLO RC ; Put in RC.0 (RC now points to 005a, where "a" is
MSD of CHIP-8 Instruction)
002B: 8F GLO RF ; Get RF.0 (high byte of instruction)
002C: FA OF ANI OFh ; AND with OF, OR with FO (thus forming byte Fb,
where "b" is the second
002E: F9 FO ORI FO ; hex digit in the CHIP-8 Instruction, used in some
instructions to designate VX)
0030: A6 PLO R6 ; Put in R6.0 (R6 becomes VX pointer)
0031: 05 LDN R5 ; Load via R5 (second byte of CHIP-8 Instruction)
0032: F6 SHR ; Shift right 4 times
0033: F6 SHR
0034: F6 SHR
0035: F6 SHR
0036: F9 FO ORI FO ; OR with FO
0038: A7 PLO R7 ; and put in R7.0 (sets VY pointer)
0039: 4C LDA RC ; Load via RC and advance (Loads high byte of
address for appropriate subroutine)
003A: B3 PHI R3 ; Put in R3.1
003B: 8C GLO RC ; Get RC.0 (=5(a+l))

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/14 20:20

2026/01/14 20:20

5/17 CHIP-8-Interpreter

; Add OF, put in RC.0 (points to low byte of start

subroutine to execute CHIP-8 Instruction)
Load via RC

Put in R3.0

Call subroutine designated by first digit of
Zero)

; Branch to 001B to fetch next instruction

FOR FIRST DIGIT 0

003C: FC OF ADI OFh
address for appropriate
003E: AC PLO RC ;
003F: 0C LDN RC ;
0040: A3 * PLO R3 ;
0041: D3 SEP R3 ;
CHIP-8 Instruction (if not
0042: 30 1B * BR 1Bh

; ROUNTINE
0044: 8F * GLO RF ;
0045: FA OF ANI OFh
0047: B3 PHI R3 ;
found)
0048: 45 LDA R5 ;
0049: 30 40 BR 40h

Get RF.0 (high byte of instruction)
; AND with OF to save LSD only
Put in R3.1 (select page on which subroutine will

Load via R5 and advance (2nd byte of inst.)
; Branch to 0040 to call subroutine (OOEO for

erase page, OO0EE for return from
; subroutine, OMMM for machine-language subroutine)
004B: 22 DEC R2 ; Decrement R2 (stack pointer)
004C: 69 INP 1h ; Turn display ON (interrupts will occur,
controlled by routine at 8146)
004D: 12 INC R2 ; Increment R2
004E: D4 SEP R4 ; return to 0042
004F: 00 IDL ; Filler
0050: 00 IDL ; Filler
0051: 01 db 1 ; High bytes for pointer to start of subroutines
selected by first digit
0052: 01 db 1 ; of CHIP 8 instructions (1 through F)
0053: 01 db 1
0054: 01 db 1
0055: 01 db 1
0056: 01 db 1
0057: 01 db 1
0058: 01 db 1
0059: 01 db 1
005A: 01 db 1
005B: 01 db 1
005C: 01 db 1
005D: 00 db 0
005E: 01 db 1
005F: 01 db 1
0060: 00 IDL ; Filler
; ; Low Bytes for subroutine pointers
0061: 7C db 7Ch ;1 -> 017C
0062: 75 db 75h ; 2 -> 0175
0063: 83 db 83h ; 3 -> 0183

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08

12:41

homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

8Bh
95h
0B4h
0B7h
0BCh
91h
OEBh
0A4h
0D9h
70h
99h
05h

-> 018B
-> 0195
-> 01B4
-> 01B7
-> 01BC
-> 0191
-> 01EB
-> 01A4
-> 01D9
-> 0070
-> 0199
-> 0105

> O 00 ~NO Ul b~

MmO O W

SUBROUTINE (1st Digit = D)

