2026/01/11 00:37 1/16 Basic/Debug-Handbuch

Basic/Debug-Handbuch

ZILOG REFERENCE MANUAL 28671 SINGLE-CHIP INTERPRETER BASIC/DEBUG SOFTWARE
Basic/Debug meldet sich mit dem Prompt ;' und wartet auf Eingabe.

Alle Kommandos im Direktmodus und im Programmmodus maglich Zeilennummern 1 bis 32767
Korrektur der Eingabe nur durch DEL, nicht mit Kursor links !!!!

Mehrere Anweisungen kdnnen auf eine einzelne Zeilennummer folgen, wenn sie durch Doppelpunkte
getrennt werden. Mehrere Befehle in eine Zeile packen spart Speicherplatz. Die Anzahl der Befehle in
der Zeile ist nicht beschrankt, aber die Zeile darf nicht mehr als 130 Zeichen enthalten.

Basic/Debug ignoriert die Unterscheidung zwischen Gro8- und Kleinbuchstaben. Daher sind PRINT,
PrinT und print alles gultige Basic/Debug-Anweisungen. Zur guten Lesbarkeit wird hier alles in
Grollbuchstaben geschrieben.

Beispiele:

PRINT "Hallo"
IF C <> USR(A) %500
%1020 = 100
“DIE ANTWORT IST";X

Basic/Debug kennt finfzehn Schlisselworter (Beschreibung s. unten).

Leerzeichen diesen nur der Lesbarkeit. In der obigen Beispiel-Programmzeile trennt ein Leerzeichen
das Schlisselwort PRINT vom Argument ,,HALLO“. Obwohl es die Aussage einfacher macht, ist der
Leerraum flr Basic unnétig. Innerhalb einer Anweisung in einer Zeile ignoriert Basic/Debug alle
Leerzeichen. Eingegebene Leerzeichen bleiben jedoch im Programm und belegen Speicherplatz.
(AuBer zwischen Zeilennummer und erstem Zeichen, hier werden Leerzeichen entfernt)

print a
P RI NT A
PRINTA

sind alles gultige Anweisungen.

Wenn vor der Eingabe eine ganze Zeile geldscht werden muss, ist es schneller, die Escape-Taste zu
drucken, als mit Backspace durch den Zeilenpuffer zu gehen. Ein Escape-Tastendruck leert den Inhalt
des Zeilenpuffers.

Zahlen

Alle Berechnungen werden in zwei Acht-Bit-Registern durchgefuhrt, erfordern Sechzehn-Bit-Werte und
geben Sechzehn-Bit-Ergebnisse zuruck.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

Wenn ein Ergebnis sechzehn Bit Uiberschreitet, wird abgeschnitten und der Uberlauf wird verworfen.
Alle numerischen Werte werden intern in dargestellt 16-Bit binare Zweierkomplementform.

Numerische Werte reichen von -32768 bis +32767. Wenn eine Berechnung ergibt einen Wert
aullerhalb des negativen Bereichs, der Antwort wird als positive Zahl gedruckt. Wenn eine
Berechnung Ergebnis ist hdher als der positive Bereich, wird eine negative Zahl gedruckt.

Hexadezimalwerte werden haufig zur Adressierung verwendet da Hardwaregrenzen oft bei geraden
Hex-Adressen auftreten. Ganzzahlen ohne Vorzeichen zwischen 0 und 65536 kénnen in die Adresse
eingegeben werden.

Normalerweise werden nur Werte im Bereich von +32767 bis -32768 ausgegeben. Das Drucken von
Werten auBerhalb des Bereichs ist mit '\' moglich, s.u.

Basic/Debug kennt nur ganze Zahlen. Brlche kann nicht eingegeben werden, und der Bruchteil jedes
Ergebnisses ist verworfen. Im Folgenden sind Beispiele fur gultige Dezimal- und hexadezimale
Konstanten:

Dez: Hex:
123 %7B
256 %100

32766 %7FFE
32768 %3000

Variablen

Basic/Debug unterstitzt 26 Variablen. Jeder Buchstabe des Alphabets wird als Variablenname
verwendet.

Operatoren

Basic/Debug unterstitzt zwei Satze von Operatoren: arithmetische Operatoren und relationale
Operatoren. Basic/Debug erkennt die folgenden traditionellen Operatoren fur arithmetische
Funktionen:

Die Operationen werden von links nach rechts ausgefihrt. Dabei werden Multiplikation und Division
zuerst durchgefluhrt, gefolgt von Addition und Subtraktion. Dies kann durch die Verwendung von
Klammern geandert werden. Zum Beispiel:

3*%24-18/3+10 = 76
3*(24-18)/(3+10) =

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

Bybb’R’éﬁelsirden I mmtieieverwmmemj rByém; elagdnek Regptamim o d EPidtzli @ edeie /B fetardimen.

_______ Stifaicserplatz Basic/Debug-Handbuch

b

Basm/Deb&runterstutzt keine Bruchzahlen, daher wird Rest der Division.in der zweiten Zeile
-Siaeme koreneanydowen des Wotsgnatzdidresrs 70 ‘ingeéstentererer\Wdnessemmderapirlestn

Byreibwayl beisCGHIe hexrigziByaby it adgBgiendidfiigsselphlud das isisugew eit i Bybd mssedes

RisEER eI R pRietRR RERMBEEIANN (O (#8/8RERHEDYETRSHRr &R RN8end wird als
WRPERIGERN%e ganze Zahl im Bereich von 0 - 65535 behandelt. Beispiel: Die Anweisung PRINT
#o000%E QR den korre/tel WRRANS SSRARTNG DAY ibt PRINT 40000/3 -8512 zuriick, weil die

