2025/11/30 06:58 1/12 AC1-2010

AC1-2010

Zu-Erledigen-Box

Der AC1-2010 ist ein modular aufgebauter AC1 mit Erweiterungen. Unterlagen etc. siehe http://www.ac1-info.de/, AC1-2010.

Entwicklung von Andreas Suske, DL9UNF u.a.

Es gibt durch den modularen Aufbau nicht **DEN** AC1-2010; jedes Exemplar ist individuell. Mein AC1 hat mit seinem Modul 1 statt der ROM-Bank eine Besonderheit, ebenso scheint die PIO2/PIO3-USB-Karte in dieser Kombi-Form einzigartig zu sein.

AC1-2010

Merkmal	Beschreibung
CPU	U880
ROM	4K System + Erweiterungen
RAM	64k
Takt	2 MHz / 4 MHz
Anzeige	VGA: 64×32 Zeichen, ASCII + Pseudografik, Farbe
Tastatur	ASCII, PS/2
Peripherie	VGA, USB, Kassettenrecorder, Floppy, RAM-Disk, V24,
Software	diverse Monitor SCCH erweitert / HCCPM

Der AC1-2010 bietet gegeben über dem AC1 nach Funkamateur diverse Erweiterungen, die im Laufe der Zeit entwickelt wurden und die mit moderneren Bauelementen effektiv aufzubauen sind. Dennoch kann der AC1 auch mit dem originalen Betriebssystem "Monitor 3.1" arbeiten und klassisch auf Kassette speichern!

Die Erweiterungen machen den AC1-2010 zum kompletten CP/M-System.

Programme können geladen/gespeichert werden auf:

- Kassette (via PIO)
- Floppy-Disk 3.5,, 800K-Disketten, AC1-Format sowie CPM
- Festplatte (128 MByte-DOM-Modul an GIDE)

- USB-Stick (via VDIP1 an PIO)
- 256K-RAM-Floppy
- sowie direktes Laden von einer ROM-Bank (Modul 1, Paket X, 1 MByte ROM, sowie 16K-BASIC)

Busplatine

Die Busplatine ist eine modifizierte Eurobus-Karte mit 10 Steckplätzen. Steckverbinder nach DIN 41612. Die Steckplätze auf der Busplatine sind teilweise fest vorgegeben; eine willkürliche Reihenfolge ist nicht möglich. Ursache dafür sind zusätzliche Signalleitungen zwischen den Karten.

Von rechts nach links in den Steckplätzen 1..3 müssen zwingend in dieser Reihenfolge stecken: BWS, CPU, PIO/CTC

Die anderen sechs Steckplätze 4..10 können prinzipiell beliebig mit weiteren Karten bestückt werden.

Unterlagen: http://www.ac1-info.de/ac1 2010/backplane.htm

Von rechts nach links stecken in meinem Gerät:

- Color-BWS
- CPU
- PIO-CTC-PS/2-Kass.-Joy.
- 64K-RAM
- Modul 1
- PIO2/PIO3-USB
- GIDE
- FDC

Color-BWS

AC1-2010 BWS Grafikkarte, mit CPLD, Heiko Poppe

Unterlagen: http://www.ac1-info.de/ac1 2010/color bws cpld.htm

2025/11/30 06:58 3/12 AC1-2010

VGA-Grafik-Karte, kompatibel zur AC1-Grafik. Entwickler: Heiko Poppe, vorgestellt u.a. im robotrontechnik-Forum. 64×32 Zeichen, Farbe (je 16 Vorder- und Hintergrundfarben pro Zeichen), Umschaltbarer Zeichensatz.

VGA wird am Pfostenstecker rechts an Pins 1..7 angeschlossen.

Adressbereich 1000h-17FFh, 4 KByte RAM (2K Zeichenspeicher + 2K Farbattribut-Speicher, liegen beide im selben System-Adressbereich).

Speicher	1000-1FFF 2 kByte RAM	
Ports	F0, BWS-Port lesen+schreiben	
	05, PIO1 B3 → Zeichensatzumschaltung, lesen	
Bus OUT Signal A25 CLK		
	IN Signal A2 /VDUSEL → Bereich 1000-17FF f. BWS	
	IN Signal C2 Bildinvers (von PIO1 B3)	

Signal C2 wird von der Karte nicht genutzt, stattdessen wird im CPLD die Portadresse 05 ausgelesen. Signal C2 Bildinvers ist damit als → Zeichensatzumschaltung umfunktioniert

CPU-Karte und BWS-Karte sind als Einheit zu betrachten! Auf der BWS-Karte sitzt der Taktgenerator, Die Signalleitungen A25..A30 und C25..C30 sind mit der CPU-Karte verbunden.

