2026/02/12 16:44 1/13 MPBASIC

MPBASIC

REIHE AUTOMATISIERUNGSTECHNIK Band 216
Programmieren mit BASIC Siegmar Mdller

1. Auflage © VEB Verlag Technik, Berlin, 1985
S. 60 ff.

7. Tiny MPBASIC

7.1. Tiny BASIC

Tiny"” BASIC ist eine aus BASIC abgeleitete, sehr stark vereinfachte Programmiersprache. Die
Vereinfachungen bestehen im wesentlichen in folgenden Punkten:

Es sind nur die Variablen A ... Z zugelassen.
Die einzige Datenart sind ganze Zahlen.

Es gibt keine Felder.

Es gibt keine Strings.

Tiny BASIC hat weniger Anweisungen.

o v e WwhN =

Es fehlen eine Reihe von numerischen Funktionen.

Diese Vereinfachungen gestatten es, Interpreter fur Tiny BASIC mit sehr geringem Speicherbedarf zu
schreiben. Der Speicherplatz flr einen ,,normalen,, BASIC-Interpreter liegt zwischen 8 bis Uber 20
KByte, wahrend man Interpreter fur Tiny BASIC in 2 ... 4 KByte unterbringt. Die ausschlieBliche
Verwendung ganzzahliger Variablen und Konstanten ergibt dazu eine verhaltnismalig schnelle
Arithmetik. Diese beiden Vorteile stehen dem Nachteil des geringeren Komforts gegenuber. Damit
ergeben sich fur Tiny BASIC andere Anwendungsbereiche als fur ein ,,groes” BASIC. Man setzt diese
Sprache in sehr kleinen Rechnern mit wenig Speicherplatz zum Steuern und Regeln ein. Dabei ist man
durchaus in der Lage, auch Echtzeit Probleme zu lésen.

Ein Echtzeitproblem besteht dann, wenn der Rechner auf ein externes Ereignis innerhalb einer
vorgegebenen Zeit in einer diesem Ereignis entsprechenden Art und Weise reagieren mufs. Ob eine
Sprache mit einem gegebenen Rechner echtzeitfahig ist, hangt also auch von dem zu |6senden
Problem ab. Wenn es um Zehntelsekunden geht, dann ist Tiny BASIC oft schon einsetzbar, wahrend
man im Mikrosekundenbereich nur mit Maschinenprogrammen Herr der Lage bleiben kann.

Ein generelles Problem bei der Anwendung hoherer Programmiersprachen in Echtzeitproblemen
besteht darin, dal’ es nicht mdglich ist, wie bei der Assemblerprogrammierung, die Abarbeitungszeit
exakt zu berechnen, In der Praxis genugt es aber fast immer, diese Zeit zu messen. Dabei sollte man
jedoch genau Uberlegen, mit welchen Eingangsdaten man bei dem zu testenden Programmteil den
ungunstigsten Fall erzeugt. Dadurch wird sichergestellt, daB sich nicht bei anderen Daten eine
langere Abarbeitungszeit ergibt. Zum Messen genugt meist schon die Armbanduhr, wenn man das zu
testende Programmstulck in eine Schleife faBt. Zum Beispiel:

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

10 FOR I=1 TO 1000
programmstuck
1000 NEXT I

Mit man hier x Sekunden, dann dauert die Abarbeitung des Programmstucks etwas weniger als x
Millisekunden. (Weniger, weil FOR und NEXT noch hinzu kommen)

In der Praxis sind jedoch meist nur wenige Programmstellen zeitkritisch, und Tiny BASIC |aRt hier noch
die Mdglichkeit offen, auf die Maschinenebene auszuweichen (CALL, Interrupts im Hintergrund), wenn
das eben Vorgeschlagene nicht zu befriedigenden Ergebnissen fuhrt. Hat man nach eingehender
Prafung entschieden, Tiny BASIC einzusetzen, dann wird man wesentlich schneller zu einem fertigen
Programm kommen als mit dem Assembler.

