
2026/02/18 05:55 1/6 Monitor

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Monitor

Der Monitor des Amateurcomputers meldet sich mit der Überschrift „AC 1 U 880 - MONITOR V 3.1“,
dem Promptsymbol # (Doppelkreuz) und dem dahinter blinkendem Cursor am Anfang der
Eingabezeile. Ein Promptsymbol soll dem Bediener zeigen, daß der Computer bereit ist, eine Eingabe
oder einen Befehl entgegenzunehmen und darauf entsprechend seinem Programm zu reagieren. Zur
besseren Unterscheidung der Programme, in denen man sich gerade befindet, verwendet man meist
verschiedene Promptsymbole. So benutzt der Mini-Basic-Interpreter z.B. ein > (größer als) als
Promptsymbol. Jeder Befehl wird dem Monitor in Form einer Kommandozeile übergeben, die die Form
# X aaaa bbbb cccc CR (Wagenrücklauf) hat. X ist hierbei ein Zeichen aus dem ASCII-Zeichensatz, mit
dem der Befehl abgekürzt wird. Diese Abkürzung basiert meist auf einem Schlüsselwort in englischer
Sprache. aaaa, bbbb und cccc stellen drei maximal vierstellige hexadezimale Argumente zum Befehl
dar. Führende Nullen in den Argumenten dürfen weggelassen werden. Die einzelnen Argumente sind
durch mindestens ein Leerzeichen voneinander zu trennen. Zwischen dem Kennzeichen und dem
ersten Argument braucht kein Leerzeichen zu stehen; es schadet aber nicht. Werden weniger
Argumente angegeben, als der Befehl erfordert, so wird für die fehlenden der Wert 0 angenommen.
Das Kommando gelangt erst durch Drücken der CR-Taste zur Analyse und Ausführung zum Rechner:
das heißt also, bis dahin kann die Eingabe mit Hilfe der Backspacetaste (Rückschritt) noch korrigiert
bzw. verändert werden. Ist der Befehl falsch oder nicht im Monitor enthalten, so quittiert der
Computer die Eingabe mit der Ausschrift WHAT #. Fügt man dem Kennzeichen anstatt der Argumente
einen : (Doppelpunkt) an, so kommen die letzten zwischengespeicherten Argumente zur Anwendung.
Die einzelnen Befehle sind:

Befehle

A aaaa bbbb c (Arithmetik)

Es werden Summe, Differenz, wenn möglich das Displacement, (relative Distanz) für einen
Sprungbefehl aus den ersten beiden Argumenten sowie der dezimale Wert des ersten Arguments,
berechnet. c gibt die Länge des Sprungbefehls an. Für die relativen Sprungbefehle des U880-
Befehlssatzes ist dann c z.B. gleich zwei.

B aaaa (Breakpoint)

Dieser Befehl ist nützlich für das Testen von bzw. die Fehlersuche in Programmen. Er setzt ein
Softwarehaltepunkt auf die Adresse aaaa. aaaa muß dabei immer auf das erste Byte eines Befehls
zeigen. Ist nach dem Starten des Programms diese Adresse erreicht, erfolgt die Ausschrift BREAK AT
aaaa # und die Kontrolle geht wieder an den Monitor zurück. Zuvor werden alle Registerinhalte der
CPU in die RSA (Register Save Area) gerettet, so daß sie sich z.B. mittels des R-Befehls anzeigen
lassen. Das zu testende Programm wird durch den Break- Befehl nicht zerstört. Man kann es dann
beispielsweise mit dem Go-Befehl fortsetzen.

C aaaa bbbb cccc (Compare)

Dieser Befehl vergleicht die beiden Speicherinhalte ab aaaa und bbbb für die Länge von cccc Bytes
miteinander. Wird eine Ungleichheit gefunden, erscheinen die beiden nicht übereinstimmenden Bytes
mit den jeweils zugehörigen Adressen auf dem Schirm. Mit der CR-Taste kann man die Suche
fortsetzen. Jede andere Taste führt zum Abbruch.



Last update:
2018/08/21 09:32 homecomputer:ac1:monitor31 https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/monitor31?rev=1534843924

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/18 05:55

D aaaa bbbb (Display Memory; Dump)

Der Speicherinhalt von der Adresse aaaa bis zur Adresse bbbb wird als Hexdump auf dem Bildschirm
ausgegeben. Zu Beginn jeder Zeile erfolgt die Ausgabe der jeweiligen Anfangsadresse, es folgen 16
Datenbytes.

E aaaa (Execute Machine Programm)

Das Maschinenprogramm ab Adresse aaaa läuft unter Breakpointkontrolle. Das heißt, die Register der
CPU werden entsprechend der aktuellen Werte der RSA geladen, der Softwarebreakpoint wird
aktiviert und dann wird zur Adresse aaaa gesprungen.