JP1: JTAG-Adapter (leer) JP2: 1-2 RW-Mode enabled

JP3: Anschluss VGA: Steckverbinder untere Reihe, an linken Pin (1)

2K RAM 1000-17FF, 2 Ebenen (Text+Farbe)

32 Zeilen a 64 Zeichen (64x32)

Speicher wird rückwärts beschrieben (AC1-Besonderheit, 17FF ist links oben!)

CPU

Auf der Karte ist eine CPU U880, der System-Monitor und ein kleiner statischer RAM enthalten. Es gibt Tasten für Reset und NMI.

Es gibt hier keinen Taktgenerator! Dieser sitzt auf der BWS-Karte.

Takt	2/4 Mhz	
Speicher	0000-0FFF 4kByte Monitor	
	1800-1FFF 2kByte RAM	
Ports	-	
Bus	OUT Signal /VDUSEL → Bereich 1000-17FF f. BWS	
	IN Signal CP/M-Umsch., deaktiviert RAM,ROM,BWS	

v.o.n.u.: LED: Halt

Taster lang: Reset Taster kurz: NMI

Monitor "* AC1-2010 * MONITOR * 12/2011 *"

PIO-CTC-PS/2-Kass.-Joy.

Unterlagen: http://www.ac1-info.de/ac1_2010/pio_joystick.htm

2025/11/30 06:58 5/12 AC1-2010

Die I/O-Karte enthält die PIO1 für den Anschluss einer Tastatur und das Kassetteninterface (kompatibel zum Ur-AC1). Als Tastatur kommt eine PS2-Tastatur zum Einsatz. Ein Arduino-Nano übernimmt die Umsetzung der PS2-Daten in ASCII.

Zusätzlich gibt es eine CTC, einen Joystickanschluss und einen Piepser.

Speicher	-
Ports	00-03 CTC
	04-07 PIO1
Bus	OUT C2 Signal Bildinvers (PIO B3)

Belegung PIOA

B0..B6 ASCII-Code Zeichen

B7 Taste gedrückt

Belegung PIOB

- B0 Ton-Ausgang
- B1 Joystick ges. A
- B2 Grafiktaste
- B3 Bildschirm-Mode invers bzw. -> Zeichensatzumschaltung (s. BWS)
- B4 frei
- B5 Start/Stop-Schaltung (alternativ auch B1 oder B4)
- B6 TB-Interface-Ausgang
- B7 TB-Interface-Eingang

In der umfangreichen Dokumentation pio_joystick_beschreibung.pdf sind die Sonderfunktionen der Tastatur ausführlich beschrieben.

Tastenkombination	Befehl
F1	?+CR
F4	CLS+CR
F5	CLOAD
F6	CSAVE

Tastenkombination	Befehl
F8	Teststring
F9	STOP+CR
F10	RUN+CR
F11	LIST+CR
F12	CONT+CR, Alt+F12 Version
Shift-F2	2 MHz
Shift-F4	4 MHz
Ctrl+ESC	AC1-NMI
Alt+ESC	Ardunio-Reset und PS/2-Tastatur-Reset
Ctrl+Alt+Entf	AC1-Reset
NUM-Taste	NUM-Lock + SCCH-Grafiktaste ein/aus
Rollen-Taste	Umschaltung Tastencodes: AC1 - CP/M (Kursortasten etc.)
AltGr+0	40ms-Impulse auf PA7, "Standard-Modus"
AltGr+1	PA7 ist aktiv, bis Taste losgelassen wird, "Ralphs Spezial-Modus", für EDAS*4
AltGr+F1	Joystick-Modus SCCH-Monitor Joystickabfrage
AltGr+F2	Joystick-Modus Kursortasten + Enter, z. B. Ghosttown
AltGr+F3	Joystick-Modus Kursortasten + Space, z. B. ACBALL
AltGr+F4	Joystick-Modus Belegung für ACTRIS
AltGr+F5	Joystick-Modus Ziffernblock + Space, z. B. WURMI
AltGr+F6	Joystick-Modus Belegung für PACMAN