7.2. Konzept von Tiny MPBASIC

Wie bei BASIC gibt es auch bei Tiny BASIC eine kaum Uberschaubare Vielzahl von Versionen. Tiny
MPBASIC (winziges Mikroprozessor-BASIC) wurde ursprunglich fur den Einchipmikrorechner U883
geschrieben, kann aber prinzipiell auch fur jeden anderen Prozessor implementiert werden. Zum
Verstandnis der folgenden Ausfuhrungen sind dennoch einige Grundkenntnisse tber den Aufbau und
die Programmierung des Einchipmikrorechners U881 erforderlich. Hierzu sei z. B. auf [11] verwiesen.
Wegen des begrenzten Programmspeichers (2 KByte) wurde im U883 lediglich ein
Interpreterprogramm untergebracht, das ein fertiges, sowohl syntaktisch als auch semantisch
fehlerfreies Programm abarbeiten kann. Es fehlen die im Abschn. 5. behandelten Kommandos zum
Editieren und Testen. Sie werden von einem externen Programm mit der Bezeichnung
~Editor/Debugger, realisiert. Es kann in dem. mit dem U883 realisierten System implementiert sein,
oder auf einem Wirtsrechner laufen, Diese Trennung ermdglichte die Schaffung eines verhaltnismaRig
leistungsfahigen Interpreters, wahrend der Editor/Debugger in fertigen Geraten (mit fertig
entwickeltem und getestetem Programm) entfallen kann. Der Interpreter gestattet die Einbindung von
Programmen in Maschinensprache. Wir sprechen hierbei von Prozeduren. Eine Prozedur in Tiny
MPBASIC ist ein in Maschinensprache geschriebenes Programm, das Daten vom Interpreter
ubernimmt, verarbeitet, Daten an ihn zurlickgibt und mit einem Namen aufgerufen werden kann. Eine
Funktion ist demzufolge eine Prozedur, die genau einen Wert an den Interpreter zurlickgibt. Die
Datenubergabe wird vom Interpreter unterstitzt. Die Zuordnung des Prozedurnamens zur
Startadresse des Maschinenprogramms erfolgt vermittels einer Tabelle, der Prozedurtabelle. Sie ist
vom Nutzer zu erstellen. Dadurch kdnnen mit diesem Tiny BASIC, trotz Einbeziehens der
Maschinenebene, maschinenunabhangige Programme verfalt werden. Beim Ubergang von einem
Rechner auf einen anderen genugt es, die benutzten Prozeduren neu oder umzuschreiben, wahrend
das BASIC- Programm unverandert dbernommen werden kann. Neben der Mdglichkeit, selbst
Prozeduren (und Funktionen) zu erstellen, bietet der Interpreter dem Anwender eine Reihe bereits fest
vorgegebener Prozeduren und Funktionen. Tiny MPBASIC gestattet dartber hinaus die Verarbeitung
von Traps (Fallen). Das sind Programmunterbrechungen, die beim Erfilltsein einer gewissen
Bedingung vom Interpreter softwaremaRig ausgelost werden. Die Bedingung wird vom Programmierer
festgelegt (s. Abschn. 7.3.2.). Ein weiteres Problem bei der Schaffung eines mdglichst
gerateunabhangigen Interpreters sind die Eingabe- und die Ausgabeschnittstellen flr INPUT bzw.
PRINT. Um hier alle Mdglichkeiten offen zu lassen, ruft PRINT ein Unterprogramm PUTCHR auf, das ein
Zeichen ausgibt und vom Anwender des U883 erstellt wird. Wenn PRINT eine Zeile ausdruckt, dann
wird PUTCHR so oft aufgerufen, wie Zeichen in dieser Zeile sind. Zum Einlesen von Zahlen ruft INPUT
ein, ebenfalls vom Anwender geschriebenes, Programm GETCHR auf, das bei jedem Aufruf ein
Zeichen einliest.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 3/13 MPBASIC

7.3. Interpreter

7.3.1. Ausdrucke

Wir unterscheiden in Tiny MPBASIC arithmetische und logische Ausdrucke. Letztere haben immer die
Gestalt

aausdruck vop aausdruck ,
wobei aausdruck ein arithmetischer Ausdruck und vop einer der Vergleichsoperatoren

>, <,>=, <=, = und < >

ist. Das Ergebnis eines logischen Ausdrucks ist eine logische GréBe (wahr oder falsch) und kein
Zahlenwert. Hier besteht ein grundsatzlicher Unterschied zu anderen BASIC- Interpretern (vgl.
Abschn. 2.4.2.), der allerdings fur die Praxis untergeordnete Bedeutung hat. Logische Ausdrlcke
dirfen nur in Anweisungen stehen, die logische Grolten verarbeiten konnen. In arithmetischen
Ausdricken werden ganzzahlige Konstanten, Variablen und Funktionen verknlpft. Da es
GleitkommagroBen ohnehin nicht gibt, entfallt die Kennzeichnung mit %. Dieses Zeichen hat in Tiny
MPBASIC eine andere Bedeutung. Vor einer Konstanten kennzeichnet es die hexadezimale
Darstellung. Der zulassige Bereich liegt zwischen %0000 und %FFFF bei hexadezimaler und zwischen
-32767 und 32767 bei dezimaler Schreibweise. (Die Zahl -32768 kann intern verarbeitet, aber nicht
ein- bzw. ausgegeben werden.) Gerechnet wird im Zweierkomplement. Naheres zu dieser Darstellung
und dem Rechnen damit findet der Leser z. B. in [9]. Es gibt die arithmetischen Operatoren +, -, *, /
und $MOD. $MOD, modulo, liefert den Rest, den eine ganze Zahl bei der Division durch eine andere
ganze Zahl gibt. Es gilt

| A$MOD B | = | A - (A/B*B) |

Bei der Division wird der gebrochene Teil weggelassen. Das Dollarzeichen vor MOD hat nichts mit
einem String zu tun; Strings sind nicht implementiert. Es kennzeichnet vielmehr $MOD als einen
Operator. Das trifft auch auf die bitweisen logischen Operatoren

$AND, $OR und $XOR

zu. Diese arbeiten anders als die im Abschn. 2.4.2. beschriebenen logischen Operatoren. Sie fuhren
fur jedes Paar von gleichwertigen Binarstellen ihrer Operanden in der internen
Zweierkomplementdarstellung die betreffende logische Operation aus. Ihre Benutzung setzt voraus,
dall Zweierkomplement, binare Darstellung und hexadezimale Darstellung fur den Programmierer
vertraute Begriffe sind. Beispielsweise kann man $AND zum ,Maskieren” von Bits in einem Datenwort
benutzen. Mit

