2026/01/11 18:08 1/16 Basic/Debug-Handbuch

Basic/Debug-Handbuch

ZILOG REFERENCE MANUAL 28671 SINGLE-CHIP INTERPRETER BASIC/DEBUG SOFTWARE
Basic/Debug meldet sich mit dem Prompt ;' und wartet auf Eingabe.

Alle Kommandos im Direktmodus und im Programmmodus maglich Zeilennummern 1 bis 32767
Korrektur der Eingabe nur durch DEL, nicht mit Kursor links !!!!

Mehrere Anweisungen kdnnen auf eine einzelne Zeilennummer folgen, wenn sie durch Doppelpunkte
getrennt werden. Mehrere Befehle in eine Zeile packen spart Speicherplatz. Die Anzahl der Befehle in
der Zeile ist nicht beschrankt, aber die Zeile darf nicht mehr als 130 Zeichen enthalten.

Basic/Debug ignoriert die Unterscheidung zwischen Gro8- und Kleinbuchstaben. Daher sind PRINT,
PrinT und print alles gultige Basic/Debug-Anweisungen. Zur guten Lesbarkeit (und weil ES1988 nur
GRoRBbuchstaben kennt), wird hier alles in GRoBbuchstaben geschrieben.

Beispiele:

PRINT "Hallo"
IF C <> USR(A) %500
%1020 = 100
“DIE ANTWORT IST";X

Basic/Debug kennt finfzehn Schlisselworter (Beschreibung s. unten).

Leerzeichen diesen nur der Lesbarkeit. In der obigen Beispiel-Programmzeile trennt ein Leerzeichen
das Schlisselwort PRINT vom Argument ,,HALLO“. Obwohl es die Aussage einfacher macht, ist der
Leerraum flr Basic unnétig. Innerhalb einer Anweisung in einer Zeile ignoriert Basic/Debug alle
Leerzeichen. Eingegebene Leerzeichen bleiben jedoch im Programm und belegen Speicherplatz.
(AuBer zwischen Zeilennummer und erstem Zeichen, hier werden Leerzeichen entfernt)

print a
P RI NT A
PRINTA

sind alles gultige Anweisungen.

Wenn vor der Eingabe eine ganze Zeile geldscht werden muss, ist es schneller, die Escape-Taste zu
drucken, als mit Backspace durch den Zeilenpuffer zu gehen. Ein Escape-Tastendruck leert den Inhalt
des Zeilenpuffers.

Zahlen

Alle Berechnungen werden in zwei Acht-Bit-Registern durchgefuhrt, erfordern Sechzehn-Bit-Werte und
geben Sechzehn-Bit-Ergebnisse zuruck.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

08:07 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

Wenn ein Ergebnis sechzehn Bit (iberschreitet, wird abgeschnitten und der Uberlauf wird verworfen.
Alle numerischen Werte werden intern in dargestellt 16-Bit binare Zweierkomplementform.

Numerische Werte reichen von -32768 bis +32767. Wenn eine Berechnung ergibt einen Wert
aullerhalb des negativen Bereichs, der Antwort wird als positive Zahl gedruckt. Wenn eine
Berechnung Ergebnis ist hoher als der positive Bereich, wird eine negative Zahl gedruckt.

Hexadezimalwerte werden haufig zur Adressierung verwendet da Hardwaregrenzen oft bei geraden
Hex-Adressen auftreten. Ganzzahlen ohne Vorzeichen zwischen 0 und 65536 kdnnen in die Adresse
eingegeben werden.

Normalerweise werden nur Werte im Bereich von +32767 bis -32768 ausgegeben. Das Drucken von
Werten auBerhalb des Bereichs ist mit '\' madglich, s.u.

Basic/Debug kennt nur ganze Zahlen. Briche kann nicht eingegeben werden, und der Bruchteil jedes
Ergebnisses ist verworfen. Im Folgenden sind Beispiele fur gultige Dezimal- und hexadezimale
Konstanten:

Dez: Hex:
123 %7/B
256 %100

32766 %7FFE
32768 %8000

Variablen

Basic/Debug unterstltzt 26 Variablen. Jeder Buchstabe des Alphabets wird als Variablenname
verwendet.

Operatoren

Basic/Debug unterstutzt zwei Satze von Operatoren: arithmetische Operatoren und relationale
Operatoren. Basic/Debug erkennt die folgenden traditionellen Operatoren fur arithmetische
Funktionen:

Die Operationen werden von links nach rechts ausgefuhrt. Dabei werden Multiplikation und Division
zuerst durchgefiihrt, gefolgt von Addition und Subtraktion. Dies kann durch die Verwendung von
Klammern geandert werden. Zum Beispiel:

3*%24-18/3+10 = 76
3*%(24-18)/(3+10) =1

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

ignden|neattedev enstErdey aiByeas elazd ek Peggtamim o d EPidtali @ edsm ZBjfe ro steuem
41 BASDSimb ifd ditdine icherart 711 Basic/Debug-Handbuch