@F@Hﬁéﬁ\@? 'FQ@E}%REW@&BS’HEI@@}Q pi@nte, ein Hex-Wert sein, eine AND- oder USR-Funktion,
e AHBYEEkaR JYa@mark) oder fqgndmlﬁ%@ywmmg eine andere Speicherreferenz. Ein

AsHREK JEFDRUBLABE 8IS BEIRNCERL BRI B WRHT BEaRBIABFRE! ReRendier BsaistesAw@er
E@%@R@cﬁgﬁﬁmlwﬁﬁﬁ%ﬂ’ﬁmﬁu%%r durchfihren:

nung ‘q’ﬂ%uhren

Basic/Debug unterstutzt zwei Funktionen: AND (logisches UND) und USR, das eine Maschinensprache-

EiPRelbife SR es AunkHinseimiiseencbaitioines Ausd tikherin, FireE unidiomwitd wie ein

PretgRdehandelt, genauso wie eine Variable, Konstante oder Speicherreferenz. Sie andert nicht die
Rgﬁghtg@dr\ﬁﬁslgmﬂg@perm.Bagw/Debug durch mehrere Adressen erfolgen, um die erforderlichen
Ihép BY @148 Bperator kann auch zum Drucken von Werten gréRer als +32767 verwendet werden.
Angenommen, N ist ein Wert aulRerhalb des normalen Druckbereichs, so wird dieser mit folgender

kogische-Funlktionen

GReAENNalD den Ae1Ay¥apg des BASIC-Programms.
AND flhrt ein logisches UND aus. Es kann verwendet werden, um zu maskieren, zu drehen, Bits

R%ﬁﬁgﬂg@%a%%ﬁ%bs&i%%}‘en bedingte Beziehungen in eine IF-Anweisung. Die sechs

Aﬁ\lﬁ'? Pu%)r?eﬂato dkS“e in Basic/Debug genutzt werden, sind:

Igvlen %elsplelswelse die benétigte Adresse vom Wert von C abhangt, kann Basic/Debug die
o

Hie befd€d Alsdriicke werden ausgewertet, dann ihre Bitmuster UND-verkniipft. Zum Beispiel gibt

AND (B,E%%:%ﬂ%e&dffuﬂﬂcﬁ.i%nn nur ein Wert in Klammern steht, wird er mit sich selbst verknipft.
< einer

R logistgslODER ergénzen Sie die AND-Funktion um das Subtrahieren jedes Elements von -1. Zum

Beispiebetpricht folgendes dem ODER von A und B:
>= groler oder gleich

-1-AND(-1-A, -1-B)

59@1[‘*@!&“@EM@M%uch fur das logische ODER verwendet werden wenn bekannt ist,

dass die hinzuzufugenden Bits vorher Null sind.

Basic/Debug kann die internen Z8671-Register direkt ansprechen sowie den externen Speicher (>
ngHIIHéIh@ﬁi.%ﬁmwtq%ﬁ@W untersucht und RAM geandert werden.

Mit @ erfolgt ein byteweiser Zugriff, mit ~ der adressweise Zugriff:

A O S R Rl L R R R L I KRG schimensproche
urchgefuhrt werden muss aIs in a5|c/

° Byte auf A h

aé)lc?lggbug Eaargjn e%rteeﬁasc%ﬂ?ensprache Subroutine aufrufen, die einen Wert fur die weitere

Berechnung durch die USR-Funktion zurlick gibt. Um ein Unterprogramm aufzurufen, das keinen Wert
zurlckgibt, verwenden Sie den GO@ Befehl.

Nachdem das Unterprogramm flr die Maschinensprache zusammengestellt wurde, speichern Sie es
im Speicher, der sonst nicht von Basic/Debug belegt wird (auBerhalb Programm oder Stack).

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

Verwenden Sie die Adresse der ersten Anweisung des Unterprogramms als erstes Argument der USR-
Funktion wie folgt:

USR (%2000)

Basic/Debug fuhrt alles aus, was es an dieser Adresse findet. Wenn es keine Maschinensprachroutine
am Standort gibt, ist das Ergebnis undefiniert. Auf die Adresse kdnnen ein oder zwei Werte folgen, die
vom Unterprogramm verarbeitet werden kdnnen. Zum Beispiel:

USR (%2000, 256, C)

Die Adresse und die Argumente sind Ausdrlcke, die durch Kommas getrennt sind. Basic/Debug
Ubergibt die Werte an das Unterprogramm in den Registern 18-19 und 20-21 und erwartet den
resultierenden Wert in 18-19 zuruck. Dieser resultierende Wert wird verwendet, um die Auswertung
des Ausdrucks zu beenden.

Die Register, in denen die Argumente Ubergeben werden, hangen von der Anzahl der Argumente
innerhalb der Klammern ab. Zum Beispiel ruft die Funktion USR(%700,A) das Unterprogramm bei
%700 auf und Ubergibt ihm die Variable A im Register 18-19. USR(%700,A,B) jedoch Ubergibt A in
20-21 und B in 18-19. In beiden Fallen muss das Maschinensprachen-Unterprogramm den
Rlckgabewert in 18-19 Ubergeben:

USR Arguments and Registers

call R18-19 contains R20-21 contains
USR (%700, A, B) B A
USR (%700, A) A A

Das Unterprogramm fur die Maschinensprache muss den folgende Anforderungen genligen: es muss
mit einem RET (hex AF) enden, der zurlickzugebende Wert muss in 18-19 belassen werden, es dirfen
nur freie Register verwendet werden, die im Anhang aufgefuhrt sind. Der Registerzeiger ist so
eingestellt, dass er auf 16-31 zeigt. Damit kdnnen die Argumente direkt aus den Arbeitsregistern r2-r3
und r4-r5 abgerufen werden. Der Registerzeiger darf verandert werden. Er muss am Ende auch nicht
restauriert werden.