R6
07h
RE
R6
3Fh

R2
R2
R7
1Fh

~=

RC
RB

RC
R5

OF

RD
R7
DO
R6
R3
RF
R7

0064: 8B db
0065: 95 db
0066: B4 db
0067: B7 db
0068: BC db
0069: 91 db
006A: EB db
006B: A4 db
006C: D9 db
006D: 70 db
006E: 99 db
006F: 05 db
; DISPLAY
0070: 06 * LDN
0071: FA 07 ANI
0073: BE PHI
0074: 06 LDN
0075: FA 3F ANI
0077: F6 SHR
0078: F6 SHR
0079: F6 SHR
007A: 22 DEC
007B: 52 STR
007C: 07 LDN
007D: FA 1F ANI
007F: FE SHL
0080: FE SHL
0081: FE SHL
0082: F1 OR
0083: AC PLO
0084: 9B GHI
start address
0085: BC PHI
0086: 45 LDA
CHIP 8 instruction
0087: FA OF ANI
pattern)
0089: AD PLO
008A: A7 PLO
008B: F8 DO LDI
008D: A6 PLO
008E: 93 * GHI
008F: AF PLO
0090: 87 GLO
(when branch occurs,
0091: 32 F3 BZ

F3

commencing at QYDO)

; Load by R6 (VX)
; Put last 3 bits in RE.1

; Load by R6

; AND with 3F (save lower 6 bits)
; shift right 3 times (save middle 3 digits)

; Decrement Stack
; Store in Stack
; Load via R7 (VY)
; AND with 1F (save 5 lowest bits)
; shift left 3 times

OR with top of stack
; Put Result in RC.0
; Get RB.1, put in RC.1 (0X) -- RC now points to

; of first byte of pattern
; Load via R5 and advance -- fetches 2nd byte of

; Put LSD in both RD.O and R7.0 (No. of bytes in

; DO -> R6.0
; 00 -> RF.0
; Get R7.0 (No. of bytes); branch if D=0 to 0O0F3

; display bytes have been processed and stored

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/14 20:20

2026/01/14 20:20

7/17 CHIP-8-Interpreter

0093: 27 DEC R7 ; Decrement R7
0094: 4A LDA RA ; Load via RA (I pointer) and advance (Loads
display byte)
0095: BD PHI RD ; Put in RD.1
0096: 9E GHI RE ; Get RE.1 (3 LSB's of VX), Put in RE.O
0097: AE PLO RE
0098: 8E GLO RE ; Get RE.O; if D=0, branch to 00A4 (When branch
occurs, display bytes
0099: 32 A4 BZ A4 ; will have been split into two parts in the event
that display address
; did not coincide with as memory byte address)
009B: 9D GHI RD ; Get RD.1,
009C: F6 SHR ; shift right,
009D: BD PHI RD ; and return to RD.1 (left portion of split diplay
byte)
009E: 8F GLO RF ; Get RF.0,
009F: 76 SHRC ; ring shift right (picking up carry, if any, from
step 009C),
00AO: AF PLO RF ; return to RF.0 -- thes instructions form right
portion of split display byte.
00Al1: 2E DEC RE ; Decrement RE
00A2: 30 98 BR 98 ; Branch to 0098
00A4: 9D * GHI RD ; Get RD.1 (left portion of split diplay byte)
00A5: 56 STR R6 ; and store via R6
00AG: 16 INC RGO ; Increment R6
00A7: 8F GLO RF ; Get RF.0 (right portion of split diplay byte)
00A8: 56 STR R6 ; and store via R6
00A9: 16 INC RG6 ; Increment R6
00AA: 30 8E BR 8E ; Branch to 008E
00AC: 00 * IDL ; Wait for display interrupt
00AD: EC SEX RC ; C -> X (C points to start address for first new
byte in display page)
OOAE: F8 DO LDI DO ; DO -> R6.0 (points to first processed display
byte)
00BO: A6 PLO R6
00B1: 93 GHI R3 ; 00 -> R7.0 (R7.0 will be used as a marker for
"collisions"
00B2: A7 PLO R7 ; between new and existing pattern)
00B3: 8D * GLO RD ; Get RD.O (no. of bytes remaining);
00B4: 32 D9 BZ D9 ; 1f D=0, branch to 00D9
00B6: 06 LDN RG6 ; Load via R6 (processed display byte)
00B7: F2 AND ; AND with contents at current address in pattern
on display page
00B8: 2D DEC RD ; Decrement RD
00B9: 32 BE BZ BE ; 1f D=0 (i.e., no "collision" occurs) branch to
00BE
00BB: F8 01 LDI 01 ; 01 -> R7.0 (marker to indicate that a "collision"
has occured)
00BD: A7 PLO R7

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08

homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
OOBE: 46 * LDA R6 ; Load via R6 (processed display byte)

00BF: F3 XOR ; XOR with existing byte

00C0O: 5C STR RC ; Store via RC (in display page)