Pages

- A A
Ee el aleCHCHECEISTE SIS0 M HDE

udr\}naa]ekanéemmWehmmtwmead@restﬂﬁtAWAykessmfemmztmmiuleedazum Beispiel ein
Bides\gres) 4sic 1600 4o X de zj neift laeginTeistierfi nie signifik dokgsriige Anvess angeg ebie Séartathesse plas
EpriiRiEiveoritienisgSenrRiernngoeterentrirrseiderikatmniyem Zsaniodisi warkeals
pHivelen Rips W aHZE 258N #m Bereich von 0 - 65535 behandelt. Beispiel: Die Anweisung PRINT
A000%E QR den korreldell WRRANSSSRARI-ING DMNEGER gibt PRINT 40000/3 -8512 zuriick, weil die
REATRERNET ka0 SIREY M EDYE NS Kenpignte, ein Hex-Wert sein, eine AND- oder USR-Funktion,
e AHBYEEkaR JYa@mark) oder ﬁtkgndmlit%q[qs;sjg(mg eine andere Speicherreferenz. Ein
W@ﬁE‘éqfiWEﬂ/?d’éﬂf?é@@liE@é{%YlﬁeBﬁﬁtpHﬁﬁi\?%@H’é{ﬁﬁte‘?ﬂiéﬂﬁi%ﬁfﬁ@é@sﬁﬁcﬁ@ﬁkﬁe&ﬁ@w&mﬂ
R@@Hf@%@?@lﬂ%g}?gvﬁﬁ%eéﬁ?d‘\’ﬂ%h tmuster, wie unten gezeigt:

Funktionen) . .
<e_| el Wenny eispielsweise die bendtigte Adresse vom Wert von C abhangt, Basic/Debug kann die
B&%?%}urig dyeehfihren:

Basic/Debug unterstutzt zwei Funktionen: AND (logisches UND) und USR, das eine Maschinensprache-

Etelbde @UGTA e Punktionsrimilseenctaitiones AU eHoks SRIA- NS FYRKLIORI MHIS HRBiNsse.

Opgrand behanqelt, genauso wieT eine Variable, Konstante oder Speicherreferenz. .Sie andert _nicht die
BélielERdesRSOIRE NG HRBABEAIIREPY O FlitikbBhrorefckiessstrERI 9t 187 Jis-REREderiehgen.
ma@hb‘ﬁﬁh"f’é‘i?,r]‘il ist ein Wert auBerhalb des normalen Druckbereich. so wird dieser mit folgender
Anweisung komplett ausgegeben:

kvgische Funktionen

PRINT N\10; N-N\10*10

08-09"enthé_lt der) den Anfang des BASIC-Programms. . .
ANRABRNiE B apitoRss LYNDiA%EER KR YELRIAE! YRYEe i LIRSt ARRKSLGRg 7B ShER, Bits
%3%%‘% 6%%'?&'5?&5{ ﬁ%'%ﬁr‘erkannt werden Basic/Debug sind:

AND (ALﬂsd_ruck, Ausdruck)

= gleich

DiE beiddrASdriReE WwéthieA Husgewertet, dann ihre Bitmuster UND-verkniipft. Zum Beispiel gibt

AND (3,'6}%1%“%8(’1: 2 zuruck. Wenn nur ein Wert in Klammern steht, wird er mit sich selbst verknupft.
<> ungleich

Féir l0gig¢deODER ergénzen Sie die AND-Funktion um das Subtrahieren jedes Elements von -1. Zum
Betspiebemipriclidigandasadem ODER von A und B:

gasic/Deb% terstlitzt keine Bruchzahlen, daher wird Rest der Division.in der zweiten Zeile

-1-AND(-1-A, -1-B)
Speicherreferenzen
Die arithmetische Summe kann auch fur das logische ODER verwendet werden wenn bekannt ist,

dass die hinzuzufugenden Bits vorher Null sind. _
BasiC/Debug kann die internen Z8671-Register direkt ansprechen und alle externen Speicher (>

100h). Der Inhalt einer beliebigen Adresse kann untersucht und RAM geandert werden.

M%&QI&F&&?B&Q&M&M 1rf-ﬁ||'9’n o%lr!:\dressweise Zugriff:

R I3 O RS 3o i S S Al e Aenter M Flschinensprache
USRI B EMRIFRR LSS PhpKBasic/Debug.

Basic/Debug kann eine Maschinensprache-Subroutine aufrufen, die einen Wert flr die weitere
Berechnung durch die USR-Funktion zurlick gibt. Um ein Unterprogramm aufzurufen, das keinen Wert
zurlckgibt, verwenden Sie den GO@ Befehl.

Nachdem das Unterprogramm flr die Maschinensprache zusammengestellt wurde, speichern Sie es
im Speicher, der sonst nicht von Basic/Debug belegt wird (Programm oder Stack).

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

08:07 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

Verwenden Sie die Adresse der ersten Anweisung des Unterprogramms als erste Argument der USR-
Funktion wie folgt:

USR (%2000)

Basic/Debug fuhrt alles aus, was es an dieser Adresse findet. Wenn es keine Maschinensprachroutine
am Standort gibt, ist das Ergebnis undefiniert. Auf die Adresse kdnnen ein oder zwei Werte folgen, die
vom Unterprogramm verarbeitet werden kénnen. Zum Beispiel:

USR (%2000, 256, C)

Die Adresse und die Argumente sind Ausdrucke, die durch Kommas getrennt sind. Basic/Debug
Ubergibt die Werte an das Unterprogramm in den Registern 18-19 und 20-21 und erwartet den
resultierenden Wert in 18-19 zurtck. Dieser resultierende Wert wird verwendet, um zu beenden die
Auswertung des Ausdrucks.

