2026/01/28 00:42 1/3 Assembler

Assembler

Thomas Beierlein:

Da ich in letzter Zeit eine Reihe von Fragen zur Benutzung des Z80- Assemblers in FORTH83 erhalten
habe, mdchte ich hier einige Hinweise zu seiner Benutzung geben. Da ich z.Z. unter chronischem
Zeitmangel stehe, wird es nur eine recht kurze Barstellung. Zur Sache:

Maschinencoderoutinen werden im FORTH83 im Unterschied zu FIG mit folgenden Worten definiert
bzw. abgeschlossen.

CODE <NamME> ..ivivviiiiiiiieeeiniinenns END-CODE

Diese beiden Worte sind auch ohne geladenen Assembler verfligbar und kdnnen wie friher kurze
Coderoutinen als Hexcode direkt ins Worterbuch ,hineinkommaen®. Nach wie vor mussen
Coderoutinen mit einem Sprung nach NEXT abgeschlossen werden. Die Adresse von NEXT wird durch
die Konstante >NEXT im System bereitgehalten.

Eine zweite Art von Code sind Unterprogramme, die mit der Sequenz
LABEL <name>cceeeeveiennns RET, END-CODE

definiert werdan. Ein Beispiel zur Anwendung folgt am SchluB. Bei der Benutzung von Code-
Definitionen ist zu beachten, daf die Register BC und IY vom System verwendet werden. Sie sind also
bei Bedarf zu sichern.

Nach dem Laden des Assemblers stehen nach Aufruf von CODE <name> alle Befehle des Z80 in ihrer
urspringlichen Mnemonik zur Verfugung (am besten mit ASSEMBLER WORDS einmal anschauen). Bei
der Anwendung sind folgende Syntaxregeln zu beachten:

¢ alle Mnemoniks haben ein, (Komma) am Namensende,

» die Notation der Parameter erfolgt strang nach umgekehrt polnischer Notation. Die Reihenfolge
ist also <Quelle Ziel Operand>.

Folgende Regeln gelten fur die Kennzeichnung der Parameter:

e Register werden mit ihrem Namen aufgerufen. Folgende gibt es:
ABCDEHL(HL) (IX) (IY) I R AF BC DE HL IX IY

alle Adressen sind durch ein nachfolgendes #) als solche zu kennzeichnen,

alle direkt in Register zu ladenden Zahlenwerte sind durch # zu kennzeichnen,

bei Verwendung der Indexregister in der Form (IX+displ) ist statt dessen displ (IX) zu schreiben.
Eine Angabe des Displacement ist auch bei displ=0 notwendig.

Bitoperationen sind wie folgt zu codieren
RES 4,C wird z.B. zu 4 C RES,

bei Relativspruengen ist die Distanz mit # als Zahlenwert zu markieren.

Alle Springe und Call's, unbedingt und auch bedingt, werden compiliert. Zu beachten ist, dal8 statt
JMP (HL) die Sequenz HL JMP, zu verwenden ist.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2011/01/18 07:39 forth:fgforth:assembler https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler?rev=1295339969

Bei der Verwendung der Strukturoperatoren IF, ELSE THEN, BEGIN, UNTIL, WHILE, und REPEAT,
werden nur absolute Springe compiliert. Die folgenden Entscheidungsbedingungen gibt es dabei:

0= (Zero)

CY (Carry)
PE (Parity)
0< (Minus)

Ein NOT nach der Bedingung negiert seine Bedeutung (0= NOT IF, entspricht so z.B.]JPNZ).

Der Assembler unterstitzt des weiterenden Abschlu einer Coderoutine mit den Macros NEXT,
HPUSH, und DPUSH. diese compilieren einen Sprung zur Nextroutine bzw. legen vorher noch das
Register DE oder DE und HL auf den Stack.

Soweit dazu. Nun noch einige Beispiel fur die méglichen Parameterformen.

konventionelle Notation FORTH-Assembler
EX (SP),HL HL (SP) EX,

RST 28H HEX 28 #) RST,
JPC 4236H 4236 #) JPC,
JMP (1X) IX JMP,

CANZ 1A7H 1A7 #) CANZ,
LD A 17 17 # ALD,

LD (BC),A A (BC) LD,

LD A,(IX) 0IXALD,

SBC HL,DE DE HL SBC,
ORD D OR,

AND OE7H HEX OE7 # AND,
IN 23 23 # IN,

OuUTL L OUT,

JRNZ #-5 -5 # JRNZ,

RES 0,(IY+4) 04 1Y # RES,

Hier waren nun hoffentlich alle Varianten dabei.

Zum Schluss noch ein Beispiel, welches auch die Verwendung von Labels und die strukturierte
Programmierung verdeutlichen soll. Folgendes Problem steht:

An einem I/O-Port sollen zwei Steuerbits PO und P1 Uberwacht werden. Eine definierte Zeit nach dem
Uebergang vpn PO auf High soll P1 abgetastet und in einem 8-Bit Puffer von rechts eingeschoben
werden.

Die Losung wirde bei mir etwa so aussehen:

HEX
23 CONSTANT PORT \ die Portadresse
O CONSTANT PO \ die Bitnummer der Steuer-
1 CONSTANT P1 \ leitungen im Port
45 CONSTANT ZK \ Zeitkonstante der Verzdg.

VARIABLE PUFFER \ der 8-Bit Puffer

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/28 00:42

2026/01/28 00:42 3/3 Assembler

LABEL WAIT \ realisiert Verzdgerung
ZK # HL LD, \ indem HL bis auf 0
\ heruntergezahlt wird

BEGIN, H A LD, L OR, 0= NOT WHILE, HL DEC, REPEAT,
RET,

CODE ABTASTUNG \ macht die Arbeit
BEGIN, PORT # IN, PO A BIT, 0= NOT UNTIL,
\ warte bis PO High wird

WAIT #) CALL, \ rufe Verzodgerung auf

PORT # IN, P1 A BIT, \ teste P1 und wandle in

0= IF, A OR, ELSE, SCF, THEN, \ Carry-Flag um

PUFFER #) A LD, \ lade A mit dem Inhalt von
RLA, \ Puffer und schiebe Cy ein

A PUFFER #) LD, \ lege den Wert wieder zuruck
NEXT END-CODE \ weiter mit FORTH

So, viel Spals und nicht verzagen, wenn nicht gleich klappt.

Thomas Beierlein

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:

Last update: 2011/01/18 07:39

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler?rev=1295339969

	Assembler