64K-RAM

64k-CP/M-Umschaltung DL9UNF, 02/2007, 05/2010

Unterlagen: http://www.ac1-info.de/ac1_2010/64k_ram.htm

2025/11/30 06:58 7/12 AC1-2010

Auf der Karte sind 64 KByte statischer RAM. Der Bereich 0000-1FFF ist normalerweise nicht verfügbar, in diesem Bereich befinden sich auf der CPU-Leiterplatte System-Monitor, 2 KByte RAM und auf der BWS-Karte weitere 2 KByte RAM. Für CP/M-Betrieb kann der komplette RAM ab 0000 eingeschaltet werden; die BWS-Ausgabe erfolgt in diesem Fall durch internes Umschalten auf den BWS-RAM. Die ROM-Karten können durch Signale den RAM deaktivieren.

Speicher	0000-FFFF 64kByte RAM
Ports	1E, nur Bit 0, nur schreibend
Bus	OUT Signal C22 CP/M-Umschaltung
	IN Signal A2 RAM 2000-7FFF ausblenden
	IN Signal C2 RAM 8000-FFFF ausblenden

```
v.o.n.u.:
LED rot
                   aktiv
                RAM von 2000...7FFF ( A2/ IC1 ) aus
LED gelb
LED (gelb)
                  RAM von 8000...FFFF ( C2/ IC2 ) aus
LED (grün) blau
                       RAM aktiv
64K RAM
           0000-FFFF
Port: 1E IOSEL7 Bank-Umschalter CP/M
Bankumschalter 0x01E
Bit 0 = 0
              4K-ROM, 2K-BWS, 2K-SRAM
Bit 0 = 1
              untere 8K von 64K-RAM (alles RAM)
RESET
              Bit 0 = 0
```

RAM-Floppy 256k

AC1 RAM-Floppy 256 kByte nach MP 3/88, DL9UNF 05/2010

Unterlagen: http://www.ac1-info.de/ac1_2010/ram_floppy.htm http://www.ac1-info.de/literatur/mp 88 03.htm

Die eigentliche RAM-Disk wird über IN- und OUT-Befehle bedient und tangiert den Hauptspeicher nicht. Genutzt wird die RAM-Floppy vor allem im CP/M als Laufwerk A:. Im AC1-Modus kann die RAM-Disk mit den Floppy-Routinen von Johann Spannenkrebs verwendet werden. http://www.ac1-info.de/ac1_2010/fdc/Beschreibung_FDC_16.pdf Zur Speicherung von Programmen

http://www.ac1-info.de/ac1_2010/fdc/Beschreibung_FDC_16.pdf Zur Speicherung von Programmen über einen längeren Zeitraum wird der Einbau einer Stützbatterie (wie hier im Bild) empfohlen.

Speicher	-
Ports	E0E7
Bus	

Ports:

E0 = Lesen/Schreiben Bank 1

E1 = Lesen/Schreiben Bank 2

E2 = Lesen/Schreiben Bank 3

E3 = Lesen/Schreiben Bank 4

E4 = nicht benutzen

E5 = nicht benutzen

E6 = mittlere 8 Adressbit laden

E7 = niedrigste 8 Adressbit in den Zähler laden.

v.o.n.u.:

LED gelb (blau) aktiv

LED rot Bank 1 LED rot Bank 2 LED rot Bank 3

LED rot Bank 4

Modul 1

ROM-Modul AC1 R. Weidlich 1/2008

2025/11/30 06:58 9/12 AC1-2010

Unterlagen: http://www.ac1-info.de/ac1_2010/modul_1.htm

Auf der Karte sind 2 EPROMs und eine 1 MByte-EPROM-Bank. Die EPROMs blenden sich in den Adressraum des Systems ein: Bei Schreibzugriffen im Bereich 0-0FFF wird der "hinter" dem System-ROM liegende, verdeckte RAM der 64K-RAM-Karte beschrieben.

Das Kopieren von Programmen aus der ROMBANK in den Arbeitsspeicher übernimmt das Programm "Paket X", Es wird mit dem Monitorkommando "X" gestartet.

Es gibt von mir eine neue Software "ROM-Disk-Verwaltung 2023"!