A $AND 1
erhalt man den Zustand vom Bit 0 in A, indem mit der UND-Verknupfung die restlichen Bits

zurlckgesetzt werden. Mit $OR kdnnen Bits auf Eins gesetzt werden. $XOR eignet sich u. a. zum
bitweisen Vergleich von Daten. Der Ausdruck

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

A $XOR %70 $AND %FO

liefert z. B. genau dann den Wert Null, wenn in A die Bits 4, 5 und 6 Eins sind und Bit 7 Null ist. Alle
bitweisen logischen und arithmetischen Operatoren haben dieselbe Prioritat. Sie dirfen gemeinsam in
arithmetischen Ausdrlicken auftreten. Damit werden arithmetische Ausdrucke streng von links nach
rechts abgearbeitet. Wird eine andere Reihenfolge der Berechnung gewinscht, so ist das mit
Klammern zu regeln. Weiterhin stehen die in Tafel 8 aufgefuhrten allgemeinen, d. h.
maschinenunabhangigen Funktionen zur Verfugung. Die Funktionsparameter werden grundsatzlich in
eckige Klammern geschrieben. Beim Rotieren nach links werden alle 16 Bits um eine Stelle nach links
geschoben, und das hochstwertige Bit wird zum niederwertigsten Bit. Rotiert man z. B. die Zahl
-32767, die intern die binare Darstellung 1000 0000 0000 0001 hat, nach links, so ergibt das 0000
0000 0000 0011 (binar) bzw. 3 in dezimaler Schreibweise. Das Rotieren nach rechts funktioniert
prinzipiell genauso, nur eben in die andere Richtung. RR ist somit die inverse Funktion zu RL.
Programmiert man RR[RL[x]], so ergibt das immer x. Man braucht diese Funktion z. B., wenn
Eingabeports multiplex abgefragt werden sollen.

Tafel 8, Funktionen in Tiny MPBASIC

ABS[x] absoluter Betrag von x

NOT[x] bitweise logische Negation von Xx

GTC ein Zeichen von der Konsole holen (benutzt GETCHR)
INPUT Zahl von der Konsole holen

RL[x] X um ein Bit nach links rotieren

RR[X) X um ein Bit nach rechts rotieren

Tafel 9. Maschinenorientierte Funktionen im U8S3

GETR[r] Inhalt des Registers r lesen

GETRR[r] Inhalt des Registerpaares r, r+l lesen

GETEB[a] Inhalt des auf der Adresse a abgespeicherten Bytes im
Datenspeicher lesen

GETEW(a) Inhalt der auf den Adressen a, a+1 abgespeicherten Bytes im
Daten-Speicher lesen

Daruber hinaus gibt es fur den U883 einige Funktionen, mit denen man auf Register bzw. auf den
Datenspeicher zugreifen kann (Tafel 9). Dadurch hat der Anwender sofort, d. h. ohne erst eigene
Funktionen schreiben zu mussen, Zugriff auf fast alle Schaltkreisfunktionen. BASIC-Programme, die
von diesen Funktionen Gebrauch machen, sind naturlich nicht unverandert auf einen anderen
Rechner Ubertragbar. Deshalb sind diese vier Funktionen nicht Bestandteil der Sprache Tiny MPBASIC.
Wirde man etwa einen Interpreter fur den U880 schreiben, so waren hier die Funktionen

GETB(a) Byte aus dem Speicher von Adresse a lesen
GETW[a] Bytes aus dem Speicher von den Adressen a und a+l lesen
IN[p] Port p lesen

sinnvoll.

7.3.2. Anweisungen

Da uns die BASIC-Anweisungen i. allg. schon bekannt sind, genlgt es, hier die davon in Tiny MPBASIC
implementierten mit der Syntaxvorschrift aufzufihren, und nur die Besonderheiten zu erladutern (Tafel

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 5/13 MPBASIC

10). Eine Anweisung besteht aus ihrem Namen, z. B. LET, und den Argumenten, z. B. A=0. Soll eine
Anweisung mehrmals nacheinander ausgefuhrt werden, so genigt es, den Namen nur einmal und
lediglich die Argumente mehrfach aufzuschreiben, wenn man letztere mit Komma voneinander trennt.
Zum Beispiel

10 LET A=0, B=0, I=10

Tafel 10. Anweisungen in Tiny MPBASIC
LET variable = aausdruck GOTO aausdruck
IF lausdruck THEN anweisung

IF lausdruck THEN anweisungsblock

ELSE anweisung

ELSE anweisungsblock

GOSUB aausdruck

RETURN

INPUT {"text"} variable

PRINT {"text"} {aausdruck}

PRINTHEX {"text") {aausdruck}

STOP

END

REM {kommentar}

CALL aausdruck

PROC {variablenliste =} prozedurname {parameterliste}
TRAP lausdruck TO aausdruck