00C1l: 02 LDN R2 ; Load from top of stack (3 LBS's of display page
address),

00C2: FB 07 XRI 07 ; XOR with 07;

00C4: 32 D2 BZ D2 ; 1f result is zero, branch to 00D2 (display

pattern is at

.
’

right-hand edge of display "window")

to

’

.
’

00B3

.
’

’

’

» Increment RC

Load via R6 (right portion of processed diplay
AND via R6 (existing contents of display page
branch if result is zero (i.e., if there is no

01 -> R7.0 (marker to indicate that a "collision"

Load via R6,
XOR with contents already present at designated

page, and store via RC (on display page)
Decrement RC

Increment R6

Get RC.0O,

Add 08,

and return to RC.0

if DF=0 (i.e., if next byte location remains on

FF -> R6.0 (R6 points to Variable F)

: Increment stack
; Return to FETCH routine at 0042

; ERASE DISPLAY PAGE -- Inst. OQOEO

00C6: 1C INC RC
00C7: 06 LDN R6
byte),

00C8: F2 AND
address) ;

00C9: 32 CE Bz CE
"collision") to OOCE
00CB: F8 01 LDI 01
has occured)

00CD: A7 PLO R7
00CE: 06 * LDN R6
00CF: F3 XOR
address of display
00D0: 5C STR RC
00D1: 2C DEC RC
00D2: 16 * INC R6
00D3: 8C GLO RC
00D4: FC 08 ADI 08
00D6: AC PLO RC
00D7: 3B B3 BNF B3
display page), branch
00D9: F8 FF * LDI FF
00DB: A6 PLO R6
00DC: 87 GLO R7
00DD: 56 STR R6
OODE: 12 INC R2
0ODF: D4 * SEP R4
OOEO: 9B GHI RB
OOEl: BF PHI RF
00E2: F8 FF LDI FF
O0E4: AF PLO RF
0O0E5: 93 * GHI R3
00E6: 5F STR RF
OOE7: 8F GLO RF
OOE8: 32 DF BZ DF
OOEA: 2F DEC RF
OOEB: 30 E5 BR E5

0X -> RF.1

FF -> RF.0

00 -> D

Store via RF

Get RF.0;

if zero, branch to OODF for exit to FETCH
Decrement RF

Branch to OOE5

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/14 20:20

2026/01/14 20:20

9/17 CHIP-8-Interpreter

OOED: 00 IDL c
OOEE: 42 LDA R2 o
OOEF: B5 PHI R5 o
00F0: 42 LDA R2 o
OOF1: A5 PLO R5 ;
instruction)
O0F2: D4 SEP R4 o
; PART OF
OOF3: 8D * GLO RD o
O0F4: A7 PLO R7 g
OOF5: 87 * GLO R7 o
00F6: 32 AC Bz AC o
(I Pointer)
00F8: 2A DEC RA o
00F9: 27 DEC R7 o
OOFA: 30 F5 BR F5 o
OOFC: 00 IDL c
OOFD: 00 IDL
OOFE: 00 IDL
OOFF: 00 IDL
0100: 00 IDL
0101: 00 IDL
0102: 00 IDL
0103: 00 IDL
0104: 00 IDL
; FINAL DECODING OF
0105: 45 LDA R5 ;
instruction)
0106: A3 PLO R3 o
; Instruction FX07
0107: 98 GHI RS8 5
0108: 56 STR RG6 o
0109: D4 SEP R4 5
; Instruction FXOA
010A: F8 81 LDI 81 o
010C: BC PHI RC
0160D: F8 95 LDI 95
010F: AC PLO RC

Filler

; INST. OOEE -- Return from Subroutine

Load from stack and advance,

put in R5.1

Load from stack and advance,

put in R5.0 (R5 now points to next CHIP 8

; Return to FETCH routine at 0042

DISPLAY SUBROUTINE

Get RD.O (remaining no. of bytes in pattern),
put in R7.0

Get R7.0;

if zero, branch to 00AC (When branch occurs, RA

; will have returned to its initial value)
; Decrement RA

; Decrement R7

; Branch to OOF5

Fillers

"F" instructions
Load via R5 and advance (2nd byte of CHIP 8
put in R3 (go to designated address)
(Let VX = Timer)
Get R8.1
Store via R6 (i.e., as VX)
Return to 0042

(Let VX = Hex Key)

RC = 8195 (keyboard scanning subroutine)