Speicher	2000-5FFF 16 kByte BASIC
Speicher	E000-FFFF 8 kByte Paket-X
Speicher	8000-FFFF 32 kByte ROMBANK-Page (32 Pages)
Ports	14 Modul1-Port
Bus	OUT Signal A2 RAM 2000-7FFF ausblenden
	OUT Signal C2 RAM 8000-FFFF ausblenden
	OUT Signal C22 System 0000-1FFF ausblenden (CP/M-Umschaltung)

```
00 Modul1 inaktiv, System-ROM 0-0FFF ein, BWS 1000-17FF ein, RAM
1800-1FFF ein
01 Programm X, E000-EFFF
02 BASIC, 2000-5FFF
04 CP/M-Mode: 64K RAM 0-FFFF ein, System-ROM aus, BWS aus, RAM
1800-1FFF aus
08h EPROM1 Bank0, 09h EPROM2 Bank0
18h EPROM1 Bank1, 19h EPROM2 Bank1
.....
F8h EPROM1 Bank15, F9h EPROM2 Bank15, jeweils 8000-FFFF
```

PIO2/PIO3-USB

PIO2 serielle Schnittstelle, Eprommer, ... PIO3 USB-Anschluss mittels VDIP1

Unterlagen:

Sprint6-Layout

• pio23-usb.zip

Die Herkunft dieser Karte ist nicht weiter bekannt. Die PIOs haben die Standard-Adressen, so dass die vorhandene Software auch mit dieser Karte läuft.

Für USB braucht man ein VDIP-Modul. Der USB-Stick wird mit FAT16 am PC formatiert (kurze Dateinamen 8.3). Beschreibung des VDIP-Moduls s. VDIP1 und v2dip.

Speicher	-
Ports	08-0F PIO2
	FC-FF PIO3 USB
Bus	_

vgl.a. Z1013-USB-Modul

GIDE

IDE-Anschluss nach Tilmann Reh (http://www.gaby.de/gide), incl. RTC (real time clock)

Unterlagen: http://www.ac1-info.de/ac1 2010/gide.htm

2025/11/30 06:58 11/12 AC1-2010

Statt einer IDE-Festplatte kommt praktisch nur ein 128/256/512 MByte-DOM-Modul zum Einsatz. Auch diese Kapazität wird bei weitem nicht ausgeschöpft.

Das IDE-Laufwerk wird mit im Monitor mit "DVHD-V3.X" angesteuert. Der Komfortmonitor 11 erlaubt das Arbeiten mit IDE (und USB) anstelle Diskette in allen Programmen. Die CPM-Versionen HRCPM12, HRDOS12 u.a. nutzen auf dem IDE-Laufwerk drei virtuelle CP/M-Laufwerke. Das IDE-Laufwerk ist dazu in einen Monitor- und einen CP/M-Bereich aufgeteilt. (Das sind keine DOS-Partitionen!)

Unter Windows gibt es das Programm DOM-Manager von R. Weidlich zum Sichern und Beschreiben einer AC1-IDE-Festplatte am PC. Das Programm muss mit Admin-Rechten laufen. http://www.ac1-info.de/galerie/weidlich_rolf/weidlich.htm

Der Zugriff erfolgt über einen frei wählbaren Port-Bereich x4..xF. Die bekannte Software arbeitet im Bereich 8x.

Speicher	-
Ports	84-8F
Bus	-

```
; HR: voreingestellt ist DELOCK SSD 256MB 984*16*32
 Per 09/2012 hat meine 256MB HDD folgende Aufteilung:
 1. Spur 0
                     reserviert für "s/l" Kommando Monitor >= V10.2
 2. Spur 1..9
                     reserviert für DiskVerHD bzw. DVHD
                     CPM Laufwerke für HRCPM und HRDOS
 3. Spuren 10..399
    PART C, 10, 64,2048
                          ; C: mit 64 Spuren ab Spur 10 (16 MB) HR
    PART D,150, 64,4096
                          ; D: mit 64 Spuren ab Spur 150 (16 MB) HR
    PART E,300, 64,4096
                          ; E: mit 64 Spuren ab Spur 300 (16 MB) HR
 4. Spuren 400..
                    frei zu eigenen Verwendung..
```

FDC

Unterlagen: http://www.ac1-info.de/ac1_2010/fdc.htm

Speicher	-	
Ports	40H Statusregister FDC	
	41H Datenregister FDC	
	42H/43H Aktivierung WAIT	
	44H/45H Latch DL175	
Bus	-	

From:

https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:

https://hc-ddr.hucki.net/wiki/doku.php/homecomputer/ac1/ac1-2010?rev=1710919894

Last update: 2024/03/20 07:31