CLRTRP

WAIT aausdruck

Bei der Anweisung GOTO ist ein Ausdruck zur Angabe der Zeilennummer zugelassen. Gleiches trifft
auf GOSUB zu. Die Anweisungen ON...GOTO und ON...GOSUB sind dadurch leicht zu umgehen. Ein
Anweisungsblock besteht aus beliebig vielen, durch Semikolon getrennten Anweisungen, die auf einer
Zeile stehen. Es ist moglich, mehrere Anweisungen auf eine Zeile zu schreiben, wenn man diese
durch Semikolon voneinander trennt. Bei dem in Anfihrungsstriche gesetzten Text in den
Anweisungen INPUT, PRINT und PRINTHEX handelt es sich im Grunde um eine Stringkonstante. Strings
gibt es ansonsten nicht. INPUT druckt zunachst den programmierten Text aus und erwartet dann die
Eingabe einer Zahl (dezimal oder hexadezimal). Wie wir bereits sahen (Tafel 8), gibt es INPUT auch
als Funktion. Dort kann kein Text ausgedruckt werden. Es erscheint statt dessen ein Fragezeichen.
INPUT hat als Funktion den Vorteil, daB es wie jede Funktion in Ausdricken benutzt werden kann. Will
man z. B. den Nutzer seines Programms eine Temperatur in Zehntel Grad Celsius eingeben lassen, die
jedoch eigentlich in Zehntel Grad Kelvin bendtigt wird, so kann man einfach

10 LET T = INPUT+2732

programmieren.

Die Anweisung PRINTHEX unterscheidet sich von PRINT nur dadurch, dal8 das Ergebnis des
Ausdrucks hexadezimal ausgegeben wird. Will man mehrere Ausgaben auf eine Zeile bringen, so
benutzt man bei Tiny MPBASIC anstelle des Semikolons (dieses wird schon zum Trennen von
Anweisungen benutzt) das Komma. Das Drucken in Spalten ist nicht maglich.

Mit der Anweisung PROC werden Prozeduren vom BASIC-Interpreter aufgerufen. Die Variablenliste
sind in eckige Klammern gesetzte und durch Komma getrennte Variablen. Bei der Parameterliste

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

handelt es sich um in eckige Klammern gesetzte und durch Komma getrennte Ausdriicke. Zum
Beispiel

10 PROC [A, 3, X] = MPROG [3*A, X, 2]

Es gibt bereits implementierte Prozeduren (Tafel 11). Der Sinn der Prozeduren besteht allerdings vor
allem darin, da8 der Anwender, wenn er selbst welche schreibt, Tiny MPBASIC einem gegebenen
Anwendungsfall optimal anpassen kann. Mit Prozeduren realisiert man elementare Steuerfunktionen,
die in BASIC nicht oder nur umstandlich zu programmieren waren, oder deren Realisierung in BASIC
ein zu langsames Programm ergeben wirde.

Tafel 11. Prozeduren im U883

PTC[z] Zeichen z an die Konsole ausgeben (benutzt PUTCHR)

SETR(r,w] Register r mit dem Wert w belegen

SETRR[r,w] Registerpaar r, r+l mit dem Wert w belegen

SETEB[a,w] Byte im Datenspeicher auf der Adresse a mit dem Wert w belegen
SETEW[a,w] Bytes im Datenspeicher auf den Adressen a, a+l mit dem Wert w
belegen

Die SET-Prozeduren in Tafel 11 sind, wie die GET-Funktionen, wiederum nicht Bestandteil der Sprache
Tiny MPBASIC. Sie haben ebenfalls nur den Zweck, den Interpreter im U883 fur den Anwender sofort,
d. h. ohne daR er selbst erst eine Prozedur schreiben mul3, nutzbar zu machen.

Eine weitere, speziell fur Steuerungen gedachte Anweisung, ist TRAP (Falle). Nachdem TRAP
abgearbeitet wurde, testet der Interpreter vor der Abarbeitung jeder neuen Programmzeile die
gesetzte Trapbedingung (lausdruck). Sobald diese erfllt ist, erfolgt automatisch ein GOSUB zu der
durch aausdruck gegebenen Zeile. Die Bedingung wird vorher geléscht. Danach wird die Traproutine
abgearbeitet, bei der es sich um ein gewdhnliches Unterprogramm handelt, welches mit RETURN
endet. RETURN bringt die Programmabarbeitung schlielBlich wieder zu der Stelle, an der sie
unterbrochen wurde. Soll die Trapbedingung danach weiter Uberwacht werden, so mufs in der
Traproutine eine entsprechende TRAP-Anweisung gestanden haben. Es kann immer nur eine
Bedingung aktiv sein. Das Setzen einer neuen fuhrt zum Léschen der alten Bedingung. Oft ist es
jedoch maglich, eine Bedingung so zu formulieren, dal8 sie mehrere in sich vereint, wenn das nétig
sein sollte. Welche dann davon das Trap ausgeldst hat, kann in der Traproutine ermittelt werden. An
einem Anwendersystem maogen z. B. zwei 8-Bit-A/D-Wandler angeschlossen sein, die mit den selbst
geschriebenen Funktionen AD1 und AD2 abgefragt werden konnen. Wenn AD1>200 oder AD2>180
wird, soll ein Trap ausgeldst werden. Dann kann man

10 TRAP AD1/201 $O0R (AD2/181)>0 TO ...

programmieren. Die Division AD1/201 ergibt so lange Null, wie AD1<200 ist, weil die Stellen nach
dem Komma abgeschnitten werden. Genauso bleibt AD2/181 Null, wenn AD2«180 ist. Uberschreitet
einer der beiden, AD1 oder AD2, den vorgeschriebenen Maximalwert, so liefert die Verknipfung $OR
ein Ergebnis >0, und es kommt zum Trap.