Die Register, in denen die Argumente Ubergeben werden, hangen von der Anzahl der Argumente
innerhalb der Klammern ab. Zum Beispiel ruft die Funktion USR(%700,A) das Unterprogramm bei
%700 auf und Ubergibt ihm die Variable A im Register 18-19. USR(%700,A,B) jedoch Ubergibt A in
20-21 und B in 18-19. In beiden Fallen muss das Maschinensprachen-Unterprogramm den
Rlckgabewert in 18-19 Ubergeben:

USR Arguments and Registers

call R18-19 contains R20-21 contains
USR (%700, A, B) B A
USR (%700, A) A A

Das Unterprogramm fur die Maschinensprache muss den folgende Anforderungen gentigen: es muss
mit einem RET (hex AF) enden, der zurtickzugebende Wert muss in 18-19 belassen werden, es dlrfen
nur freie Register verwendet werden, die im Anhang aufgeflhrt sind. Der Registerzeiger ist so
eingestellt, dass er auf 16-31 zeigt. Damit kdnnen die Argumente direkt aus den Arbeitsregistern r2-r3
und r4-r5 abgerufen werden. Der Registerzeiger darf verandert werden. Er muss am Ende auch nicht
restauriert werden.

Die einzelnen Anweisungen von Basic/Debug

GO@ GO '@' address [',' arg | ['," arg_2]]

GO@%E000, A, B
G0@%700

Der GO@-Befehl verzweigt bedingungslos zu einem Maschinensprachen-Unterprogramm. Er darf nur
verwendet werden, wenn das Unterprogramm keinen Wert zurtckgibt. Das erste Argument ist die
Adresse des ersten Bytes des Subroutine. Die letzten beiden optionalen Argumente werden
verwendet, um zu Ubergeben Werte an das Unterprogramm. Im Gegensatz zur USR-Funktion wird der
Inhalt von R18-19 verworfen und es wird kein Wert zurlickgegeben. Ansonsten Ubergibt GO@
Argumente an die Unterprogramm auf die gleiche Weise wie USR (d.h. in Registier 18-19 und 20-21,

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 5/16 Basic/Debug-Handbuch

S.0.).

GOSUB GOSUB expression

GOSUB 50
GOSUB C
GOSUB B*100

Im Gegensatz zu Dartmouth Basic steht nach dem Schlisselwort GOSUB entweder die Nummer der
ersten Zeile des Unterprogramms oder ein Ausdruck, der die Subroutine-Zeilennummer ergibt. Das
Unterprogramm muss mit RETURN beendet werden.

GOSUB speichert die Nummer der nachsten zu auszufuhrenden Zeile. RETURN fuhrt das Programm an
dieser Zeile fort. GOSUB muss der letzte Befehl in seiner Zeile sein. Ein Unterprogramm kann ein
anderes aufrufen. Die RETURN-Anweisung am Ende des zweiten Unterprogramms kehrt nach
Ausfihrung zurick zum ersten Unterprogramm. Auf diese Weise kdnnen Unterprogramme
verschachtelt werden.

GOTO GOTO expression

GOTO 100
GOTO %FF
GOTO B*100

GOTO andert bedingungslos den Programmablauf. Im Gegensatz zum Dartmouth Basic akzeptiert
Basic/Debug Ausdricke, die dem Schlisselwort GOTO folgen. Diese Funktion ermdglicht eine Variable
zur Auswahl einer Zeilennummer. Zum Beispiel, wenn die Variable G 1, 2 oder 3 entspricht, und Zeile
100, 200 oder 300 jeweils ausgefuhrt werden soll, verwenden Sie die folgende Anweisung:

GOTO G*100

GOTO wird oft im Direktmodus flr interaktives Debuggen verwendet, weil GOTO in den
Ausflihrungsmodus wechselt. Im Gegensatz zum RUN-Befehl kann GOTO die Zeilennummer angeben,
in der die Ausfuhrung erfolgen soll.

GOTO muss immer die letzte Anweisung in einer Zeile sein.

IF/THEN IF expression relational_op expression [THEN] statement

IF A>B THEN PRINT "A>B"

IF A>B "A>B" das gleiche, s. PRINT
IF X=Y IF Y=Z PRINT "X=Z"

IF A<>B I=0:J=K+2:G0TO 100

IF 1=2 THEN this part never matters

Der IF/THEN-Befehl wird fur bedingte Operationen und Verzweigungen verwendet. statement kann
eine andere Anweisung sein oder eine Zeilennummer, oder eine Liste von durch Doppelpunkte
getrennten Anweisungen. Jede dieser Aussagen kann ein anderes IF sein. Das Schlusselwort THEN
kann weggelassen werden, um Speicherplatz zu sparen. Ebenso darf GOTO vor einer Zeilennummer
entfallen.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

08:07 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

IF vergleicht den Wert des ersten Ausdrucks mit dem Wert des zweiten. Wenn die durch den
relationale Operator angegebene Beziehung wahr ist, dann werden die folgenden Anweisungen
ausgefuhrt. Wenn die Beziehung nicht wahr ist, dann wird die nachste Zeile ausgefuhrt.

Es gibt nur zwei Situationen, in denen das Schlisselwort THEN nicht weggelassen werden darf: Es darf
nicht weggelassen werden, wenn der zweite Ausdruck mit einer dezimalen oder hexadezimalen
Konstante endet und eine Zeilennummer statt einer Anweisung verwendet wird. Zum Beispiel:

IF X <1 THEN 1000

Die obige Anweisung erfordert ein THEN, um die Zahl vom zweiten Ausdruck von der Zeilennummer
zu trennen. THEN kann jedoch durch Umordnen der Ausdricke aus der Anweisung entfernt werden:

IF 1 > X 1000

Die zweite Situation, bei der THEN nicht weggelassen werden darf, ist wenn der zweite Ausdruck mit
einer hexadezimalen Konstante endet, und der Anweisungsteil eine LET-Anweisung ist, in der das
Schlusselwort weggelassen wurde und die Variable zwischen A und F liegt. Beispiel:

IF Z > %100 THEN A = Z

Leerzeichen anstelle des THEN verhindern die Interpretation des Variablen-Buchstabens als
Hexadezimalwert nicht, weil Leerzeichen ignoriert werden. THEN muss daher zum Trennen enthalten
sein.

