2026/01/27 22:07 1/5 Assembler

Assembler

Thomas Beierlein:

Da ich in letzter Zeit eine Reihe von Fragen zur Benutzung des Z80-Assemblers in FORTH83 erhalten
habe, mdchte ich hier einige Hinweise zu seiner Benutzung geben. Da ich z.Z. unter chronischem
Zeitmangel stehe, wird es nur eine recht kurze Barstellung. Zur Sache:

Maschinencoderoutinen werden im FORTH83 im Unterschied zu FIG mit folgenden Worten definiert
bzw. abgeschlossen.

CODE <NamME> ..ivivviiiiiiiieeeiniinenns END-CODE

Diese beiden Worte sind auch ohne geladenen Assembler verfligbar und kdnnen wie friher kurze
Coderoutinen als Hexcode direkt ins Worterbuch ,hineinkommaen®. Nach wie vor mussen
Coderoutinen mit einem Sprung nach NEXT abgeschlossen werden. Die Adresse von NEXT wird durch
die Konstante >NEXT im System bereitgehalten.

Eine zweite Art von Code sind Unterprogramme, die mit der Sequenz
LABEL <name>cceeeeveiennns RET, END-CODE

definiert werden. Ein Beispiel zur Anwendung folgt am SchluB. Bei der Benutzung von Code-
Definitionen ist zu beachten, daf die Register BC und IY vom System verwendet werden. Sie sind also
bei Bedarf zu sichern.

Nach dem Laden des Assemblers stehen nach Aufruf von CODE <name> alle Befehle des Z80 in ihrer
urspringlichen Mnemonik zur Verfugung (am besten mit ASSEMBLER WORDS einmal anschauen). Bei
der Anwendung sind folgende Syntaxregeln zu beachten:

¢ alle Mnemoniks haben ein, (Komma) am Namensende,

¢ die Notation der Parameter erfolgt streng nach umgekehrt polnischer Notation. Die Reihenfolge
ist also <Quelle Ziel Operand>.

Folgende Regeln gelten fur die Kennzeichnung der Parameter:

e Register werden mit ihrem Namen aufgerufen. Folgende gibt es:
ABCDEHL(HL) (IX) (IY) I R AF BC DE HL IX IY

alle Adressen sind durch ein nachfolgendes #) als solche zu kennzeichnen,

alle direkt in Register zu ladenden Zahlenwerte sind durch # zu kennzeichnen,

bei Verwendung der Indexregister in der Form (IX+displ) ist statt dessen displ (IX) zu schreiben.
Eine Angabe des Displacement ist auch bei displ=0 notwendig.

Bitoperationen sind wie folgt zu codieren
RES 4,C wird z.B. zu 4 C RES,

bei Relativspruengen ist die Distanz mit # als Zahlenwert zu markieren.

Alle Springe und Call's, unbedingt und auch bedingt, werden compiliert. Zu beachten ist, dal8 statt
JMP (HL) die Sequenz HL JMP, zu verwenden ist.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2013/05/01 13:26 forth:fgforth:assembler https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler

Bei der Verwendung der Strukturoperatoren IF, ELSE THEN, BEGIN, UNTIL, WHILE, und REPEAT,
werden nur absolute Springe compiliert. Die folgenden Entscheidungsbedingungen gibt es dabei:

0= (Zero)

CY (Carry)
PE (Parity)
0< (Minus)

Ein NOT nach der Bedingung negiert seine Bedeutung (0= NOT IF, entspricht so z.B.]JPNZ).

Der Assembler unterstitzt des weiteren den AbschluB einer Coderoutine mit den Macros NEXT,
HPUSH, und DPUSH. Diese compilieren einen Sprung zur Nextroutine bzw. legen vorher noch das
Register DE oder DE und HL auf den Stack.

Soweit dazu. Nun noch einige Beispiel fur die méglichen Parameterformen.

konventionelle Notation FORTH-Assembler
EX (SP),HL HL (SP) EX,

RST 28H HEX 28 #) RST,
JPC 4236H 4236 #) JPC,
JMP (1X) IX JMP,

CANZ 1A7H 1A7 #) CANZ,
LD A 17 17 # ALD,

LD (BC),A A (BC) LD,

LD A,(IX) 0IXALD,

SBC HL,DE DE HL SBC,
ORD D OR,

AND OE7H HEX OE7 # AND,
IN 23 23 # IN,

OuUTL L OUT,

JRNZ #-5 -5 # JRNZ,

RES 0,(IY+4) 04 1Y # RES,

Hier waren nun hoffentlich alle Varianten dabei.

Zum Schluss noch ein Beispiel, welches auch die Verwendung von Labels und die strukturierte
Programmierung verdeutlichen soll. Folgendes Problem steht:

An einem I/O-Port sollen zwei Steuerbits PO und P1 Uberwacht werden. Eine definierte Zeit nach dem
Uebergang vpn PO auf High soll P1 abgetastet und in einem 8-Bit Puffer von rechts eingeschoben
werden.