Will man die Trapbedingung nur |6schen, ohne dabei eine neue zu setzen, so gibt man die Anweisung
CLRTRP (clear trap, ldsche Trap).

SchlieBlich sei noch WAIT erldutert. Diese Anweisung berechnet zunachst den Ausdruck und ruft
danach eine Software-Warteschleife auf, die so oft durchlaufen wird, wie das Ergebnis des Ausdrucks
angibt. Ein Durchlauf dauert genau eine Millisekunde. (Beim U883 wird dabei ein 8-MHz-Quarz

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 7/13 MPBASIC

vorausgesetzt.) Bei der Anwendung von WAIT beachte man, dal8 die Berechnung des Ausdrucks und
die vor- und nachher abzuarbeitenden Anweisungen ebenfalls Zeit brauchen. Weiterhin hat man bei
WAIT mit groRen Zeiten zu beachten, dall wahrend des Wartens keine Trapbedingung getestet wird.

7.4. Anwendungsbeispiele

Beispiel 1. Trotz des bescheidenen Zahlenbereiches lassen sich eine Reihe von mathematischen
Berechnungen auch in Tiny BASIC mit hinreichender Genauigkeit ausfuhren, wiewohl etwas mehr
Sorgfalt bei der Programmierung erforderlich ist, um Bereichstberschreitungen zu vermeiden. Wir
wollen mit dem Newton-Verfahren die Quadratwurzel aus einer Zahl berechnen. Dazu wird von einer
Anfangsnaherung X0 ausgegangen und so lange eine bessere Naherung berechnet, bis sich die
erreichbare Genauigkeit eingestellt hat. Die Formel zur Berechnung der verbesserten Naherung Xn+1
aus der Naherung Xn lautet

Xn+1l =Xn-(Xn"2-Y)/(2Xn),

wobei Y die zu radizierende Zahl ist. Wirde man nun
LET X = X-(X*X-Y)/(2*X)

programmieren, so brachte das keine brauchbaren Ergebnisse. Das liegt zum einen daran, dal8 bei
der Berechnung von xn”2 es bereits fur Xn>181 zu Bereichsuberschreitungen kommt, und zum
anderen wird, was viel schlimmer ist, mit wachsendem n die Differenz zwischen Xn”2 und > immer
kleiner und die Division durch 2*Xn deshalb und wegen der Verwendung von ganzen Zahlen viel zu
ungenau. Das ist jedoch noch kein Grund, das Newton-Verfahren hier zu verwerfen. Statt dessen
Uberlegt man, wie die Formel eventuell umzustellen ist, um die eben festgestellten Schwierigkeiten zu
umgehen. Und tatsachlich ist das moglich. Es ist namlich

Xn+l=Xn-(Xn"2-Y)/(2Xn) =Xn-Xn/2 + Y/ (2Xn)

Bei dieser Umformung sind sowohl das Quadrat als auch die kritische Differenz verschwunden. Wir
kénnen folgendes Programm aufschreiben:

10 INPUT "Y = " Y

20 LET X=1, N=10

30 LET X=X-(X/2)+(Y/X/2)

40 LET N=N-1; IF N>0 THEN GOTO 30
50 PRINT "SQR(Y) =" X

Als Anfangsnaherung benutzen wir die 1, und die zehnte Naherung ist bei unserem Zahlenbereich
immer genau genug.

Beispiel 2. In dem nun folgenden Beispiel benutzen wir den Operator $MOD. Es handelt sich um eine
Primfaktorzerlegung. Man bendtigt so etwas z.B., um die Frequenzen zu ermitteln, die sich leicht aus
einer gegebenen (Quarz-) Oszillatorfrequenz mittels Teilerstufen erzeugen lassen. Das benutzte
Verfahren ist recht einfach. Es werden alle maglichen Faktoren ausprobiert, bis die Zahl schlieBlich
vollstandig zerlegt ist.

10 INPUT "ZAHL: " Z
20 LET F=2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

30 IF Z $MOD F=0 THEN LET Z=Z/F; PRINT F

40 ELSE LET F=F+1
50 IF F*F<=Z THEN GOTO 30
60 PRINT Z

Die Zeile 30 lautet verbal umschrieben: Wenn Z durch den Faktor F teilbar ist, dann flhre die Division
aus und drucke F als ermittelten Primfaktor.