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08

homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
0110: 22 DEC R2 ; Decrement stack pointer
0111: DC SEP RC ; Call keyboard scanning subroutine at 8195 (key
entry is in D upon return)
0112: 12 INC R2 ; Increment stack pointer
0113: 56 STR R6 ; Store via R6 (i.e., as VX)
0114: D4 SEP R4 ; Return to 0042
; Instruction FX15 (Set Timer to VX)
0115: 06 LDN R6 ; Load via R6 (loads VX),
0116: B8 PHI RS ; put in R8.1
0117: D4 SEP R4 ; Return to 0042
; Instruction FX18 (Set tone duration = VX)
0118: 06 LDN R6 ; Load via R6 (loads VX)
0119: A8 PLO RS8 ; Put in R8.0 (tone timer)
011A: D4 SEP R4 ; Return to 0042
; Constants needed for Instruction FX33
011B: 64 * db 100
011C: OA db 10
011D: 01 db 1
; Instruction FX1E
011E: E6 SEX R6 ;6 -> X
011F: 8A GLO RA ; Get RA.O
0120: F4 ADD ; Add VX
0121: AA PLO RA ; Put in RA.0 (as updated I pointer)
0122: 3B 28 BNF 28 ; If DF=0 (i.e., if updated I remains on the same
memory page), branch to 0128
0124: 9A GHI RA ; Increment RA.1
0125: FC 01 ADI 01
0127: BA PHI RA
0128: D4 * SEP R4 ; Return to 0042
; Instruction FX29 (Let I = 5-byte diplay pattern for LSD of VX)
0129: F8 81 LDI 81 ; 81 -> RA.1
012B: BA PHI RA
012C: 06 LDN R6 ; Load via R6 (VX)
012D: FA OF ANI OF ; AND with OF (save last digit),
012F: AA PLO RA ; put in RA.O
0130: OA LDN RA ; Load via RA (start address for 5-byte pattern of
hex digit),
0131: AA PLO RA ; put in RA.O
0132: D4 SEP R4 ; Return to 0042

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/14 20:20

2026/01/14 20:20

11/17 CHIP-8-Interpreter

; Instruction FX33

0133: E6 SEX R6
0134: 06 LDN R6
0135: BF PHI RF
0136: 93 GHI R3
0137: BE PHI RE
0138: F8 1B LDI 1B
013A: AE PLO RE
013B: 2A DEC RA
013C: 1A * INC RA
into pgm loop,
; but

013D: F8 00 LDI 00
013F: 5A STR RA
0140: OE * LDN RE
0141: F5 SD
0142: 3B 4B BNF 4B
0144: 56 STR R6
0145: OA LDN RA
RA (= I Pointer)
0146: FC 01 ADI 01
0148: 5A STR RA
0149: 30 40 BR 40
014B: 4E * LDA RE
014C: F6 SHR
014D: 3B 3C BNF 3C
not been processed),
014F: 9F GHI RF
0150: 56 STR R6
0151: 2A DEC RA
0152: 2A DEC RA
0153: D4 SEP R4
0154: 00 IDL

; Instruction
0155: 22 DEC R2
0156: 86 GLO R6
0157: 52 STR R2
0158: F8 FO LDI FO
015A: A7 PLO R7
015B: 07 * LDN R7
015C: 5A STR RA
015D: 87 GLO R7
015E: F3 XOR
015F: 17 INC R7
0160: 1A INC RA
0161: 3A 5B BNZ 5B

’

’

neede

’

14
;S

i

’

’

’

’
’

’

’
branch

’

’

’

: load via RE (Decimal 100,

; If DF=0 (i.e.,if decimal 100's,

(Let MI = 3-decimal digit equivalent of VX)
6 -> X

Load via R6 (VX),

put in RF.1

01 -> RE.1

1B -> RE.0 (RE = 011B)

, Decrement RA
; Increment RA (cancels prev. step upon first entry

d in later "passes" around the loop}

; Store 00 via RA (I pointer)

10 or 1)
ubtract from M(R6) -- i.e., subtract from YX

Branch if Minus to 014B

; Store result via R6
; Increment memory location contents pointed to by

: Branch to 0140
; load via RE and advance
; Shift Right

10's and 1's have
to 013C
Get RF. 1 (original value of VX)

; Stcre via R6 (restores original value of VX)
; Decrement RA twice

Return to 0042
Filler
(Let MI = VO:VX)