Die einzelnen Anweisungen von Basic/Debug

GO@ GO '@' address [',' arg_I [',' arg_2]]

GOE%E00O, A, B
G0@%700

Der GO@-Befehl verzweigt bedingungslos zu einem Maschinensprachen-Unterprogramm. Er darf nur
verwendet werden, wenn das Unterprogramm keinen Wert zurlickgibt. Das erste Argument ist die
Adresse des ersten Bytes des Subroutine. Die letzten beiden optionalen Argumente werden
verwendet, um Werte an das Unterprogramm zu Ubergeben. Im Gegensatz zur USR-Funktion wird der
Inhalt von R18-19 verworfen und es wird kein Wert zurickgegeben. Ansonsten Ubergibt GO@
Argumente an die Unterprogramm auf die gleiche Weise wie USR (d.h. in Registier 18-19 und 20-21,
S.0.).

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 5/16 Basic/Debug-Handbuch

GOSUB GOSUB expression

GOSUB 50
GOSUB C
GOSUB B*100

Im Gegensatz zu Dartmouth Basic steht nach dem Schlisselwort GOSUB entweder die Nummer der
ersten Zeile des Unterprogramms oder ein Ausdruck, der die Subroutine-Zeilennummer ergibt. Das
Unterprogramm muss mit RETURN beendet werden.

GOSUB speichert die Nummer der nachsten zu auszufuhrenden Zeile. RETURN fuhrt das Programm an
dieser Zeile fort. GOSUB muss der letzte Befehl in seiner Zeile sein. Ein Unterprogramm kann ein
anderes aufrufen. Die RETURN-Anweisung am Ende des zweiten Unterprogramms kehrt nach
Ausfihrung zum ersten Unterprogramm zurtck. Auf diese Weise kdnnen Unterprogramme
verschachtelt werden.

GOTO GOTO expression

GOTO 100
GOTO %FF
GOTO B*100

GOTO andert bedingungslos den Programmablauf. Im Gegensatz zum Dartmouth Basic akzeptiert
Basic/Debug Ausdrlcke, die dem Schlisselwort GOTO folgen. Diese Funktion ermdglicht eine Variable
zur Auswahl einer Zeilennummer. Zum Beispiel, wenn die Variable G 1, 2 oder 3 entspricht, und Zeile
100, 200 oder 300 jeweils ausgeflhrt werden soll, verwenden Sie die folgende Anweisung:

GOTO G*100

GOTO wird oft im Direktmodus fur interaktives Debuggen verwendet, weil GOTO in den
Ausflihrungsmodus wechselt. Im Gegensatz zum RUN-Befehl kann GOTO die Zeilennummer angeben,
in der die Ausflhrung erfolgen soll.

GOTO muss immer die letzte Anweisung in einer Zeile sein.

IF/THEN IF expression relational op expression [THEN] statement

IF A>B THEN PRINT "A>B"

IF A>B "A>B" das gleiche, s. PRINT
IF X=Y IF Y=Z PRINT "X=Z"

IF A<>B I=0:J=K+2:GOTO 100

IF 1=2 THEN this part never matters

Der IF/THEN-Befehl wird fur bedingte Operationen und Verzweigungen verwendet. statement kann
eine andere Anweisung sein oder eine Zeilennummer, oder eine Liste von durch Doppelpunkten
getrennte Anweisungen. Jede dieser Anweisungen kann ein anderes IF sein. Das Schlusselwort THEN
kann weggelassen werden, um Speicherplatz zu sparen. Ebenso darf GOTO vor einer Zeilennummer
entfallen.

IF vergleicht den Wert des ersten Ausdrucks mit dem Wert des zweiten. Wenn die durch den
relationale Operator angegebene Beziehung wahr ist, dann werden die folgenden Anweisungen

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

ausgefuhrt. Wenn die Beziehung nicht wahr ist, dann wird die nachste Zeile ausgeflhrt.

Es gibt nur zwei Situationen, in denen das Schlisselwort THEN nicht weggelassen werden darf: Zum
einen darf es nicht weggelassen werden, wenn der zweite Ausdruck mit einer dezimalen oder
hexadezimalen Konstante endet und eine Zeilennummer statt einer Anweisung verwendet wird. Zum
Beispiel:

IF X <1 THEN 1000

Die obige Anweisung erfordert ein THEN, um die Zahl vom zweiten Ausdruck von der Zeilennummer
zu trennen. THEN kann jedoch durch Umordnen der Ausdrucke aus der Anweisung entfernt werden:

IF 1 > X 1000

Die zweite Situation, bei der THEN nicht weggelassen werden darf, ist, wenn der zweite Ausdruck mit
einer hexadezimalen Konstante endet, und der Anweisungsteil eine LET-Anweisung ist, in der das
Schlusselwort weggelassen wurde und die Variable zwischen A und F liegt. Beispiel:

IF Z > %100 THEN A = Z

Leerzeichen anstelle des THEN verhindern die Interpretation des Variablen-Buchstabens als
Hexadezimalwert nicht, weil Leerzeichen ignoriert werden. THEN muss daher zum Trennen enthalten
sein.

INPUT/IN INPUT]|IN variable (',' variable)*

IN C, E, G
INPUT A

Diese Anweisungen geben eine Eingabeaufforderung ,?*“ aus, und lesen dann die Eingabewerte von
der der Tastatur und speichern sie in den angegebenen Variablen. Das sind zwei der drei
Anweisungen, die einen Ausdruck einer Variable zuweisen.