F aa bb ce dd … nn (Find String)

Hier ist ab Adresse 00aaH die Datenfolge aa bb cc dd … nn zu suchen. Die zu suchende Datenfolge
oder Zeichenkette kann dabei maximal so lang sein, daß das gesamte Kommando gerade noch auf
den Bildschirm paßt. Wird die angegebene Zeichenkette vollständig gefunden, springt der Monitor an
den M-Befehl, wobei die Adresse auf das erste Byte der Datenfolge zeigt. Soll die Suche nach dem M-
Befehl weitergehen, ist die Folge F: aa bb cc dd … nn einzugeben. Wird die Datenfolge im gesamten
Speicher nicht gefunden, erfolgt die Ausschrift NOT FOUND #.

G (Go on)

Dieses Kommando funktioniert analog dem E-Befehl. Die Programmausführung wird hierbei ab der
Adresse im PC fortgesetzt. Falls ein Breakpoint zuvor eingegeben wurde, wird dieser aktiviert.

I (lnitialize)

Hiermit ist ein Löschen aller Anwenderregister möglich. Alle Speicherzellen der RSA werden (bis auf
die für den Stackpointer) Null gesetzt; letzterer so, daß das jeweilige Ende des RAM-Speichers im
Grundmodul vorsorglich als Anwenderstack genutzt wird. Dies deshalb, weil es z.B. für den E-, J- und
G-Befehl erforderlich ist. Sollte dieser Bereich für den einen oder anderen Anwendungsfall nicht
günstig sein, kann man den Stack natürlich mit Hilfe des R- Befehls auch in einen anderen RAM-
Bereich legen. Auf dem Bildschirm erscheint die Ausschrift CLR/RSA.

J aaaa (Jump)

Dieser Befehl führt ebenfalls zum Ansprung eines Anwenderprogramms ab der Adresse aaaa analog
dem E-Befehl, jedoch ohne Breakpointaktivierung.

L aaaa ± (Load from Cassette)

Der Computer versucht, ein Programm oder eine Datei, kurz File genannt, vom Bandgerätinterface in
den Speicher zu laden. Das Argument aaaa± bewirkt, das File um diesen Offset verschoben vom
ursprünglichen Speicherbereich einzulesen, zum Beispiel dann, wenn der Speicherbereich, von dem
das File abgespeichert wurde, im eigenen Computer nicht vorhanden ist. Sonst, also in der Regel,
kann man dieses Argument weglassen. Wird der Ladevorgang erfolgreich beendet, so trägt diese
Routine die Startadresse des Files, die auch auf dem Bildschirm erscheint, in die Speicherzelle für das
erste Argument ein. Das geladene Programm läßt sich dann einfach mit J: anspringen.

M aaaa (Modify Memory)

Hiermit kann der RAM-Speicher ab der Adresse aaaa byteweise angezeigt und neu beschrieben



2026/02/18 05:55 3/6 Monitor

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

werden. Nach jedem Drücken der CR-Taste erscheinen die aktuelle Adresse und das zugehörige Byte.
Nach dem Promptsymbol läßt sich ein neues Byte oder auch eine Bytefolge, durch Leerzeichen
getrennt, eingeben. Drückt man laufend nur die CR-Taste, erfolgt die Speicheranzeige Byte für Byte.
Bei einer Dateneingabe würde diese nach dem Drücken der CR-Taste in den Speicher übertragen und
der Schreibvorgang überprüft. Sollte das neue Byte nicht vom Speicher übernommen worden sein,
weil er z.B. im EPROM-Bereich liegt oder gar nicht vorhanden ist, so erfolgt eine Fehlermeldung. Man
schließt den M-Befehl durch die Eingabe eines. (Punkt) ab. Dabei gelangt die zuletzt bearbeitete
Speicheradresse in die Speicherstelle für das zweite Argument. Dadurch läßt sich der bearbeitete
Bereich mit D: noch einmal betrachten.

P aaaa bbbb cc (Pattern)

Dieser Befehl füllt den Speicher von der Adresse aaaa bis zur Adresse bbbb mit dem Bitmuster cc auf.

R XX (Register Display/Modify)

Dieses Kommando ermöglicht analog dem M-Befehl die Anzeige und das Verändern der Inhalte aller
Register der CPU. Hierbei steht XX für das jeweilige Registerpaar. Nach dem Drücken der CR-Taste
erscheint der Wert des jeweiligen Doppelregisters, gefolgt vom # auf dem Bildschirm. Mit der
nachfolgenden Eingabe eines Wertes läßt sich das Registerpaar dann neu setzen. Folgt dem R ein
Doppelpunkt, so werden der gesamte Registersatz, der Breakpoint, die Breakpointsequenz (3 Bytes
ab Breakpointadresse) angezeigt sowie die gesetzten Flaggs zusätzlich anhand ihres Symbols
dargestellt.