Decrement stack pointer
Get R6.0 (pointer for VX),
and store in stack

FO -> R7.0

Load via R7

Store via RA (I pointer)

Get R7.0

XOR with top of stack (VX pointer)
Increment R7

Increment RA

If D<>0 (i.e., if R7 at Step 5E has not yet

reached value of YX pointer), branch to 015B

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08 homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
0163: 12 INC R2 ; Increment stack pointer
0164: D4 SEP R4 ; Return to 0042
; Instruction FX65 (Let VO:VX = MI)
0165: 22 DEC R2 ; Decrement stack pointer
0l66: 86 GLO R6 ; Get R6.0 (pointer for VX)
0167: 52 STR R2 ; Store in stack
0168: F8 FO LDI FO ; FO -> R7.0
016A: A7 PLO R7
016B: OA * LDN RA ; Load via RA (i.e., via I)
0l16C: 57 STR R7 ; Store via R7
0leD: 87 GLO R7 ; Get R7.0
016E: F3 XOR ; XOR with top of stack (VX pointer)
0l16F: 17 INC R7 ; Increment R7
0170: 1A INC RA ; Increment RA
0171: 3A 6B BNZ 6B ; If D<>0 (i.e., if R7 at Step 6E has not yet
reached value of YX pointer), branch to 016B
0173: 12 INC R2 ; Increment stack pointer
0174: D4 SEP R4 ; Return to 0042
; Instruction 2MMM (do subroutine at MMM)
0175: 15 INC R5 ; Increment R5 (point to next CHIP 8 instruction
after return)
0176: 85 GLO R5 ; Get R5.0
0177: 22 DEC R2 ; Decrement stack pointer
0178: 73 STXD ; Store in stack and decrement
0179: 95 GHI R5 ; Get R5.1
017A: 52 STR R2 ; Store in stack
017B: 25 DEC R5 ; Decrement R5 (points to low byte of current
instruction)
017C: 45 LDA R5 ; Load via R5 and advance
017D: A5 PLO R5 ; Put in R5.0
017E: 86 GLO RG6 ; Get R6.0 (contains 2nd digit of current
instruction)
017F: FA OF ANI OF ; AND with OF (save 2nd digit of Chip 8
instruction)
0181: B5 PHI R5 ; and put in R5.1 (R5 now points to first
instruction of subroutine commencing at OMMM)
0182: D4 * SEP R4 ; Return to 0042
; Instruction 3XKK (Skip if VX=KK)
0183: 45 LDA R5 ; Load by R5 and advance (KK -> D)
0184: E6 * SEX R6 ; 6 -> X
0185: F3 XOR ; XOR (operands are KK and VX)
0186: 3A 82 BNZ 82 ; IfT D <> 0 (i.e., if VX <> KK), branch to 0182
0188: 15 * INC R5 ; Increment R5 twice (causing skip of next Chip 8
instruction)

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/14 20:20

2026/01/14 20:20

13/17 CHIP-8-Interpreter

0189: 15 INC R5
018A: D4 SEP R4
; Instruction
018B: 45 LDA R5
018C: E6 * SEX R6
018D: F3 XOR
018E: 3A 88 BNZ 88
0190: D4 SEP R4
; Instruction
0191: 45 LDA R5
0192: 07 LDN R7
0193: 30 8C BR 8C

’

4XKK

: Return to 0042

(Skip if VX<>KK)

Load by R5 and advance (KK -> D)
6 -> X

XOR (operands are KK and VX)

If D <> 0, branch to 0188
Return to 0042

(Skip if VK<>VY)
Load by R5 and advance

Load by R7 (VY -> D)
Branch to 018C {operands for subsequent XOR

operation will be VY and VX)

; Instruction 5XY0O (Skip if VK=VY)

0195: 45 LDA
0196: 07 LDN
0197: 30 84 BR

R5
R7
84

.
’
’

.
’

Load by R5 and advance
Load by R7 (VY -> D)
Branch to 0184 {operands for subsequent XOR

operation will be VY and VX)

; Instruction EX9E (Skip if VX=Key)
(Skip if VX<>Key)

; and EX91
0199: EG6 SEX
019A: 62 ouT
019B: 26 DEC
019C: 45 LDA
into D)
019D: A3 PLO
O19E: 36 88 B3

down) go to 0188

01A0: D4 SEP
©1A1: 3E 88 BN3
pressed),

01A3: D4 SEP

R6
2

R6
R5
R3
88
R4
88

R4

’