Jeder Befehl akzeptiert Werte fur eine Liste von einem oder mehreren Variablen. Wenn der Benutzer
nicht so viele Werte eingibt, wie bendétigt werden, wiederholen beide Befehle die
Eingabeaufforderung, bis die erforderliche Anzahl der Werte eingegeben werden. Die Befehle
unterscheiden sich in der Art und Weise, wie sie zusatzliche Werte verarbeiten, die vom Bediener
eingegeben wurden.

INPUT verwirft alle im Puffer verbleibenden Werte von vorherige IN-, INPUT- oder RUN-Anweisungen
und fordert neue Daten vom Nutzer an. IN verwendet erst alle Werte, die im Puffer verblieben sind,
und fordert dann neue Daten an.

Im Gegensatz zu Dartmouth Basic akzeptiert Basic/Debug allgemeine Ausdrucke als Eingabe. Es
akzeptiert auch Variablen, die bereits ein Wert zugewiesen wurde. Eine Variable, die einen Wert am
Anfang der Liste zugewiesen bekam, kann verwendet werden, um spater eine weitere Variable in der
Liste zu definieren. Beispielsweise kann die Anweisung INPUT C,A als gultige Eingabe 10,C*5
verarbeiten.

Wenn ein Programm vom Bediener die Eingabe einer Liste von Werten anfordert, muss er
moglicherweise jedes Element durch ein Komma trennen. Kommas konnen weggelassen werden,

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 7/16 Basic/Debug-Handbuch

wenn sie nicht zur direkten Auslegung erforderlich sind. Leerzeichen werden ignoriert. Die folgenden
Beispiele zeigen, wie Trennzeichen verwendet werden, um die Interpretation von Eingabewerten zu
andern:

? %123,A,ND(56) (hex 123, Variablen A,N,D, dezimal 56)

? %12 3AND(56) (hex 123A, Variablen N, D, dezimal 56)

? %123,AND(56) (hex 123, Wert von 56 mit sich selbst UND-
verknupft)

Da Basic/Debug nur einen Eingabezeilenpuffer hat, werden INPUT und IN im Direkt- und im Run-Modus
unterschiedlich ausgefuhrt. Im Direktmodus Uberlagert und zerstort die Benutzerantwort den INPUT-
oder IN-Befehl, der es angefordert hat. Folglich ist es egal, wie viele Variablen nach dem
Schlusselwort INPUT aufgelistet sind, nur die erste wird den Eingabedaten zugewiesen.

IN kann jedoch im Sofortmodus Listen mit Variablen und Ausdricken zuweisen, wenn beide Listen
abwechselnd in die Befehlszeile. Zum Beispiel:

IN A, 10, B, 15, C, 20

Wenn die obige Zeile im Sofortmodus ausgefiihrt wird, holt Basic/Debug die erste Variable, A, vom
Tastatur-Puffer und rickt den Pufferzeiger vor. INPUT wirde an dieser Stelle eine neue Eingabezeile
von der Tastatur anfordern, aber IN verwendet erst alle Werte im Puffer, bevor das ,,?"“ ausgegeben
wird, kehrt zum Puffer zurlck und weist A den Wert 10 zu. Der Vorgang wird fortgesetzt, bis alle
Variablen und Werte aufgebraucht sind. Wenn die Befehlszeile mit einer Variablen geschlossen wird,
wird das ,?“ ausgegeben.

Im Allgemeinen ist es einfacher, LET zu verwenden, um Variablen im Sofortmodus Werte zuzuweisen.

Um dem Nutzer zu helfen, die richtige Anzahl und Art von Werten einzugeben, wird IN und INPUT
normalerweise eine PRINT-Anweisung vorangestellt, um die Anforderungen zu beschreiben. Wenn die
PRINT-Anweisung mit einem Semikolon abgeschlossen ist, wird der INPUT-Prompt ,,?“ in derselben
Zeile ausgegeben.

Obwohl Basic/Debug keine Zeichenketten unterstutzt, kann der INPUT-Befehl verwendet werden, um
ein einzelnes Zeichen als Benutzerantwort einzugeben:

100 PRINT "BITTE JA ODER NEIN EINGEBEN"
110 LET N=J-1

120 PRINT "VERSTEHEN SIE";

130 INPUT N

140 IF N=J THEN PRINT "GUT!"

In diesem Beispiel spielt der Wert von | keine Rolle. Wenn der Benutzer] oder JA eingibt, dann ist die
Variable N gleich J. Wenn der Operator N, NEIN oder NOCH NICHT eingibt, dann ist die Variable N
unverandert und ungleich J. Um nach anderen Buchstaben als] oder N zu suchen, verwenden Sie
einen ungewodhnlichen Wert far J, z. B. -32323, und Uberprifen Sie sowohl] als auch J+1 nach der
Eingabe.

LET [LET] left_part '=" expression

LET A = A+l

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

@ 1020 = 100
8 = %100*C

LET weist einer Variablen oder einem Speicherort den Wert eines Ausdrucks zu. Der linke Teil der
Anweisung kann ein beliebiges alphabetisches Zeichen A-Z sein, eine Speicherreferenz oder eine
Register-Referenz. Der Wert des Ausdrucks wird entweder im Speicherort oder in den Speicherort der
Variablen gelegt, und kann bei jedem spateren Auftreten der Variablen verwendet werden. Da das
Gleichheitszeichen die Syntax dieses Befehls eindeutig macht, kann das Schlisselwort LET
weggelassen werden.