INPUT/IN INPUT|IN variable (', variable)*

IN C, E, G
INPUT A

Diese Anweisungen geben eine Eingabeaufforderung ,7“ aus, und lesen dann die Eingabewerte von
der der Tastatur und speichern sie in den angegebenen Variablen. Das sind zwei der drei
Anweisungen, die einen Ausdruck einer Variable zuweisen.

Jeder Befehl akzeptiert Werte flr eine Liste von einem oder mehreren Variablen. Wenn der Benutzer
nicht so viele Werte eingibt, wie bendtigt werden, wiederholen beide Befehle die
Eingabeaufforderung, bis die erforderliche Anzahl der Werte eingegeben werden. Die Befehle
unterscheiden sich in der Art und Weise, wie sie zusatzliche Werte verarbeiten, die vom Bediener
eingegeben wurden.

INPUT verwirft alle im Puffer verbleibenden Werte von vorherige IN-, INPUT- oder RUN-Anweisungen
und fordert neue Daten an vom Betreiber. IN verwendet alle Werte, die im Puffer verbleiben und
fordert dann neue Daten an.

Im Gegensatz zu Dartmouth Basic akzeptiert Basic/Debug allgemeine Ausdricke als Eingabe. Es
akzeptiert auch Variablen, die bereits ein Wert zugewiesen wurde. Eine Variable, die einen Wert am
Anfang der Liste zugewiesen bekam, kann verwendet werden, um spater eine weitere Variable in der
Liste zu definieren. Beispielsweise kann die Anweisung INPUT C,A 10,C*5 als gultige Eingabe
verarbeiten.

Wenn ein Programm vom Bediener die Eingabe einer Liste von Werten anfordert, muss er

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 7/16 Basic/Debug-Handbuch

maoglicherweise jedes Element durch ein Komma trennen. Kommas kdnnen weggelassen werden,
wenn sie nicht zur direkten Auslegung erforderlich sind. Leerzeichen werden ignoriert. Die folgenden
Beispiele zeigen, wie Trennzeichen verwendet werden, um die Interpretation von Eingabewerten zu
andern:

? %123,A,ND(56) (hex 123, Variablen A,N,D, dezimal 56)

? %12 3AND(56) (hex 123A, Variablen N, D, dezimal 56)

? %123,AND(56) (hex 123, Wert von 56 mit sich selbst UND-
verknupft)

Da Basic/Debug nur einen Eingabezeilenpuffer hat, werden INPUT und IN im Direkt- und im Run-Modus
unterschiedlich ausgefihrt. Im Direktmodus Uberlagert und zerstért die Benutzerantwort den INPUT-
oder IN-Befehl, der es angefordert hat. Folglich ist es egal, wie viele Variablen nach dem
Schlusselwort INPUT aufgelistet sind, nur die erste wird den Eingabedaten zugewiesen.

IN kann jedoch im Sofortmodus Listen mit Variablen und Ausdricken zuweisen, wenn beide Listen
abwechselnd in die Befehlszeile. Zum Beispiel:

IN A, 10, B, 1 5, C, 20

Wenn die obige Zeile im Sofortmodus ausgefiihrt wird, holt Basic/Debug die erste Variable, A, vom
Tastatur-Puffer und rickt den Pufferzeiger vor. INPUT wirde an dieser Stelle eine neue Eingabezeile
von der Tastatur anfordern, aber IN verwendet erst alle Werte im Puffer, bevor das ,,7“ ausgegeben
wird, kehrt zum Puffer zurlck und weist A den Wert 10 zu. Der Vorgang wird fortgesetzt, bis alle
Variablen und Werte aufgebraucht sind. Wenn die Befehlszeile mit einer Variablen geschlossen wird,
wird das ,?“ ausgegeben.

Im Allgemeinen ist es einfacher, LET zu verwenden, um Variablen im Sofortmodus Werte zuzuweisen.

Um dem Bediener zu helfen, die richtige Anzahl und Art von Werten einzugeben, wirs IN und INPUT
normalerweise eine PRINT-Anweisung vorangestellt, um die Anforderungen zu beschreiben. Wenn die
PRINT-Anweisung mit einem Semikolon abgeschlossen ist, wird der INPUT-Prompt ,?“ in derselben
Zeile ausgegeben.

Obwohl Basic/Debug keine Zeichenketten unterstitzt, kann der INPUT-Befehl verwendet werden, um
ein einzelnes Zeichen als Benutzerantwort einzugeben:

100 PRINT "BITTE JA ODER NEIN EINGEBEN"
110 LET N=J-1

120 DRUCK "VERSTEHEN SIE";

130 INPUT N

140 IF N=J THEN PRINT "GUT!"

In diesem Beispiel spielt der Wert von] keine Rolle. Wenn der Benutzer | oder JA eingibt, dann ist die
Variable N gleich J. Wenn der Operator N, NEIN oder NOCH NICHT eingibt, dann ist die Variable N
unverandert und ungleich J. Um nach anderen Buchstaben als J oder N zu suchen, verwenden Sie
einen ungewohnlichen Wert far J, z. B. -32323, und Uberprifen Sie sowohl J als auch J+1 nach der
Eingabe.