S aaaa bbbb cccc name (Save to Cassette)

Hiermit kann man eine File ab der Adresse aaaa bis zur Adresse bbbb mit der Startadresse cccc unter
dem Namen name (Länge max 6 Zeichen) auf Magnetband abspeichem.

T aaaa bbbb cccc (Transfer)

Mit diesem Befehl kann der Speicherinhalt ab der Adresse aaaa in den Speicherbereich ab der
Adresse bbbb für die Länge von cccc Bytes kopiert werden. Ein Überlappen der beiden
Speicherbereiche ist zulässig. Beispiel: T 1900 1901 80 verschiebt den Speicherinhalt ab 1900H für
80H Byte um eines nach oben.

V (Verify with Cassette)

Hiermit ist es möglich, ein auf Magnetband abgespeichertes File noch einmal mit dem
Speicheroriginal zu vergleichen. Dadurch sind z.B. Datenfehler aufgrund mangelhaften Bandmaterials
vermeidbar.

Z

Mit diesem Befehl wird in den Mini-BASIC-Interpreter gesprungen, vorausgesetzt, daß die dafür
erforderlichen beiden EPROMs gesteckt sind.

u aaaa bbbb cccc (u -Leerzeichen)

Ein Leerzeichen, gefolgt von Argumenten, speichert deren Werte in den entsprechenden
Speicherzellen ab, so daß danach mit dem Operator : gearbeitet werden kann. Damit ist es z.B.
möglich, die Startadresse für den F-Befehl frei zu wählen.



Last update:
2018/08/21 09:32 homecomputer:ac1:monitor31 https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/monitor31?rev=1534843924

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/18 05:55

Internes

Nach dem Einschalten bzw. jedem RESET-Impuls beginnt der Amateurcomputer ab Adresse 0 mit der
Ausführung des Programms. Um hier universell zu bleiben, und nicht bei jedem Programmwechsel
auch die EPROMs austauschen zu müssen, bekam dieser Anfangsbereich ein Programm, das nach
dem Einstellen eines bestimmten Anfangszustandes (Bildschirmlöschen, Fertigmeldung),
Initialisierung genannt, in den Dialog mit dem Benutzer tritt, so daß dieser mittels entsprechender
Befehle über die weitere Programmausführung entscheiden kann. In seiner Funktion stellt es
sozusagen ein minimales Betriebssystem dar.

Das Monitorprogramm enthält Befehle zum Einlesen und Abspeichern von Programmen bzw.
Speicherinhalten auf Magnetband, zur Anzeige und Modifizierung von Speicher- und Registerinhalten,
zum Ansprung von Nutzerprogrammen und zur ProgrammentwickIung und -testung. Damit ist es also
bereits möglich, selbst Programme in Maschinensprache zu entwickeln, zu testen und das fertige
Programm z.B. auf Magnetbandkassetten abzuspeichem bzw. auch Programme für den „AC1“
einzulesen und abzuarbeiten, die andere Amateure entwickelt haben. Das Einlesen der Programme
vom Magnetband in den RAM-Speicher des Rechners und der nachfolgende Ansprung dieser
Programme soll den Regelfall bei der Nutzung des „AC1“ darstellen. Auf diese Art ist ein relativ
schneller Programmwechsel möglich, und, weil sich bei diesem Prinzip nur das gerade benötigte
Programm im Speicher des Rechners befinden muß, braucht dieser auch nur so groß zu sein, wie es
das jeweilige Programm erfordert.

Die Möglichkeit, häufig benötigte Programme im restlichen bzw. erweiterten EPROM-Speicher
abzulegen, besteht natürlich auch, ist aber weitaus teurer als die Nutzung des externen Magnetband-
Speichers.

Das Monitorprogramm für den „AC1“ entstand auf der Grundlage von [10]. Dazu wurde der dort
veröffentlichte hexadezimale Speicherausdruck (Hexlisting) rückübersetzt, kommentiert und der
Hardware des „AC1“ angepaßt; also mit entsprechenden Routinen für Tastatur, Bildschirm und
Tonbandausgang versehen. In der endgültigen Version wird er etwa 2 KByte EPROM und etwa 60 RAM-
-Zellen belegen. Eine abgerüstete Variante, die nur das Einlesen und Anspringen von Programmen
ermöglicht und dann etwa 1 KByte EPROM benötigt, ist ebenfalls denkbar.