Der Wert einer Variablen kann unter Verwendung derselben neu berechnet werden wie in der
inkrementierenden Anweisung:

LETB=B+1

LET kann verwendet werden, um Werte im Speicher zu speichern, indem eine Speicherreferenz auf
der linken Seite der LET-Zuweisung verwendet wird:

LET@1024=B/2

Wenn diese Anweisung ausgefuhrt wird, wird die Speicherreferenz zuerst berechnet, dann wird der
Ausdruck ausgewertet und seine Wert gespeichert. Eine Wort-Referenz speichert das hoherwertige
Byte an der adressierten Stelle. Das niederwertige Byte wird in der nachsthéheren Adresse
gespeichert. Seien Sie vorsichtig bei der Anderung interner Register oder des Bereichs, in dem das
Programm im Speicher abgelegt ist, weil unsachgemaRe Anderungen katastrophale Ergebnisse haben
konnen.

LIST LIST [anfangszeile [',' endzeile]]

Dieser Befehl wird im interaktiven Modus verwendet, um eine Auflistung der gespeicherten
Programmzeilen zu generieren. Die optionalen Zeilennummern geben den Zeilenbereich an, die
aufgefuhrt werden. Wenn nur eine Zahl angegeben wird, wird nur diese Zeile angezeigt. Wenn auch
eine Endzeile enthalten ist, werden Anfangszeile bis einschlieBlich Endzeile aufgelistet. Ein LIST-Befehl
ohne Argumente listet alle Zeilen des Programms auf.

Der LIST-Befehl wird im Allgemeinen im Sofortmodus verwendet, Es kann jedoch im
Ausfuhrungsmodus fur einfachen Text verwendet werden wird bearbeitet. Weil Basic/Debug
Programmzeilen nach der Zeilennummer bis zur Laufzeit nicht analysiert, kann man Text verarbeiten,
wie im folgenden Programm gezeigt:

100 REM THIS PROGRAM PRINTS A MESSAGE N TIMES

110 IF N>0 THEN 200

120 : PRINT "HOW MANY TIMES";

130 : INPUT N

200 REM BEGIN LOOP

210 : LET N=N-1

220 : LIST 1000, 1070

230 : IF N>0 THEN 210

240 STOP

1000| This is a message saved in memory. It will be
1010 |printed when the program is RUN. If you tried to

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 9/16 Basic/Debug-Handbuch

1020 |execute lines 1000 to 1070 you would get an error
1030 |message. But in this program, lines 1000+ are not
1040 |executed, just LISTed.

1050 |

1060| (Signed)

1070 |

FUnf Zeilen dieses Programms sind eingertckt, um das Programm strukturiert anzuzeigen und um das
Lesen zu erleichtern. Der Doppelpunkt verhindert das Entfernen der Leerzeichen vor der ersten
Anweisung der Zeile. Wenn das Programm ausgefuhrt wird, wird die Meldung genau so gedruckt, wie
es in den Zeilen 1000-1070 erscheint, einschlieBlich der vertikalen Striche am linken Rand. Der
vertikale Strich wird bendtigt, um Zeile 1000 einzurticken; die anderen sind fur Konsistenz enthalten.
Zusammenfassend: Verwenden Sie einen Doppelpunkt, um eine Anweisung einzurtcken, weil
Basic/Debug es als Anweisungsbegrenzer erkennt und verwenden Sie den vertikalen Strich, um
Textzeilen einzurticken, da dies das am wenigsten ablenkendes Zeichen auf der linken Seite beim
Ausdruck ist.

NEW

Der NEW-Befehl setzt den Zeiger 10-11 auf den Anfang des Benutzerspeichers, wodurch der
Speicherplatz als leer markiert wird und bereit ist, ein neues Programm speichern. Wenn dieser Befehl
falschlicherweise eingegeben wird, brauchen Sie keine Panik bekommen, das gespeicherte Programm
ist nicht wirklich weg. Obwohl es maglicherweise nicht editiert werden kann, kann es zumindest durch
Setzen der Zeilennummer der ersten Zeile auf eine sehr kleine Zahl wieder aufgelistet werden.
Benutzen Sie LET-Anweisung im Direktmodus:

LET ©~"8=1

Das Programm scheint nach dieser Wiederherstellung zu funktionieren, es ist jedoch kein Speicher-
Uberlaufschutz mehr vorhanden, und das Programm kann zerstért werden.

- vp: Es muss zusatzlich Register 4-5 auf 20h Byte nach Programmende (oder héher) gesetzt werden,
dann ist alles korrekt, z.B.:

~4=%89FF
PRINT PRINT Argument ,|; Argument ...

PRINT HEX (255)
“THE ANSWER IS ";X
(A*100)

+%800 + Z

PRINT A, B, C, D, E

Der PRINT-Befehl gibt seine Argumente (Texte oder Zahlenwerte) auf dem Bildschirm aus. Die
Trennzeichen ',' und ';' steuern die Art, wie die Argumente ausgegeben werden.

In AnfUhrungszeichen eingeschlossene Zeichen und Leerzeichen werden genau so ausgegeben, wie
sie eingegeben wurden. Anfuhrungszeichen sind nicht ausgebbar. Wenn ein Text mit einem Zitat
unterbrochen werden muss, verwenden Sie stattdessen das einfache Anflihrungszeichen oder den
Apostroph.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

Das Schlisselwort PRINT kann entfallen, wenn die Anweisung mit einer Zeichenkette oder einem
Vorzeichen beginnt. PRINT ohne Argument oder Trennzeichen generiert eine Leerzeile. Jeder PRINT-
Anweisung kann ein Doppelpunkt und weitere Anweisung folgen.

Wenn ein Ausdruck als Argument flr PRINT eingegeben wird, wertet Basic/Debug ihn aus und listet
seinen Dezimalwert auf dem Bildschirm. Nur die signifikanten Stellen werden gedruckt, fUhrende
Nullen und Divisionsreste nicht. PRINT gibt Zahlen als ganze Zahlen mit Vorzeichen aus. Eine Methode
zum Drucken von vorzeichenlosen Werten mittels '\' ist weiter oben dargestellt.