LET [LET] left_part '=" expression

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09 ooyt ronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

08:07
LET A = A+l
@ 1020 = 100

~8 = %100*C

LET weist einer Variablen oder einem Speicherort den Wert eines Ausdrucks zu. Der linke Teil der
Anweisung kann ein beliebiges alphabetisches Zeichen A-Z sein, eine Speicherreferenz oder eine
Register-Referenz. Der Wert des Ausdrucks wird entweder im Speicherort, oder in den Speicherort der
Variablen gelegt, und kann bei jedem spateren Auftreten der Variablen verwendet werden. Da das
Gleichheitszeichen die Syntax dieses Befehls eindeutig macht, kann das Schlisselwort LET
weggelassen werden.

Der Wert einer Variablen kann unter Verwendung derselben neu berechnet werden wie in der
inkrementierenden Anweisung:

LETB=B+1

LET kann verwendet werden, um Werte im Speicher zu speichern, indem eine Speicherreferenz auf
der linken Seite der LET-Zuweisung verwendet wird:

LET@1024=B/2

Wenn diese Anweisung ausgefuhrt wird, wird die Speicherreferenz zuerst berechnet, dann wird der
Ausdruck ausgewertet und seine Wert gespeichert. Eine Wort-Referenz speichert das hoherwertige
Byte an der adressierten Stelle. Das niederwertige Byte wird in der nachsthoheren Adresse
gespeichert. Seien Sie vorsichtig bei der Anderung interner Register oder des Bereichs, in dem das
Programm im Speicher abgelegt ist, weil unsachgeméaBe Anderungen katastrophale Ergebnisse haben
kénnen.

LIST LIST [anfangszeile [',' endzeile]]

Dieser Befehl wird im interaktiven Modus verwendet, um eine Auflistung der gespeicherten
Programmzeilen zu generieren. Die optionalen Zeilennummern geben den Zeilenbereich an, die
aufgeflhrt werden. Wenn nur eine Zahl angegeben wird, wird nur diese Zeile angezeigt. Wenn auch
eine Endzeile enthalten ist, werden Anfangszeile bis einschlieBlich Endzeile aufgelistet. Ein LIST-Befehl
ohne Argumente listet alle Zeilen des Programms auf.

Der LIST-Befehl wird im Allgemeinen im Sofortmodus verwendet, Es kann jedoch im
Ausfuhrungsmodus fur einfachen Text verwendet werden wird bearbeitet. Weil Basic/Debug
Programmzeilen nach der Zeilennummer bis zur Laufzeit nicht analysiert, kann man Text verarbeiten,
wie im folgenden Programm gezeigt:

100 REM THIS PROGRAM PRINTS A MESSAGE N TIMES
110 IF N>0 THEN 200

120 : PRINT "HOW MANY TIMES";

130 : INPUT N

200 REM BEGIN LOOP

210 : LET N=N-1

220 : LIST 1000, 1070

230 : IF N>0 THEN 210

240 STOP

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 9/16 Basic/Debug-Handbuch

1000| This is a message saved in memory. It will be
1010 |printed when the program is RUN. If you tried to
1020 |execute lines 1000 to 1070 you would get an error
1030 |[message. But in this program, lines 1000+ are not
1040 |executed, just LISTed.

1050

1060| (Signed)

1070 |

Flnf Zeilen dieses Programms sind eingeruckt, um das Programm strukturiert anzuzeigen und um das
Lesen zu erleichtern. Der Doppelpunkt verhindert das Entfernen der Leerzeichen vor der ersten
Anweisung der Zeile. Wenn das Programm ausgefuhrt wird, wird die Meldung genau so gedruckt, wie
es in den Zeilen 1000-1070 erscheint, einschlieBlich der vertikalen Striche am linken Rand. Der
vertikale Strich wird bendtigt, um Zeile 1000 einzuricken; die anderen sind fur Konsistenz enthalten.
zusammenfassend: Verwenden Sie einen Doppelpunkt, um eine Anweisung einzurticken, weil
Basic/Debug es als Anweisungsbegrenzer erkennt und verwenden Sie den vertikalen Strich, um
Textzeilen einzurlcken, da dies das am wenigsten ablenkendes Zeichen auf der linken Seite beim
Ausdruck ist.

NEW

Der NEW-Befehl setzt den Zeiger 10-11 auf den Anfang des Benutzerspeichers, wodurch der
Speicherplatz als leer markiert wird und bereit ist, ein neues Programm speichern. Wenn dieser Befehl
falschlicherweise eingegeben wird, brauchen Sie keine Panik bekommen, das gespeicherte Programm
ist nicht wirklich weg. Obwohl es maglicherweise nicht editiert werden kann, kann es zumindest durch
Setzen der Zeilennummer der ersten Zeile auf eine sehr kleine Zahl wieder aufgelistet werden.
Benutzen Sie LET-Anweisung im Direktmodus:

LET ©~"8=1

Das Programm scheint nach dieser Wiederherstellung zu funktionieren, es ist jedoch kein Speicher-
Uberlaufschutz mehr vorhanden, und das Programm kann zerstért werden.

- vp: es muss zusatzlich Register 4-5 auf 20h Byte nach Programmende (oder hdher) gesetzt werden,
dann ist alles korrekt, z.B.:

$4=%89FF
PRINT PRINT Argument ,|; Argument ...

PRINT HEX (255)
“THE ANSWER IS ";X
(A*100)

+%800 + Z

PRINT A, B, C, D, E

Der PRINT-Befehl gibt seine Argumente (Texte oder Zahlenwerte) auf dem Bildschirm aus. Die
Trennzeichen '," und ;' steuern die Art, wie die Argumente ausgegeben werden.

