
2026/02/12 16:44 1/7 MPBASIC

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

MPBASIC

REIHE AUTOMATISIERUNGSTECHNIK Band 216

Programmieren mit BASIC Siegmar Müller

1. Auflage © VEB Verlag Technik, Berlin, 1985

S. 60 ff.

7. Tiny MPBASIC

7.1. Tiny BASIC

Tiny1) BASIC ist eine aus BASIC abgeleitete, sehr stark vereinfachte Programmiersprache. Die
Vereinfachungen bestehen im wesentlichen in folgenden Punkten:

Es sind nur die Variablen A … Z zugelassen.1.
Die einzige Datenart sind ganze Zahlen.2.
Es gibt keine Felder.3.
Es gibt keine Strings.4.
Tiny BASIC hat weniger Anweisungen.5.
Es fehlen eine Reihe von numerischen Funktionen.6.

Diese Vereinfachungen gestatten es, Interpreter für Tiny BASIC mit sehr geringem Speicherbedarf zu
schreiben. Der Speicherplatz für einen „normalen„ BASIC-Interpreter liegt zwischen 8 bis über 20
KByte, während man Interpreter für Tiny BASIC in 2 … 4 KByte unterbringt. Die ausschließliche
Verwendung ganzzahliger Variablen und Konstanten ergibt dazu eine verhältnismäßig schnelle
Arithmetik. Diese beiden Vorteile stehen dem Nachteil des geringeren Komforts gegenüber. Damit
ergeben sich für Tiny BASIC andere Anwendungsbereiche als für ein „großes“ BASIC. Man setzt diese
Sprache in sehr kleinen Rechnern mit wenig Speicherplatz zum Steuern und Regeln ein. Dabei ist man
durchaus in der Lage, auch Echtzeit Probleme zu lösen.

Ein Echtzeitproblem besteht dann, wenn der Rechner auf ein externes Ereignis innerhalb einer
vorgegebenen Zeit in einer diesem Ereignis entsprechenden Art und Weise reagieren muß. Ob eine
Sprache mit einem gegebenen Rechner echtzeitfähig ist, hängt also auch von dem zu lösenden
Problem ab. Wenn es um Zehntelsekunden geht, dann ist Tiny BASIC oft schon einsetzbar, während
man im Mikrosekundenbereich nur mit Maschinenprogrammen Herr der Lage bleiben kann.

Ein generelles Problem bei der Anwendung höherer Programmiersprachen in Echtzeitproblemen
besteht darin, daß es nicht möglich ist, wie bei der Assemblerprogrammierung, die Abarbeitungszeit
exakt zu berechnen, In der Praxis genügt es aber fast immer, diese Zeit zu messen. Dabei sollte man
jedoch genau überlegen, mit welchen Eingangsdaten man bei dem zu testenden Programmteil den
ungünstigsten Fall erzeugt. Dadurch wird sichergestellt, daß sich nicht bei anderen Daten eine
längere Abarbeitungszeit ergibt. Zum Messen genügt meist schon die Armbanduhr, wenn man das zu
testende Programmstück in eine Schleife faßt. Zum Beispiel:

Last update: 2021/08/02 13:37 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627911451

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

10 FOR I=1 TO 1000
programmstück
1000 NEXT I

Mißt man hier x Sekunden, dann dauert die Abarbeitung des Programmstücks etwas weniger als x
Millisekunden. (Weniger, weil FOR und NEXT noch hinzu kommen)

In der Praxis sind jedoch meist nur wenige Programmstellen zeitkritisch, und Tiny BASIC läßt hier noch
die Möglichkeit offen, auf die Maschinenebene auszuweichen (CALL, Interrupts im Hintergrund), wenn
das eben Vorgeschlagene nicht zu befriedigenden Ergebnissen führt. Hat man nach eingehender
Prüfung entschieden, Tiny BASIC einzusetzen, dann wird man wesentlich schneller zu einem fertigen
Programm kommen als mit dem Assembler.