Um einen Hexadezimalwert auszugeben, verwenden Sie die Syntax:
PRINT HEX (Ausdruck)

Basic/Debug wertet den Ausdruck aus und gibt sein positives hexadezimales Aquivalent aus. Der
PRINT-Befehl kann keine negative Hexadezimalzahl auflisten.

Im Gegensatz zu Zeichenketten muss der HEX-Funktion das Schlusselwort PRINT vorangestellt
werden, ebenso wie jedem Ausdruck, der mit einer Variablen beginnt. Das Schlisselwort kann jedoch
vor einem Ausdruck weggelassen werden, wenn dem Ausdruck ein ,+“ oder ,-“ vorangestellt ist. Zum
Beispiel: -10 + 20 oder +20 - 10 als Anweisungen eingegeben gibt den Wert von 10 aus, aber 20 - 10
fuhrt zu einer Fehlermeldung.

Wenn ein Komma verwendet wird, um Elemente in PRINT zu trennen, wird zwischen jedem Element
ein Tabulator generiert. Die Tabulatoren befinden sich in Abstanden von acht Leerzeichen auf dem
Bildschirm. Zum Drucken linksblndiger Spalten schreiben Sie einfach alle Elemente, die auf einer
Zeile in einer PRINT-Anweisung gedruckt werden sollen, durch Kommas getrennt in die Anweisung.
Das erste Zeichen des Datenelements erscheint in die Spalte, die den Tabulator enthalt. Wenn der
Ausdruck langer ist als acht Zeichen, geht Basic/Debug bis zum nachsten verfigbaren Tabulator, um
das nachste Element zu drucken.

Um einen Argument direkt nach dem anderen ohne Abstand zu drucken, verwenden Sie ein
Semikolon als Trennzeichen. Zum Beispiel gibt

PRINT"AUSGABE=" ;X

den Wert der Variablen X direkt nach dem Gleichheitszeichen aus. Wird eine PRINT-Anweisung mit
einem Semikolon beendet, wird kein abschlieBender Wagenricklauf-Zeilenvorschub erzeugt. Das
nachste Argument einer nachfolgenden PRINT-Anweisung erscheint in derselben Zeile wie das
Argument, das vor dem Semikolon steht. Ein Komma am Ende der PRINT-Anweisung unterdrickt auch
den Wagenrucklauf, jedoch erscheint das nachste zu druckende Element am nachsten Tabstopp.

Um rechtsbindig ausgerichtete Spalten zu drucken, mussen flihrende Leerzeichen hinzugefugt
werden. Basic/Debug kann nur in Anflhrungszeichen eingeschlossene Leerzeichen drucken. Das
folgendes Beispielprogramm flgt fuhrende Leerzeichen zu N hinzu:

200 IF N<10000 THEN PRINT " *";
210 IF N<1000 THEN PRINT " *“;
220 IF N<100 THEN PRINT " "“;
230 IF N<10 THEN PRINT " *“;
240 PRINT N

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 11/16 Basic/Debug-Handbuch

Basic/Debug kann die meisten Steuerzeichen drucken, wie z.B. den Signalton (bell, ~G), wenn sie in
einer Zeichenkette in Anfuhrungszeichen enthalten sind. Die folgende Steuerzeichen kénnen nicht
gedruckt werden:

Rickschritt (7H)
Escape (ESC)
Wagenricklauf (CR)
Zeilenvorschub (LF)
léschen (DEL)
Null (NUL)

Der Zirkumflex ,~" zeigt an, dass die Strg-Taste gedrlckt bleibt, wahrend die angegebene Taste
gedruckt wird. Wenn Steuerzeichen gedruckt werden, kann es sein, dass der Cursor-Zeiger von
Basic/Debug nicht mehr die korrekte Position des Bildschirm-Cursors enthalt. Das Drucken in Spalten
mit Kommatrennzeichen schlagt dann fehl. Zum Beispiel:

5 X=0
10 PRINT "X*G", X
20 PRINT "X", X

Wenn das obige Programm ausgefuhrt wird, erscheint folgende Ausgabe:

X 0
X 0

Die Anweisung in Zeile 10 flgt nur sieben Leerzeichen ein, weil das Control-G-Zeichen den
Basic/Debug-Cursor schon um eine Stelle nach rechts von der aktuellen Cursorposition gesetzt hat.

REM REM Kommentar

REM CONTROL-SCHLEIFE
REM UNTERPROGRAMM NAME
REM CODE - ERKLAERUNG

Der REM-Befehl wird verwendet, um Kommentare, Anmerkungen oder andere erklarende Nachrichten
in den Code einzufugen. Basic/Debug ignoriert alles, was dem REM-Schlusselwort folgt, daher muss
REM und sein Kommentar der letzte Befehl in einer Zeile sein. Der gemaRigte Gebrauch von
Anmerkungen in einem Programm erleichtert das Lesen und Pflegen. Bemerkungen nehmen jedoch
Platz im Speicher ein und sollten fur maximale Platzausnutzung weggelassen werden.

RETURN RETURN|RET

RETURN
RET

RETURN ist immer die letzte Anweisung eines Unterprogramms und kann als RET abgeklrzt werden.
Es braucht kein Argument, weil GOSUB die nachste Zeilennummer speichert, die nach RETURN
auszufuhren ist. RETURN muss die letzte Anweisung in einer Zeile sein.

Wenn ein Unterprogramm ein anderes aufruft, kehrt der RETURN-Befehl am Ende des zweiten
Unterprogramms zum ersten zurlck. Auf diese Weise kdnnen Unterprogramme so tief verschachtelt

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

werden, wie der fur den GOSUB-Stack verfligbaren Speicher reicht.

RUN RUN [Ausdruck '," Ausdruck ...]