In AnfUhrungszeichen eingeschlossene Zeichen und Leerzeichen werden genau so ausgegeben, wie
sie eingegeben wurden. Anfihrungszeichen sind nicht ausgebbar. Wenn ein Text mit einem Zitat

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

08:07 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

unterbrochen werden muss, verwenden Sie stattdessen das einfache Anfliihrungszeichen oder den
Apostroph.

Das Schlisselwort PRINT kann entfallen, wenn die Anweisung mit einer Zeichenkette oder einem
Vorzeichen beginnt. PRINT ohne Argument oder Trennzeichen generiert eine Leerzeile. Jeder PRINT-
Anweisung kann ein Doppelpunkt und weitere Anweisung folgen.

Wenn ein Ausdruck als Argument fur PRINT eingegeben wird wertet Basic/Debug ihn aus und listet
seinen Dezimalwert auf dem Bildschirm. Nur die signifikanten Stellen werden gedruckt, fUhrende
Nullen und Divisionsreste nicht. PRINT gibt Zahlen als ganze Zahlen mit Vorzeichen aus. Eine Methode
zum Drucken von unsignierten Werte mittels '\' ist weiter oben dargestellt.

Um einen Hexadezimalwert zu DRUCKEN, verwenden Sie die Syntax:
PRINT HEX (Ausdruck)

Basic/Debug wertet den Ausdruck aus und gibt sein positives hexadezimales Aquivalent aus. Der
PRINT-Befehl kann keine negative Hexadezimalzahl auflisten.

Im Gegensatz zu Zeichenketten muss der HEX-Funktion das Schlisselwort PRINT vorangestellt
werden, ebenso wie jeden Ausdruck, der mit einer Variablen beginnt. Das Schlusselwort kann jedoch
vor einem Ausdruck weggelassen werden, wenn dem Ausdruck ein ,+*“ oder ,-“ vorangestellt ist. Zum
Beispiel: -10 + 20 oder +20 - 10 als Anweisungen eingegeben gibt den Wert von 10 aus, aber 20 - 10
fuhrt zu einer Fehlermeldung.

Wenn ein Komma verwendet wird, um Elemente in PRINT zu trennen, wird zwischen jedem Element
ein Tabulator generiert. Die Tabulatoren befinden sich in Abstanden von acht Leerzeichen auf dem
Bildschirm. Zum Drucken linksbundiger Spalten schreiben Sie einfach alle Elemente, die auf einer
Zeile in einer PRINT-Anweisung gedruckt werden sollen, durch Kommas getrennt in die Anweisung.
Das erste Zeichen des Datenelements erscheint in die Spalte, die den Tabulator enthalt. Wenn der
Ausdruck langer ist als acht Zeichen, geht Basic/Debug bis zum nachsten verfugbaren Tabulator, um
das nachste Element zu drucken.

Um einen Argument direkt nach dem anderen ohne Abstand zu drucken, verwenden Sie ein
Semikolon als Trennzeichen. Zum Beispiel gibt

PRINT"AUSGABE="; X

den Wert der Variablen X direkt nach dem Gleichheitszeichen aus. Wird eine PRINT-Anweisung mit
einem Semikolon beendet, wird kein abschlieBender Wagenrucklauf-Zeilenvorschub erzeugt. Das
nachste Argument einer nachfolgenden PRINT-Anweisung erscheint in derselben Zeile wie das
Argument, das vor dem Semikolon steht. Ein Komma am Ende der PRINT-Anweisung unterdrlckt auch
den Wagenrucklauf, jedoch erscheint das nachste zu druckende Element am nachsten Tabstopp.

Um rechtsbindig ausgerichtete Spalten zu drucken, mussen fihrende Leerzeichen hinzugefugt
werden. Basic/Debugging kann nur in Anfihrungszeichen eingeschlossene Leerzeichen drucken. Das
folgendes Beispielprogramm flgt fihrende Leerzeichen zu N hinzu:

200 IF N<10000 THEN PRINT " *;
210 IF N<1000 THEN PRINT " *“;
220 IF N<100 THEN PRINT " "“;

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 11/16 Basic/Debug-Handbuch

230 IF N<10 THEN PRINT " "“;
240 PRINT N

Basic/Debug kann die meisten Steuerzeichen drucken, wie z.B. bell, wenn sie in einer Zeichenkette in
Anflhrungszeichen enthalten sind. Die folgende Steuerzeichen kénnen nicht gedruckt werden:

Rickschritt (7H)
Escape (ESC)
Wagenricklauf (CR)
Zeilenvorschub (LF)
léschen (DEL)
Null (NUL)

Der Zirkumflex ,~" zeigt an, dass die Strg-Taste gedrickt bleibt, wahrend die angegebene Taste
gedruckt wird. Wenn Steuerzeichen gedruckt werden, kann es sein, dass der Cursor-Zeiger von
Basic/Debug nicht mehr die korrekte Position des Bildschirm-Cursors enthalt. Das Drucken in Spalten
mit Kommatrennzeichen schlagt dann fehl. Zum Beispiel:

5 X=0
10 PRINT "X*G", X
20 PRINT "X", X

Wenn das obige Programm ausgefuhrt wird, erscheint folgende Ausgabe:

X 0
X 0

Die Anweisung in Zeile 10 flgt nur sieben Leerzeichen ein, weil das Control-G-Zeichen den
Basic/Debug-Cursor schon um eine Stelle nach rechts von der aktuellen Cursorposition gesetzt hat.