Beispiel 3. Wir wollen den Inhalt des Datenspeichers des U883 in einem gewissen AdreRbereich
ausdrucken. Dabei soll das folgende Druckbild auf jeder Zeile entstehen:

adresse datenl daten?2 ... daten8 ascii

Die Daten geben wir zu je zwei Bytes aus. also kommen 16 Bytes auf jede Zeile. Rechts erscheinen
die Bytes, die als druckbare ASCII-Zeichen interpretiert werden kénnen, als solche ausgedruckt. Damit
kann man leicht abgespeicherte Texte erkennen. Das Programm hierfir sieht folgendermaRen aus:

10 REM RAM DUMP

20 INPUT "ADRESSE: " A, "LAENGE: " I

25 IF I<=0 THEN END

27 REM AUF VIELFACHES VON 16 AUFRUNDEN
30 IF I $MOD 16<>0 THEN LET I=I/16+I*16
40 REM EINE ZEILE

45 REM ADRESSE

50 LET J=0; PRINTHEX A, " ",

55 REM DATEN

60 PRINTHEX " " GETEW[A],
70 LET I=I-2, J=J+2, A=A+2
80 IF J <16 THEN GOTO 60

90 LET A=A-16

95 REM ASCII

100 PRINT " ",

110 LET C=GETEB[A]

120 IF C>%1F THEN IF C<%7F THEN PROC PTC[C]
130 ELSE PROC PTC[%2E]; REM PUNKT

140 LET J=J-1, A=A+l

150 IF J>0 THEN GOTO 110

160 PRINT

170 IF I>0 THEN GOTO 50

In Zeile 30 wird die eingegebene Lange auf eine durch 16 teilbare Zahl aufgerundet, damit auch die
letzte Zeile des RAM-Ausdrucks immer voll wird. Zeile 120 druckt alle Zeichen, deren Kode zwischen
%1F und %7F liegt. Handelt es sich jedoch um kein druckbares Zeichen, so gibt Zeile 130 einen Punkt
aus.

Beispiel 4. Wir wollen nun die Benutzung von TRAP mit einem formalen Beispiel illustrieren. Es bringt
daruber hinaus einige typische Details bei der Anwendung von Tiny MPBASIC.

10 REM ZEICHENSATZ AUSDRUCKEN UND
20 REM IM HINTERGRUND TASTENEINGABEN LESEN
30 LET C=%20, A=%1300, I=0

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 9/13 MPBASIC

40 GOSUB 250

50 PROC PTCI[C]

60 LET W=100

70 LET W=W-1

80 IF W>0 THEN GOTO 70
90 LET C=C+1

100 IF C<%5F THEN GOTO 50

110 IF I=0 THEN GOTO 30

115 REM EINGABEN WIEDER AUSDRUCKEN
120 LET J=0

130 PROC PTC[%0D]

140 PROC PTC[GETEB[A+]]]

150 WAIT 100; LET J=J+1

160 IF I>J THEN GOTO 140

170 END

200 REM TRAPROUTINE

210 PROC SETR[%FA, GETR[%FA]$AND %F7]
220 PROC SETEB[A+I, GETR[%FO]]

230 LET I=I+1

240 IF I>%FF THEN LET I=0

250 TRAP GETR[%FA]$MOD 8<>0 TO 210
260 RETURN

Dieses Programm druckt fortwahrend alle ASCII-Zeichen mit den Kodes %20 . .. %5E bis wahrend des
Druckens uber die SIO Zeichen empfangen worden sind. Dann werden die empfangenen Zeichen
ausgedruckt, und die Abarbeitung ist beendet. TRAP Uberwacht im Interrupt-Requestregister des
U883 (Reg. %FA) das SIO-Empfangerbit, das in der Trapbedingung mit $AND 8 maskiert wird. Da die
Trapbedingung am Ende der Traproutine ohnehin neu gesetzt werden muf3, erfolgt das erste Setzen
mit GOSUB 250 in Zeile 40. Das spart Speicherplatz, Mit LET A=%1300 in Zeile 30 wird die RAM-
Adresse festgelegt, wo die empfangenen Zeichen abgespeichert werden sollen. Die Zeilen 60... 80
bilden eine Warteschleife, die zwischen dem Ausdrucken zweier Zeichen eine Pause erzeugt. Hier
ware es nicht gunstig, WAIT einzusetzen, weil dann so lange die Trapbedingung nicht Gberwacht
werden wurde. In der Traproutine wird zuerst in Zeile 210 das SIO-Bit zurtckgesetzt. Das geschieht
dadurch, dal8 zuerst das gesamte Register gelesen, anschliefend das Bit mittels $AND %F7
ruckgesetzt und schlieBlich das Ergebnis mit SETR wieder in das Register eingeschrieben wird.
Dadurch bleiben die anderen sieben Bits unverandert. In Zeile 220 wird das empfangene Zeichen
gelesen (SI0-Register %F0) und abgespeichert. Wir sehen hier, wie man in Tiny MPBASIC mit einem
eindimensionalen Feld arbeiten kann, obwohl Felder gar nicht implementiert sind. Statt DIM A... zu
programmieren, legt man mit LET A=%1300 eine Adresse fur dieses Feld fest und kann dann mit
SETEB[A+I, ...] oder GETEB[A+I] anstelle von LET A(l) = ... bzw. ... A(l) ... auf dieses Feld zugreifen.
Selbstverstandlich hat man dabei darauf zu achten, daB der Index | keine unzulassigen Werte
annimmt (Zeile 240).

7.5. Benutzen des Interpreters im U883

Der Interpreter im U883 ist als Unterprogramm ausgefuhrt, das ein fertiges, fehlerfreies BASIC-
Programm abarbeiten kann. Der Eintrittspunkt ist %7FD, Vor dem Aufruf ist in die Register 6 und 7 die
Startadresse des BASIC-Programms und in die Register 8 und 9 die Adresse der Prozedurtabelle,
deren Aufbau wir im folgenden mit beschreiben werden, zu laden. Ist eine Prozedurtabelle nicht

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

vorhanden, dann mussen die Register 8 und 9 geloscht werden. Der Registerzeiger ist auf %10 zu
setzen.