[10] Krake, H.: ZETBUG - ein komfortabler Z-80-Monitor, Funkschau 52 (1980), H.11

Erweiterbarkeit

Die einzelnen Befehlsroutinen des Monitors werden nicht über einen Sprungverteiler erreicht, sondern
vom Monitor anhand eines Kodemusters im Adreßbereich von 0 bis 1FFFH gesucht. Jede
Befehlsroutine hat dabei die Form 00 09 XX 0D … Routine … C9. XX ist der ASCII-Kode des
entsprechenden Kennbuchstabens. Man braucht eigene, z.B. von Magnetband ladbare Ergänzungen,
also nur in diesen Rahmen zu „packen“. Damit ist es ebenfalls möglich, eigene Anwenderprogramme
über Kennbuchstaben zu starten. Der derzeitige Monitor belegt die ersten beiden Kilobyte des EPROM-
Bereiches und etwa 128 Byte RAM zu Beginn des Arbeitsspeichers. Wenn man noch etwas Spielraum
für mögliche Modifikationen späterer Monitorversionen läßt, hat man also den Speicherbereich von
1900H bis 1FFFH für Erweiterungen zur Verfügung. Es ist auch denkbar, auf den Mini-BASIC-
Interpreter zu verzichten und diesen Bereich für Erweiterungen zu nutzen. Da der Monitor am Anfang
des Speicherbereiches liegt, fallen in diesen Bereich auch die Ansprungpunkte der RST-Befehle und



2026/02/18 05:55 5/6 Monitor

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

der Beginn der NMI-Routine.

Um nun trotzdem auch diese Möglichkeiten in Anwenderprogrammen nutzen zu können, ohne dabei
die EPROMs zu wechseln, was auf Dauer auch im Interesse der Fassungen nicht zu empfehlen ist, sind
die Routine RST8…RST38H sowie der NMI-Ansprung über eine Sprungtabelle im RAM geführt. Diese
läßt sich vom Anwender modifizieren.

Systemadressen
1800H - 1801H Speicher für Cursorposition
1802H - 1804H Sprung zur RST 8H-Routine ( Eingabe Zeichen )
1805H - 1807H Sprung zur RST 10H-Routine ( Ausgabe Zeichen )
1808H - 180AH Sprung zur RST 18H-Routine ( Ausgabe Zeichenkette )
180BH - 180DH Sprung zur RST 20H-Routine z.Z. vom Monitor nicht belegt
180EH - 1810H Sprung zur RST 28H-Routine z.Z. vom Monitor nicht belegt
1811H - 1813H Sprung zur RST 30H-Routine z.Z. vom Monitor nicht belegt
1814H - 1816H Sprung zur RST 38H-Routine ( Fehlermeldung )
1817H - 1819H Sprung zur NMI-Routine z.Z. vom Monitor nicht belegt
185BH - 185CH Speicher für Argument 1
185DH - 185EH Speicher für Argument 2
185FH - 1860H Speicher für Argument 3

nutzbare Unterprogramme

RST 08H holt ein Zeichen von der Tastatur und kehrt mit dem ASCII-Kode des Zeichens im Akku
zurück

RST 10H gibt das im Akku enthaltene Zeichen ( ASCII-Kode ) auf dem Bildschirm aus und rückt
den Cursor um eins weiter

RST 18H
gibt die dem Unterprogrammaufruf folgende Zeichenkette auf dem Bildschirm aus bis

einschließlich dem Byte, bei dem Bit 7 gesetzt ist, bewegt den Cursor weiter, kehrt dann
zum folgenden Byte zurück

CALL 07EBH MS30

Akku bei Return = 0 |

CALL 07EEH OUTHEX

kein Register wird zerstört |

CALL 07F1H OUTHL

kein Register wird zerstört |

CALL 07F4H INLINE

kein Register wird zerstört |

CALL
07F7H INHEX

wandelt eine maximal vierstellige in ASCII-Zeichen angegebene Zahl ab (DE)
abwärts in deren hexadezimalen Wert um, der dann in HL steht. DE wird

entsprechend dekrementiert, der Akku wird zerstört



Last update:
2018/08/21 09:32 homecomputer:ac1:monitor31 https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/monitor31?rev=1534843924

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/18 05:55

CALL
07FAH TASTE

testet den Tastaturstatus, kehrt bei gedrückter Taste mit dem nach 30 ms
anliegenden Kode zurück ( wartet nicht auf loslassen der Taste! ); wenn keine

Taste gedrückt, erfolgt sofortige Rückkehr mit gesetztem Zero-Flag
CALL
07FDH GETCO1 Sprung zur Monitoreingabeschleife, der Monitorstack wird neu initialisiert

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/monitor31?rev=1534843924

Last update: 2018/08/21 09:32

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/monitor31?rev=1534843924

	Monitor
	Befehle
	Internes
	Erweiterbarkeit