REM REM Kommentar

REM CONTROL-SCHLEIFE
REM UNTERPROGRAMM NAME
REM CODE - ERKLAERUNG

Der REM-Befehl wird verwendet, um Kommentare, Anmerkungen oder andere erklarende Nachrichten
in den Code einzufugen. Basic/Debug ignoriert alles, was dem REM-Schlusselwort folgt, daher muss
REM und sein Kommentar der letzte Befehl in einer Zeile sein. Der gemaRigte Gebrauch von
Anmerkungen in einem Programm erleichtern das Lesen und Pflegen. Bemerkungen nehmen jedoch
Platz im Speicher ein und sollten flir maximale Platzausnutzung weggelassen werden.

RETURN RETURN|RET

RETURN
RET

RETURN ist immer die letzte Anweisung eines Unterprogramms und kann als RET abgeklrzt werden.
Es braucht kein Argument, weil GOSUB die nachste Zeilennummer speichert, die nach RETURN
auszufuhren ist. RETURN muss die letzte Anweisung in einer Zeile sein.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

08:07 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

Wenn ein Unterprogramm ein anderes aufruft, kehrt der RETURN-Befehl am Ende des zweiten
Unterprogramms zum ersten zurick. Auf diese Weise konnen Unterprogramme so tief verschachtelt
werden, wie der fir den GOSUB-Stack verflgbaren Speicher reicht.

RUN RUN [Ausdruck '," Ausdruck ...]

RUN
RUN 17, %200, 23

Dieser Befehl initiiert die sequentielle Ausfuhrung aller Anweisungen im Speicher abgelegt. RUN wird
nur im Sofortmodus genutzt. Datenwerte fur den ersten IN-Befehl kdnnen durch Kommas getrennt
dem Schlusselwort RUN folgen:

RUN 45, -583
STOP STOP
STOP

STOP beendet die Programmausfuhrung ordnungsgemaf und Idscht den GOSUB-Stack. Eine STOP-
Anweisung erfolgt automatisch nach der letzten Programmzeile, daher kann ein beendender STOP-
Befehl aus dem Programm weggelassen werden, um Speicherplatz zu sparen.

Die Programmausfiihrung wird oft durch einen Fehler abrupt beendet. Nach dem Andern der
fehlerhaften Anweisung im Direktmodus kann der Benutzer den Lauf neu starten, indem er GOTO mit
den entsprechenden Zeilennummer nutzt, oder Sie setzen das Programm mit einem STOP-Befehl
zuriuck, und starten das Programm mit RUN erneut von Anfang an.

Fehler

Fehler treten auf, wenn Basic/Debug eine Anweisung nicht versteht. Ein Fehler bringt das System in
den Direktmodus zurtck. Alle Variablen und der GOSUB-Stack bleiben dabei unverandert. Es wird eine
Fehlermeldung ausgeben. Fehlermeldungen erscheinen am Terminal im folgenden Format:

Fehlercode AT Zeilennummer

Die numerischen Fehlercodes sind unten aufgelistet. Wenn der Fehler aufritt, wahrend ein Programm
lauft, enthalt die Fehlerausgabe eine Zeilennummer. Gibt es Fehler im Direktmodus, wird keine
Zeilennummer aufgelistet. Ein Fehler tritt auf, wenn das Schltsselwort oder Argument nicht erkennbar
ist oder nicht ausfuhrbar ist, oder im Falle einer IN- oder INPUT-Anweisung, wenn die Dateneingabe
durch den Betreiber unverstandlich ist. Ein ~G (Strg-G, Bell) wird mit der Fehlermeldung an den
Bildschirm gesendet.

Fehler (Z8671):

11 Program line has a line number 0 or greater than 32768.
17 Memory full; new line not inserted.
26 No program to RUN.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 13/16 Basic/Debug-Handbuch

37 GOTO is not at the end of program line.

41 Cannot GOTO negative or zero line number.

44 Line number in GOTO does not exist.

66 GOSUB is not at the end of the line.

71 Unrecognizable statement type beginning with GO.
81 Unrecognizable statement type, or '=' missing from LET statement.
98 LET is missing its '=".

140 Quote missing in PRINT statement.

171 RETURN is not at the end of the line.

172 GOSUB stack underflow.

175 The GOSUB for this RETURN no longer exists.

181 STOP is not at the end of the line.

207 INPUT variable name is missing.

210 IN or INPUT expects variable name.

247 LIST is not at end of line.

310 Unrecognizable relation in IF statement.

346 Out of memory on GOSUB or expression evaluation.
381 Divide by zero.

391 Missing parenthesis in AND or USR call.

427 Syntax error in expression, or unrecognizable statement type.
431 Missing right parenthesis in expression.

Speichernutzung

Standard: 1020 (Basic-Programm) bis FFEF (Arbeitspeicher)
xx=10, yy=FF

Wenn nur ROM vorhanden ist, so ist xx=0 und yy=0. Dann werden nur interne Register genutzt. In
diesem Fall sind nur die Variablen A..L sicher nutzbar. M..Z wird vom Gosub-Stack mitgenutzt.

; Yy = hi(highest RAM), if no RAM, yy=0 means internal registers
;XX hi(BASIC-Pgm)

; YYF1 - yyFF Unused.

; yy68 - yyFO Input line buffer, used for editing in immediate mode and
; user response to IN or INPUT request in run mode.

; Reg. 68-7F im ROM-Mode Input-Buffer sowie Expression Evaluation

; Expression Evaluation stack grows from 7F (hex) down, and the line
; buffer grows from 68 (hex) up.

; yy56 - yy67 Unused.