; Output VX to keyboard latch,

I

’

branch to 0188

’

; Instruction BMMM

01A4: F8 FO LDI
01A6: A7 PLO
01A7: E7 SEX
01A8: 45 LDA
instruction)

01A9: F4 ADD

FO
R7
R7
R5

’

-6 -> X

increment R6
Decrement R6 (cancel advance of prev 0 step)

; Load by R5 and advance (either 9E or Al is loaded

Put in R3 (go to designated address)
if EF3 = 1 (i.e., if key matching LSD of VX is
Return to 0042

If EF3 = 0 (hex key matching LSD of VX not

: Return to 0042

(Go to OMMM + VO)
FO -> R7.0 (R7 points to VO)

7 -> X
Load by R5 and advance (Loads 2nd byte of

; Add VO

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08

homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
01AA: A5 PLO R5 ; Put in R5.0
01AB: 86 GLO RG6 ; Get LSD af R6.0 (2nd digit of instruction)
01AC: FA OF ANI OF
O1AE: 3B B2 BNF B2 ; If DF=0 (i.e., if there was no carry from
addition operation at Step A9), branch to 0182
01BO: FC 01 ADI 01 ; Add 01
01B2: B5 PHI R5 ; Put in R5.1
01B3: D4 SEP R4 ; Return to 0042

; Instruction 6XKK (Let VX = KK)
01B4: 45 LDA R5 ; Load by R5 and advance (KK -> D)
01B5: 56 STR R6 ; Store via R6 (as VX)
01B6: D4 SEP R4 ; Return to 0042

; Instruction 7XKK (Let VX = VX+KK)
01B7: 45 LDA R5 ; Load by R5 and advance (KK -> D)
01B8: E6 SEX R6 16 -> X
01B9: F4 ADD ; Add (D = VX+KK)
01BA: 56 STR R6 ; Store via R6 (as updated VX)
01BB: D4 SEP R4 ; Return to 0042

; Instruction 8XYN (ALU operations with VX and VY as operands)
01BC: 45 LDA R5 ; Load by R5 and advance (Loads 2nd byte of
instruction)
01BD: FA OF ANI OF ; AND with OF (save 2nd digit)
01BF: 3A C4 BNZ C4 ; If D<>0, branch to 01C4
01C1: 07 LDN R7 ; load by R7 (VY -> D)
01C2: 56 STR R6 ; Store via R6 (as VX)
01C3: D4 SEP R4 ; Return to 0042
01C4: AF * PLO RF ; Put in RF.0O
01C5: 22 DEC R2 ; Decrement stack pointer
01C6: F8 D3 LDI D3 ; D3->D
01C8: 73 STXD ; Store in stack and decrement
01C9: 8F GLO RF ; Get RF.0 (last digit of instruction)
01CA: F9 FO ORI FO ; OR with FO (forms an instruction code in the ALU
group

; --codes Fl1, F2, F3, F4, F5, F6, F7 and FE are valid}

01CC: 52 STR R2 ; Store in stack (stack now holds a 2-instruction
routine)
01CD: E6 SEX R6 ;6 -> X
01CE: 07 LDN R7 ; Load by R7 (VY -> D)
01CF: D2 SEP R2 ; 2 -> D (calls routine developed in stack)
01D0O: 56 STR R6 ; Store result via R6 (as VX)
01D1: F8 FF LDI FF ; FF -> R6.0 (points to VF)
01D3: A6 PLO R6
01D4: F8 00 LDI 00 ; 00 -> D

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/14 20:20

2026/01/14 20:20 15/17 CHIP-8-Interpreter

01D6: 7E SHLC ; Ring Shift Left (moves OF to LSB)
01D7: 56 STR R6 ; Store via R6 (as VF)
01D8: D4 SEP R4 ; Return to 0042

; Instruction CXKK (Let VX = Random Byte, masked by KK)

01D9: 19 INC R9 ; Increment R9
O1DA: 89 GLO R9 ; Get R9.0, put in RE.O (NOTE: R9 is a special
pointer for this random-number

; generator, and is incremented once for every TV scan by
the interrupt routine.)