Die Losung wirde bei mir etwa so aussehen:

HEX
23 CONSTANT PORT \ die Portadresse
O CONSTANT PO \ die Bitnummer der Steuer-
1 CONSTANT P1 \ leitungen im Port
45 CONSTANT ZK \ Zeitkonstante der Verzdg.

VARIABLE PUFFER \ der 8-Bit Puffer

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/27 22:07

2026/01/27 22:07

3/5

Assembler

LABEL WAIT REVEAL
ZK # HL LD,

\ realisiert Verzdgerung
\ indem HL bis auf 0O
\ heruntergezahlt wird

BEGIN, H A LD, L OR, 0= NOT WHILE, HL DEC, REPEAT,

RET,

CODE ABTASTUNG

\ macht die Arbeit

BEGIN, PORT # IN, PO A BIT, 0= NOT UNTIL,

WAIT #) CALL,
PORT # IN, P1 A BIT,

0= IF, A OR, ELSE, SCF, THEN,

PUFFER #) A LD,
RLA,

A PUFFER #) LD,
NEXT END-CODE

\ warte bis PO High wird

\ rufe Verzogerung auf

\ teste Pl und wandle in

\ Carry-Flag um

\ lade A mit dem Inhalt von

\ Puffer und schiebe Cy ein

\ lege den Wert wieder zuruck
\ weiter mit FORTH

So, viel Spals und nicht verzagen, wenn es nicht gleich klappt.

Thomas Beierlein, 1990

Beispiel

Ich habe obiges Beispiel getestet. Dabei ist mir aufgefallen, dass hinter LABEL noch REVEAL fehlte,
sonst ist das Label gar nicht sichtbar. (Oder aber in LABEL muss das HIDE weggepatcht werden).

Folgender Code wird durch den Assembler erzeugt. Man beachte die Umsetzung der

Schleifenkonstrukte.

4685 4673

4687 86

4688 'PUFFER'+#80
468E 0497

4690 0000

4692 3897

4693 84

4695 'WAIT'+#80

4699 0497

469B 21 45 00 LD
469E M1
469E 7C LD
469F B5 OR
46A0 CA A7 46 JP
46A3 2B DEC
46A4 (C3 9E 46 JP
46A7 (9 M2 RET

’

VARIABLE PUFFER

DOVAR
LABEL WAIT
DOVAR
HL, 0045H ZK # HL LD,
BEGIN,
A,H H A LD,
L OR,
Z,46A7H 0= NOT WHILE,
HL HL DEC,
469EH REPEAT,
RET,

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2013/05/01 13:26

forth:fgforth:assembler https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler

46A8 3A8A

46AA 89

40AB 'ABTASTUNG'+#80

46B4 $+2 CODE
46B6 M3

46B6 DB 23 IN A, (23H)
40B8 CB 47 BIT 0,A

406BA CA B6 46 JP Z,46B6H
40BD CD 9B 46 CALL 469BH
406C0 DB 23 IN A, (23H)
46C2 CB 4F BIT 1,A

46C4 C(C2 CB 46 JP NZ,46CBH
406C7 B7 OR A

46C8 C3 CC 46 JP 46CCH
406CB 37 M4 SCF

46CC M5

46CC 3A 90 46 LD A, (4690H)
46CF 17 RLA

46D0 32 90 46 LD (4690H) ,A
40D3 C3 22 04 JP 0422H
Strukturoperatoren

Die Strukturoperatoren sind forth-gewohnt zu verwenden:

flag 0=, CY, PE oder 0<

IF...ELSE...THEN

flag [NOT] IF,

[ELSE,]

THEN,

BEGIN ...flag UNTIL
BEGIN,

%iég [NOT] UNTIL,
BEGIN...AGAIN

BEGIN,

AGATN,

BEGIN...flag WHILE...REPEAT

; JP /flag M1
; JP M2
; M1:
0 M2:

; M1:

; M1:

; JP M1

CODE ABTASTUNG

BEGIN,

PORT # IN,

PO A BIT,
0= NOT UNTIL,
WAIT #) CALL,
PORT # IN,
P1 A BIT,
0= IF,

A OR,
ELSE,

SCF,
THEN,
PUFFER #) A LD,
RLA,
A PUFFER #) LD,
NEXT
END - CODE

; JP /flag M1

https://hc-ddr.hucki.net/wiki/

Printed on 2026/01/27 22:07

2026/01/27 22:07

5/5

Assembler

BEGIN,
flag [NOT] WHILE,

REPEAT,

Literatur

’
.
’
’
.
’
’

’

Der Assembler ist auch in , Vack, Gert Ulrich

1990“ Seite 263-271 beschrieben.

From:

; M1:

; JP /flag M2
; JP M1

; M2:

: Programmieren mit Forth

https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:

https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler

Last update: 2013/05/01 13:26

. VEB Verlag Technik Berlin,

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/forth/fgforth/assembler

	Assembler
	Beispiel
	Strukturoperatoren
	Literatur