RUN
RUN 17, %200, 23

Dieser Befehl initiiert die sequentielle Ausfihrung aller Anweisungen, die im Speicher abgelegt sind.
RUN wird nur im Sofortmodus genutzt. Datenwerte fur den ersten IN-Befehl kdnnen durch Kommas
getrennt dem Schltsselwort RUN folgen:

RUN 45, -583
STOP STOP
STOP

STOP beendet die Programmausfuhrung ordnungsgemaR und léscht den GOSUB-Stack. Eine STOP-
Anweisung erfolgt automatisch nach der letzten Programmzeile, daher kann ein beendender STOP-
Befehl aus dem Programm weggelassen werden, um Speicherplatz zu sparen.

Die Programmausfiihrung wird oft durch einen Fehler abrupt beendet. Nach dem Andern der
fehlerhaften Anweisung im Direktmodus kann der Nutzer den Lauf neu starten, indem er GOTO mit
den entsprechenden Zeilennummer nutzt, oder Sie setzen das Programm mit einem STOP-Befehl
zurlck, und starten das Programm mit RUN erneut von Anfang an.

Fehler

Fehler treten auf, wenn Basic/Debug eine Anweisung nicht versteht. Ein Fehler bringt das System in
den Direktmodus zurtck. Alle Variablen und der GOSUB-Stack bleiben dabei unverandert. Es wird eine
Fehlermeldung ausgeben. Fehlermeldungen erscheinen am Terminal im folgenden Format:

Fehlercode AT Zeilennummer

Die numerischen Fehlercodes sind unten aufgelistet. Wenn der Fehler aufritt, wahrend ein Programm
lauft, enthalt die Fehlerausgabe eine Zeilennummer. Gibt es Fehler im Direktmodus, wird keine
Zeilennummer aufgelistet. Ein Fehler tritt auf, wenn das Schltsselwort oder Argument nicht erkennbar
ist oder nicht ausfuhrbar ist, oder im Falle einer IN- oder INPUT-Anweisung, wenn die Dateneingabe
durch den Betreiber unverstandlich ist. Ein ~G (Strg-G, Bell) wird mit der Fehlermeldung an den
Bildschirm gesendet.

Fehler (Z8671):

11 Program line has a line number 0 or greater than 32768.
17 Memory full; new line not inserted.

26 No program to RUN.

37 GOTO is not at the end of program line.

41 Cannot GOTO negative or zero line number.

44 Line number in GOTO does not exist.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 13/16 Basic/Debug-Handbuch

66
71
81
98
14
17
17
17
18
20
21

247

31

346

38
39
42
43

GOSUB is not at the end of the line.
Unrecognizable statement type beginning with GO.
Unrecognizable statement type, or '=' missing from LET statement.
LET is missing its '="'.
0 Quote missing in PRINT statement.
1 RETURN is not at the end of the line.
2 GOSUB stack underflow.
5 The GOSUB for this RETURN no longer exists.
1 STOP is not at the end of the line.
7 INPUT variable name is missing.

0 IN

or INPUT expects variable name.

LIST is not at end of line.

0 Unrecognizable relation in IF statement.

Out of memory on GOSUB or expression evaluation.

1 Divide by zero.

1 Missing parenthesis in AND or USR call.

7 Syntax error in expression, or unrecognizable statement type.
1 Missing right parenthesis in expression.

Speichernutzung

Standard: 1020 (Basic-Programm) bis FFEF (Arbeitspeicher)

xx=10, yy=FF

Wenn nur ROM vorhanden ist, so ist xx=0 und yy=0. Dann werden nur interne Register genutzt. In
diesem Fall sind nur die Variablen A..L sicher nutzbar. M..Z wird vom Gosub-Stack mitgenutzt.

’

.
’

yy =
XX =

yyF1l
yy68

yy56
yy54
yy53
yy21
yy20

hi(highest RAM), if no RAM, yy=0 means internal registers
hi(BASIC-Pgm)

- yyFF Unused.

- yyFO Input line buffer, used for editing in immediate mode and
user response to IN or INPUT request in run mode.

Reg. 68-7F im ROM-Mode Input-Buffer sowie Expression Evaluation

Expression Evaluation stack grows from 7F (hex) down, and the line
buffer grows from 68 (hex) up.

- yy67 Unused.

- yy55 Storage for variable z.

- yy52 Storage for variable Y.

- yy22 Storage for variable A.
Base of GOSUB stack. Stack grows down to lower memory addresses,

and may extend until it reaches the top of the user's Basic/Debug
program.

Reg. 40-67 im ROM-Mode GOSUB-Stack

; Register

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

; 04-05 => moves up from xx00 High boundary of user program plus stack
reserve (20h).
; 06-07 => moves down from yy20 Low boundary and top of GOSUB stack.

; 08-09 => xx00 Bottom of user memory; first line of user
program.

; OA-0B => yy20 Top of user memory, high boundary of GOSUB
stack.

; Initially set to yy20 of high page of RAM.

; 0C-0D => yy68 to yyFO Last character entered in line buffer.
Backspace

; subtracts one from this pointer; escape resets it

; to the beginning of the buffer. R12 is the page

; number for variables and the input buffer.

; OE-OF => yy68 to yyFO Next value to be used from line buffer.
INPUT

; command resets to the beginning of the buffer;

; IN uses all values in the buffer before resetting.