Das BASIC-Programm wird ohne Leerzeichen im ASCII-Kode abgelegt. Die Zeilennummern werden
binar abgespeichert, wobei jedoch das hdchstwertige Bit immer gesetzt ist. Die Namen der
Anweisungen und die Operatoren mit $ werden, wie in Tafel 12 aufgeflhrt, abgekurzt. Als Markierung
fur das Zeilenende dient Carriage Return (%0D), fur das Programmende %00.

Tafel 12. Abkirzungen in Tiny MPBASIC

LET L

GOTO G

IF ... THEN F ... ;
ELSE >;
GOSUB S
RETURN R
PROC 0
TRAP ... TO ! ... ,
CLRTRP /
INPUT I
PRINT P
PRINTHEX H
STOP T

END E

WAIT W
CALL C

REM M

SAND $A
SOR $0

SXOR $X
SMOD $M

Das folgende kleine Programm, das 1 KByte Speicher ab Adresse %1000 I6scht, wird so, wie in Tafel
13 aufgezeigt, abgespeichert. Zum Ausdrucken der internen Darstellung wurde das im letzten
Abschnitt (Beispiel 2) aufgeflihrte Programm benutzt.

10 LET A=%1000, L=%400
20 PROC SETEB[A,0]
30 LET A=A+1, L=L-1
40 IF L>0 THEN GOTO 20

Tafel 13. Interne Darstellung eines Programms in Tiny MPBASIC

2000 80 OA 4C 41 3D 25 31 30 30 30 2C 4C 3D 25 34 30 ..LA=%1000,L=%40
2010 30 OD 80 14 4F 53 45 54 45 42 5B 41 2C 30 5D OD O...0SETEB[A,0].
2020 80 1E 4C 41 3D 41 2B 31 2C 4C 3D 4C 2D 31 0D 80 ..LA=A+1,L=L-1..
2030 28 46 4C 3E 30 3B 47 32 30 0D 00 00 00 00 60 00 (FL>0;G20.......

Es sei angenommen, dal8 dieses Programm auf der Adresse %2000 stehe. Dann kann es mit den
folgenden Maschinenbefehlen aufgerufen werden:

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 11/13 MPBASIC

LD 6, #%20
CLR 7

CLR 8

CLR 9

SRP #%10
CALL %07FD

Fur die Programme PUTCHR und GETCHR, die das Benutzen von PRINT, PRINTHEX und INPUT
ermoglichen, gelten nachstehende Konventionen: GETCHR hat die Eintrittsadresse %0815, PUTCHR
%818. Das eingelesene Zeichen (GETCHR) wird im Arbeitsregister R3, das auszugebende Zeichen
(PUTCHR) im Arbeitsregister R5 Ubergeben. Der Registerzeiger steht auf %10. Zur freien Verfliigung
hat der Anwender die Register ab %54.

Die Prozedurtabelle, die dem Interpreter die Zuordnung vom Prozedurnamen zur Eintrittsadresse
ermaglicht, hat folgenden Aufbau:

Byte 0]1]2]3]4] . . . |N|N+1|N+2|

Byte 0 enthalt die Lange N des Prozedurnamens, die binar abgespeichert wird. (0<N<%FE = 254). Die
Bytes 1 ... N enthalten den Namen im ASCII-Kode, und die Bytes N+1 und N+2 enthalten die
Eintrittsadresse der Prozedur. Danach darf, beginnend mit der Lange ihres Namens, die nachste
Prozedur in die Tabelle eingetragen werden. Das Ende wird mit %FF gekennzeichnet. Beginnen z. B.
die Prozeduren PROZ und FUNKT auf den Adressen %2010 bzw. %3000, dann muRte eine
Prozedurtabelle damit so aussehen:

%04 | %50 | %52 | %4F | %5A | %20 | %10 | %05 | %46 | %55 | %4E | %4B | %54 | %30 | %00 | SFF

Die Ubergabe der Parameter vom Interpreter an die Prozedur und der Ergebnisse von der Prozedur
an den Interpreter erfolgt Uber den Stack. Wenn die Prozedur m Ergebnisse an den Interpreter
Ubergibt und n Parameter von diesem tdbernimmt, dann befindet sich der Stack beim Aufruf der
Prozedur in dem in Tafel 14 aufgezeigten Zustand. Vor dem letzten RET in der Prozedur, das wieder
zum Interpreter fuhrt, mul8 der Stackpointer um 2n—2 erh6ht worden sein (, wenn n>1) und naturlich
auf die Ruckkehradresse zum Interpreter zeigen.

Tafel 14. Datenlibergabe bei Prozeduren im U883

Stack Inhalt
SP+2n+2m+1 Platz fur das m-1te bis erste Ergebnis,
. SP+2n+2 wenn m>1. Der Wert fur das letzte (mte) Ergebnis ist in das
Arbeitsdoppelregister RR2 zu schreiben.
SP+2n+1 ... SP+2n Wird vom Interpreter benutzt.
SP+2n-1 Erster bis n-lter Parameter, wenn n>1.
. SP+2 Der Wert des letzten Parameters befindet sich im
Arbeitsdoppelregister RR4.
SP, SP+1 Rickkehradresse zum Interpreter
SP Inhalt vom Stackpointer

Schliel8lich sei noch erwahnt, dal der U883 auf der Adresse %812 startet, falls dort ROM liegt und

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2021/08/02 14:50 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

sonst auf %E000.