; Yy54 - yy55 Storage for variable z.

; Yyb3 - yy52 Storage for variable Y.

; Yy21 - yy22 Storage for variable A.

; Yy20 Base of GOSUB stack. Stack grows down to lower memory addresses,
; and may extend until it reaches the top of the user's Basic/Debug
program.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09

elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

08:07

; Reg. 40-67 im ROM-Mode GOSUB-Stack

; Register

; 04-05 => moves up from xx00 High boundary of user program plus stack
reserve (20h).

; 06-07 => moves down from yy20 Low boundary and top of GOSUB stack.

; 08-09 => xx00 Bottom of user memory; first line of user
program.

; OA-0B => yy20 Top of user memory, high boundary of GOSUB
stack.

; Initially set to yy20 of high page of RAM.

; 0C-0D => yy68 to yyFO Last character entered in line buffer.
Backspace

; subtracts one from this pointer; escape resets it

; to the beginning of the buffer. R12 is the page

; number for variables and the input buffer.

; OE-OF => yy68 to yyFO Next value to be used from line buffer.
INPUT

; command resets to the beginning of the buffer;

; IN uses all values in the buffer before resetting.

; 10-1F internal Basic/Debug

;20 current cursor location

; 40-7F Expression Evaluation Stack

Programmformat

Programmzeilen werden im Folgenden Format gespeichert:

06 60
Zeilenn
in bina

Das Ende

10 I=5

20 PRIN
30 I=I-
40 STOP

8800h:
8810h:
8820h:
8830h:
8840h:

LIST 0
ummer Anweisung in ASCII Null
.

des Programms im Speicher wird durch FFFF (hex) gekennzeichnet. Beispiel:

T "WELCOME TO BASIC/DEBUG"
1: IF I>0 GOTO 20

00 OA 49 3D 35 00 00 14 50 52 49 4E 54 22 57 45 ; ..I=5...PRINT"WE
4C 43 4F 4D 45 20 54 4F 20 42 41 53 49 43 2F 44 ; LCOME TO BASIC/D
45 42 55 47 22 00 00 1E 49 3D 49 2D 31 3A 20 49 ; EBUG"...I=I-1: I
46 20 49 3E 30 20 47 4F 54 4F 20 32 30 00 00 28 ; F I>0 GOTO 20..(
53 54 4F 50 00 FF FF 00 00 00 00 00 00 00 00 00 ; STOP.yy.........

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

2026/01/11 18:08 15/16 Basic/Debug-Handbuch

Direkte Zeichen-Ein-Ausgabe

Basic/Debug-Programme kénnen durch Aufrufen der direkten Ein-/Ausgabetreiber via USR- oder GO@-
Anweisung Binardaten lesen und schreiben.

input %8053 (ES1988, orig Z8671 9%54)
output %8058 (ES1988, orig Z8671 %61)

Das folgende Beispielprogramm druckt das Hex-Aquivalent eines ASCIlI-Zeichens

10 PRINT "INPUT A CHARACTER, PLEASE";

20 C = USER (%8053)

30 PRINT" THE HEX VALUE OF "“;

40 GO@ %8058, C

50 PRINT" IS "; HEX (C);". SHALL WE DO ANOTHER?";
60 Q = USER (%8053)

70 PRINT : IF Q = %59 GOTO 10

80 REM %59 IS AN ASCII "Y".

Mastermind

Beispielprogramm nach ,Zilog z8671-7-chip-computer*”
Erlduterungen

e ~10+2 = YY22 Pointer auf Variable A

e THEN, LET, PRINT vor ,“, GOTO vor Zahl nach IF, Leerzeichen kdonnen entfallen,
FUr Tempo und Lesbarkeit sollten sie stehen.

e Y/N“:INPUT X - Eingabe von Variablen ist zulassig, ,Y* wird als Variable ausgewertet
Die nachfolgende Zeile vergleicht X mit dem Wert Y. Gute Idee!

10 REM MASTERMIND

40 A=RND(10):B=RND(10):C=RND(10) :D=RND(10)
50 "":I=0

100 "GUESS ",:IN E,F,G,H

110 I=I+1

300 J="10+2:K=J+8

301 L=0

302 R=0:P=0

310 IF ~J="K LET P=P+1

320 J=J+2:K=K+2:L=L+1:IF 4>L GOTO 310
330 J="10+2:K=J+8

331 L=0

340 IF ~J="K LET R=R+1:7J="J+10:L=3
341 J=J+2

350 L=L+1: IF 4>L GOTO 340

351 J="10+2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/12/09
08:07

352 L=0

360 K=K+2:IF ~10+17>K GOTO 340

363 J="10+2:K=J+8

366 IF ~J>9 LET ~J="]-10

367 J=J+2

368 IF ~10+9>J GOTO 366

369 Y=1:N=0

370 "RIGHT "“;R;" PLACE ";P

380 IF 4>P GOTO 100

390 X=0:Y=1

400 "RIGHT IN ";I;" GUESSES;";"PLAY ANOTHER Y/N":INPUT X
410 IF X=Y GOTO 10

elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link: o
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240 ikt 3
i 2

Last update: 2021/12/09 08:07

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 18:08

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch?rev=1639037240

	Basic/Debug-Handbuch
	Zahlen
	Variablen
	Operatoren
	Speicherreferenzen
	Funktionen
	Logische Funktionen
	Maschinensprachfunktionen
	Die einzelnen Anweisungen von Basic/Debug
	Fehler
	Speichernutzung
	Programmformat
	Direkte Zeichen-Ein-Ausgabe

	Mastermind