; 10-1F internal Basic/Debug

; 20 current cursor location

; 40-7F Expression Evaluation Stack
Programmformat

Programmzeilen werden im Folgenden Format gespeichert:

06 60 LIST 0
Zeilennummer Anweisung in ASCII Null
in binar

Das Ende des Programms im Speicher wird durch FFFF (hex) gekennzeichnet. Beispiel:

10 I=5

20 PRINT "WELCOME TO BASIC/DEBUG"
30 I=I-1: IF I>0 GOTO 20

40 STOP

8800h: 00 OA 49 3D 35 00 00 14 50 52 49 4E 54 22 57 45 ; ..I=5...PRINT"WE
8810h: 4C 43 4F 4D 45 20 54 4F 20 42 41 53 49 43 2F 44 ; LCOME TO BASIC/D
8820h: 45 42 55 47 22 00 00 1E 49 3D 49 2D 31 3A 20 49 ; EBUG"...I=I-1: I
8830h: 46 20 49 3E 30 20 47 4F 54 4F 20 32 30 00 00 28 ; F I>0 GOTO 20.. (
8840h: 53 54 4F 50 00 FF FF 00 00 00 00 00 00 060 00 00 ; STOP.yy.........

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

2026/01/11 00:37 15/16 Basic/Debug-Handbuch

Direkte Zeichen-Ein-Ausgabe

Basic/Debug-Programme kénnen durch Aufrufen der direkten Ein-/Ausgabetreiber via USR- oder GO@-
Anweisung Binardaten lesen und schreiben.

input orig Z8671 %54
output orig Z8671 %61

Das folgende Beispielprogramm druckt das Hex-Aquivalent eines ASCIlI-Zeichens

10 PRINT "INPUT A CHARACTER, PLEASE";

20 C = USER (%54)

30 PRINT" THE HEX VALUE OF "“;

40 GO@ %61, C

50 PRINT" IS "; HEX (C);". SHALL WE DO ANOTHER?";
60 Q = USER (%54)

70 PRINT : IF Q = %59 GOTO 10

80 REM %59 IS AN ASCII "Y".

Mastermind

Beispielprogramm nach ,Zilog z8671-7-chip-computer*”
Erlduterungen

e Zeile 20 initialisiert den Zahler T2 fur Zufallszahlen

e Zeile 30 erzeugt 4 Zufallszahlen. Dazu ist 4x eine beliebige Taste zu drucken (USR(84) = char
input)

e 71042 = YY22 Pointer auf Variable A

e THEN, LET, PRINT vor ,,“, GOTO vor Zahl nach IF, Leerzeichen kénnen entfallen,
Flr Tempo und Lesbarkeit sollten sie stehen.

e Y/N“:INPUT X - Eingabe von Variablen ist zulassig, ,Y* wird als Variable ausgewertet
Die nachfolgende Zeile vergleicht X mit dem Wert Y. Gute Idee!

10 REM MASTERMIND
20 ©@243=7:@242=10:@241=14 Init Timer
40 X=USR(84):A=@242-1:X=USR(84):B=@242-1: jeweils Warten auf
Tastendruck, A..D=Zufallszahl 0..9
X=USR(84) : C=@242-1:X=USR(84) :D=@242-1

50 "":I=0 I=Anzahl Versuche

100 "GUESS ",:IN E,F,G,H Eingabe 4 Werte (kommagetrennt)

110 I=I+1

300 J="10+2:K=J+8 J zeigt auf A, K zeigt auf E

301 L=0 L Zahler 1..4

302 R=0:P=0 R Zahler richtige Zahl, P Zahler richtiger
Platz

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2024/02/14 11:13 elektronik:z8671:handbuch https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

310 IF ~J="K LET P=P+1 Test auf gleiche Zahl, gleicher

Platz

320 J=J+2:K=K+2:L=L+1:IF 4>L GOTO 310 nachste Platze (J zeigt auf

B, Kauf F etc.), next L

330 J="10+2:K=J+8 J zeigt auf A, K zeigt auf E

331 L=0 L Zahler 1..4

340 IF ~J="K LET R=R+1:7J="J+10:L=3 Wenn A=E, dann Zahler richtige

Zahl +1, A=A+10 setzen (ausblenden),L auf Ende

341 J=J+2 nachste Platze

350 L=L+1: IF 4>L GOTO 340 next L

351 J="10+2 J zeigt auf A

352 L=0 L Zahler

360 K=K+2:IF ~10+17>K GOTO 340 nachster Platz K auf F etc.,

next

363 J="10+2:K=J+8 J zeigt auf A, K zeigt auf E

366 IF ~J>9 LET ~J="]-10 ggf. wieder 10 abziehen

367 J=J+2 nachster Platz

368 IF ~10+9>] GOTO 366 Ende nach D

369 Y=1:N=0 Yes/No-Abfrage init.

370 "RIGHT ";R;" PLACE ";P Anzeige Auswertung

380 IF 4>P GOTO 100 wenn weniger als 4 am richtigen Platz,

weiter raten

390 X=0:Y=1 Yes/No-Abfrage vorbereiten

400 "RIGHT IN ";I;" GUESSES;";"PLAY ANOTHER Y/N": Anzeige Anzahl Versuche
INPUT X Eingabe Variablenname Y oder N

410 IF X=Y GOTO 10 Wenn Eingabe == (Wert von Y), dann

neues Spiel

:RUN

1111 Zufallszahlen init
GUESS ?71,2,3,4

RIGHT 2 PLACE 0

GUESS ? 3,7,1,0

RIGHT 4 PLACE 4

RIGHT IN 15 GUESSES;PLAY ANOTHER Y/N
? N

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

Last update: 2024/02/14 11:13

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/11 00:37

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/z8671/handbuch

	Basic/Debug-Handbuch
	Zahlen
	Variablen
	Operatoren
	Speicherreferenzen
	Funktionen
	Logische Funktionen
	Maschinensprachfunktionen
	Die einzelnen Anweisungen von Basic/Debug
	Fehler
	Speichernutzung
	Programmformat
	Direkte Zeichen-Ein-Ausgabe

	Mastermind