01DB: AE PLO RE

01DC: 93 GHI R3 ; 01 -> RE.1

01DD: BE PHI RE ; (RE now points to some byte on memory page 01)
O1DE: 99 GHI R9 ; Get R9.1 (Random byte resulting from last
previous use of this instruction)

01DF: EE SEX RE i E -> X

01EQ: F4 ADD ; Add byte pointed to by RE

O1El: 56 STR R6 ; Store via R6

01E2: 76 SHRC ; Ring shift right

01E3: E6 SEX R6 ; 6 -> X

01E4: F4 ADD ; Add original byte formed at Step O1lEO to its
ring-shifted version

01E5: B9 PHI R9 ; Put in R9.1 (as starting point for next use of
this instruction)

01E6: 56 STR R6 ; Store via R6 (byte still un-masked)

01E7: 45 LDA R5 ; Load via R5 and advance (loads 2nd byte of Ch ip
8 instruction, KK)

01E8: F2 AND ; AND with byte pointed to by R6

01E9: 56 STR R6 ; Store result via R6 (as VX)

O1EA: D4 SEP R4 ; Return to 0042

; Instruction AMMM (Let I = OMMM)

01EB: 45 LDA R5 ; Load by R5 and advance (2nd byte of instruction)
O1EC: AA PLO RA ; Put in RA.O

O1lED: 86 GLO R6 ; Get R6.0

OlEE: FA OF ANI OF

01F0: BA PHI RA ; Put 2nd digit in RA.1
01F1: D4 SEP R4 ; Return to 0042

01F2: 00 IDL ; Fillers

01F3: 00 IDL

01F4: 00 IDL

O01F5: 00 IDL

01F6: 00 IDL

01F7: 00 IDL

01F8: 00 IDL

01F9: 00 IDL

O1FA: 00 IDL

O1FB: 00 IDL

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2023/06/08 homecomputer:chip8:chip8interpreter https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

12:41
; Preliminary CHIP 8 instructions to precede every CHIP 8 programm

O1FC: 00 EO * dw 00EO ; calls routine at OOEO to erase display page

O1lFE: 00 4B dw 004B ; calls routine at 0042 to turn on display

END
; SUMMARY OF REGISTER FUNCTIONS IN CHIP 8 PROGRAMS

; Initial Setting
; RO DMA Pointer e

; R1 Program Counter (PC) for Interrupt Routine 8146

; R2 Stack Pointer OYCF

; R3 PC for Interpreter Subroutines ----

; R4 PC for Interpreter FETCH AND DECODE routine 001B

; R5 Pointer for CHIP 8 Instructions O1FC

; R6 VX Pointer: in DXYN (Display) Instructions, also serves oyY--*
; as pointer for processed display bytes, later as VF pointer

; R7 VY Pointer for instructions involving VY; VO Pointer for oY--*

; BMMM Instructions; R7.0 is a "scratch pad" register in

; DXYN, FX55 and FX65 Instructions

; R8 Timers controlled by Interrupt Routine (R8.1 is a generalpurpose ----
; timer: R8.0 is a tone and de-bounce timer)

; R9 Special Pointer and "Scratch Pad" used in Random Number ----

; Generally utilized in CXKK Instructions--changed by

; Interrupt Routine

; RA I Pointer for CHIP 8 Instructions ----

; RB RB.1 is Display Page Pointer: RB.0 is "Scratch Pad" for 0Y--*
; Interrupt Routine
; RC Temporary Pointer for FETCH AND DECODE Routine; 00- -

; Destination Address Pointer for DXYN Instructions; PC for

; Keyboard Scanning Subroutine in FXOA Instructions.

; RD Both Sections Used as "Scratch Pad" Registers in DXYN ----

; (Display Instruetions)

; RE Pointer for Constants Needed in FX33 Instructions: RE.1 ----
; is a "Scratch Pad" Register for DXYN (Display) Instructions

; RF Display Page Address Pointer for OOE®@ (Erase) Instructions; ----
; RF.0 Used as "Scratch Pad" in FETCH AND DECODE

; Routine and also in DXYN Instructions

; NOTE: Registers available for machine-language subroutines are R7, RC,
; RD, RE and RF, but subroutines themselves must provide any initial
settings

; required--CHIP 8 instructions may alter these register settings, as
indicated

; above.

; ¥: In basic VIP system with 2K RAM, 0X = 07 and 0Y = 06. In general,

; 0X, is highest memory page and 0Y = 0X-1.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/14 20:20

2026/01/14 20:20 17/17 CHIP-8-Interpreter

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

Last update: 2023/06/08 12:41

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/chip8/chip8interpreter

	CHIP-8-Interpreter
	CDP 1802
	Interpreter