7.2. Konzept von Tiny MPBASIC

Wie bei BASIC gibt es auch bei Tiny BASIC eine kaum überschaubare Vielzahl von Versionen. Tiny
MPBASIC (winziges Mikroprozessor-BASIC) wurde ursprünglich für den Einchipmikrorechner U883
geschrieben, kann aber prinzipiell auch für jeden anderen Prozessor implementiert werden. Zum
Verständnis der folgenden Ausführungen sind dennoch einige Grundkenntnisse über den Aufbau und
die Programmierung des Einchipmikrorechners U881 erforderlich. Hierzu sei z. B. auf [11] verwiesen.
Wegen des begrenzten Programmspeichers (2 KByte) wurde im U883 lediglich ein
lnterpreterprogramm untergebracht, das ein fertiges, sowohl syntaktisch als auch semantisch
fehlerfreies Programm abarbeiten kann. Es fehlen die im Abschn. 5. behandelten Kommandos zum
Editieren und Testen. Sie werden von einem externen Programm mit der Bezeichnung
„Editor/Debugger„ realisiert. Es kann in dem. mit dem U883 realisierten System implementiert sein,
oder auf einem Wirtsrechner laufen, Diese Trennung ermöglichte die Schaffung eines verhältnismäßig
leistungsfähigen Interpreters, während der Editor/Debugger in fertigen Geräten (mit fertig
entwickeltem und getestetem Programm) entfallen kann. Der Interpreter gestattet die Einbindung von
Programmen in Maschinensprache. Wir sprechen hierbei von Prozeduren. Eine Prozedur in Tiny
MPBASIC ist ein in Maschinensprache geschriebenes Programm, das Daten vom Interpreter
übernimmt, verarbeitet, Daten an ihn zurückgibt und mit einem Namen aufgerufen werden kann. Eine
Funktion ist demzufolge eine Prozedur, die genau einen Wert an den Interpreter zurückgibt. Die
Datenübergabe wird vom Interpreter unterstützt. Die Zuordnung des Prozedurnamens zur
Startadresse des Maschinenprogramms erfolgt vermittels einer Tabelle, der Prozedurtabelle. Sie ist
vom Nutzer zu erstellen. Dadurch können mit diesem Tiny BASIC, trotz Einbeziehens der
Maschinenebene, maschinenunabhängige Programme verfaßt werden. Beim Übergang von einem
Rechner auf einen anderen genügt es, die benutzten Prozeduren neu oder umzuschreiben, während
das BASIC- Programm unverändert übernommen werden kann. Neben der Möglichkeit, selbst
Prozeduren (und Funktionen) zu erstellen, bietet der Interpreter dem Anwender eine Reihe bereits fest
vorgegebener Prozeduren und Funktionen. Tiny MPBASIC gestattet darüber hinaus die Verarbeitung
von Traps (Fallen). Das sind Programmunterbrechungen, die beim Erfülltsein einer gewissen
Bedingung vom Interpreter softwaremäßig ausgelöst werden. Die Bedingung wird vom Programmierer
festgelegt (s. Abschn. 7.3.2.). Ein weiteres Problem bei der Schaffung eines möglichst
geräteunabhängigen Interpreters sind die Eingabe- und die Ausgabeschnittstellen für INPUT bzw.
PRINT. Um hier alle Möglichkeiten offen zu lassen, ruft PRINT ein Unterprogramm PUTCHR auf, das ein
Zeichen ausgibt und vom Anwender des U883 erstellt wird. Wenn PRINT eine Zeile ausdruckt, dann
wird PUTCHR so oft aufgerufen, wie Zeichen in dieser Zeile sind. Zum Einlesen von Zahlen ruft INPUT
ein, ebenfalls vom Anwender geschriebenes, Programm GETCHR auf, das bei jedem Aufruf ein
Zeichen einliest.

2026/02/12 16:44 3/7 MPBASIC

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

7.3. Interpreter

7.3.1. Ausdrücke

Wir unterscheiden in Tiny MPBASIC arithmetische und logische Ausdrücke. Letztere haben immer die
Gestalt

aausdruck vop aausdruck ,

wobei aausdruck ein arithmetischer Ausdruck und vop einer der Vergleichsoperatoren