7.6. Editor/Debugger

Vom Hersteller des U883 wird auch der zugehdrige Editor/Debugger, den wir der Kirze halber nur
»Editor, nennen wollen, bereitgestellt. Er meldet sich mit # als Promptzeichen. Danach gibt man als
erstes Kommando NEW, falls noch kein Programm im Speicher stand. Das ist notwendig, weil beim
Einschalten der Speicher nicht automatisch geldscht wird, um ein evtl. in einem CMOS-RAM
abgelegtes Programm zu erhalten. Danach kdnnen Programme eingegeben werden, so wie wir das im
Abschn. 5. kennengelernt haben. Der Editor beseitigt dabei die Leerzeichen, ersetzt die
Anweisungsnamen durch deren Abkidrzungen, setzt die Zeilennummer um und Uberpruft die
syntaktische Richtigkeit. Er kennt auBer NEW die folgenden Kommandos:

LIST {zeilennummer}

RUN

CONT {zeilennummer}

STEP {zeilennummer}

Mit LIST wird das gesamte Programm bzw. die angegebene Zeile aufgelistet. Driicken von Return
nach LIST mit Zeilennummer fuhrt zum Auflisten der Folgezeile. RUN startet das Programm an dessen
Anfang, wahrend man mit CONT von der eingegebenen Zeilennummer ab starten kann. Daruber
hinaus kann mit diesem Kommando die Programmabarbeitung nach STOP fortgesetzt werden. STEP
schlieBlich gestattet das Abarbeiten einer einzelnen Zeile. AnschlieBendes Driicken von Return
bewirkt das Abarbeiten der Folgezeile.

Anhang B. Syntaxbeschreibung von Tiny MPBASIC

Metalinguistische Konstanten sind mit GroBbuchstaben gedruckt. Das sind Zeichen bzw.
Zeichenketten, die unverandert in die konkrete Anweisung ibernommen werden. Die
metalinguistischen Variablen sind klein gedruckt. Sie werden in der konkreten Anweisung durch
andere Zeichen bzw. Zeichenketten gemaR der Syntaxdefinitionen ersetzt (vgl. Erlduterungen auf S.
17). Weiterhin bedeutet:

-> verbale Erlauterungen

=> Definitionszeichen

| oder

{xxx} darf weggelassen werden

{xxx}* darf beliebig oft dastehen oder auch weggelassen werden
{xxx}*n darf maximal n mal dastehen oder auch weggelassen werden

Syntaxbeschreibung

programm => zeile {zeile}*

zeile => zeilennummer anweisung {; anweisung}*
zeilennummer => pkonst

anweisung => anweisungsname anweisungsargumente {,

anweisungsargumente}
anweisungsname => LET|PROC|GOTO|IF[ELSE|RETURN|GOSUB[WAIT |REM|
CALL |STOP|END | TRAP|CLRTRP|PRINT| PRINTHEX | INPUT

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

2026/02/12 16:44 13/13 MPBASIC

anweisung => (s. Tafel 10, S. 64)

ausdruck => aausdruck/lausdruck

aausdruck => wert {alop wert}*

wert => konst|var|fkt| (aausdruck)

alop => +|-|*|/|$MOD | $AND[SOR | $XOR

konst => pkonst | nkonst

var => buchst

fkt => funktionsname {parameterliste}

pkonst -> ganze Zahl G mit 0<=G<=32767
nkonst => -pconst

funktionsname => name

name => buchst buchst|ziffer {buchst|ziffer}*252
buchst => A|B|C ... X]|Y|Z

ziffer => 1|2|3 ... 8|9|0

lausdruck => aausdruck vop aausdruck

vop => >|=|<|>=|<=|<>

variabienliste {var{, var}*}

prozedurname => name

parameterliste => [aausdruck {, aausdruck}*]
text -> bei. ASCII-Zeichenfolge ohne "
kommentar -> bei. ASCII-Zeichenfolge ohne ; und ohne Return
Literatur

(11) Bennewitz, W.Podszuweit, H.: Programmierung von Einchipmikrorechnern. REIHE
AUTOMATISIERUNGSTECHNIK, Bd. 215. Berlin: VEB Verlag Technik 1985

(12) Maller, S.: Einchipmikrorechner U883 interpretiert Tiny MPBASIC. radio fernsehen elektronik
34(1985) 3,S. 143 f.

(13) Technische Beschreibung Einchipmikrorechner U883. Erfurt: veb mikroelektronik ,karl marx*“
1985

1)

Tiny bedeutet klein, winzig

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

Last update: 2021/08/02 14:50

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627915847

	MPBASIC
	7.1. Tiny BASIC
	7.2. Konzept von Tiny MPBASIC
	7.3. Interpreter
	7.3.1. Ausdrücke
	7.3.2. Anweisungen

	7.4. Anwendungsbeispiele
	7.5. Benutzen des Interpreters im U883
	7.6. Editor/Debugger
	Anhang B. Syntaxbeschreibung von Tiny MPBASIC
	Literatur