>, <,>=, <=, = und < >

ist. Das Ergebnis eines logischen Ausdrucks ist eine logische Größe (wahr oder falsch) und kein
Zahlenwert. Hier besteht ein grundsätzlicher Unterschied zu anderen BASIC- Interpretern (vgl.
Abschn. 2.4.2.), der allerdings für die Praxis untergeordnete Bedeutung hat. Logische Ausdrücke
dürfen nur in Anweisungen stehen, die logische Größen verarbeiten können. In arithmetischen
Ausdrücken werden ganzzahlige Konstanten, Variablen und Funktionen verknüpft. Da es
Gleitkommagrößen ohnehin nicht gibt, entfällt die Kennzeichnung mit %. Dieses Zeichen hat in Tiny
MPBASIC eine andere Bedeutung. Vor einer Konstanten kennzeichnet es die hexadezimale
Darstellung. Der zulässige Bereich liegt zwischen %0000 und %FFFF bei hexadezimaler und zwischen
-32767 und 32767 bei dezimaler Schreibweise. (Die Zahl -32768 kann intern verarbeitet, aber nicht
ein- bzw. ausgegeben werden.) Gerechnet wird im Zweierkomplement. Näheres zu dieser Darstellung
und dem Rechnen damit findet der Leser z. B. in [9]. Es gibt die arithmetischen Operatoren +, -, *, /
und $MOD. $MOD, modulo, liefert den Rest, den eine ganze Zahl bei der Division durch eine andere
ganze Zahl gibt. Es gilt

| A $MOD B | = | A - (A/B*B) | .

Bei der Division wird der gebrochene Teil weggelassen. Das Dollarzeichen vor MOD hat nichts mit
einem String zu tun; Strings sind nicht implementiert. Es kennzeichnet vielmehr $MOD als einen
Operator. Das trifft auch auf die bitweisen logischen Operatoren

$AND, $OR und $XOR

zu. Diese arbeiten anders als die im Abschn. 2.4.2. beschriebenen logischen Operatoren. Sie führen
für jedes Paar von gleichwertigen Binärstellen ihrer Operanden in der internen
Zweierkomplementdarstellung die betreffende logische Operation aus. Ihre Benutzung setzt voraus,
daß Zweierkomplement, binäre Darstellung und hexadezimale Darstellung für den Programmierer
vertraute Begriffe sind. Beispielsweise kann man $AND zum „Maskieren“ von Bits in einem Datenwort
benutzen. Mit

A $AND 1

erhält man den Zustand vom Bit 0 in A, indem mit der UND-Verknüpfung die restlichen Bits
zurückgesetzt werden. Mit $OR können Bits auf Eins gesetzt werden. $XOR eignet sich u. a. zum
bitweisen Vergleich von Daten. Der Ausdruck

Last update: 2021/08/02 13:37 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627911451

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

A $XOR %70 $AND %F0

liefert z. B. genau dann den Wert Null, wenn in A die Bits 4, 5 und 6 Eins sind und Bit 7 Null ist. Alle
bitweisen logischen und arithmetischen Operatoren haben dieselbe Priorität. Sie dürfen gemeinsam in
arithmetischen Ausdrücken auftreten. Damit werden arithmetische Ausdrücke streng von links nach
rechts abgearbeitet. Wird eine andere Reihenfolge der Berechnung gewünscht, so ist das mit
Klammern zu regeln. Weiterhin stehen die in Tafel 8 aufgeführten allgemeinen, d. h.
maschinenunabhängigen Funktionen zur Verfügung. Die Funktionsparameter werden grundsätzlich in
eckige Klammern geschrieben. Beim Rotieren nach links werden alle 16 Bits um eine Stelle nach links
geschoben, und das höchstwertige Bit wird zum niederwertigsten Bit. Rotiert man z. B. die Zahl
-32767, die intern die binäre Darstellung 1000 0000 0000 0001 hat, nach links, so ergibt das 0000
0000 0000 0011 (binär) bzw. 3 in dezimaler Schreibweise. Das Rotieren nach rechts funktioniert
prinzipiell genauso, nur eben in die andere Richtung. RR ist somit die inverse Funktion zu RL.
Programmiert man RR[RL[x]], so ergibt das immer x. Man braucht diese Funktion z. B., wenn
Eingabeports multiplex abgefragt werden sollen.

Tafel 8, Funktionen in Tiny MPBASIC
ABS[x] absoluter Betrag von x
NOT[x] bitweise logische Negation von x
GTC ein Zeichen von der Konsole holen (benutzt GETCHR)
INPUT Zahl von der Konsole holen
RL[x] x um ein Bit nach links rotieren
RR[x) x um ein Bit nach rechts rotieren

Tafel 9. Maschinenorientierte Funktionen im U8S3
GETR[r] Inhalt des Registers r lesen
GETRR[r] Inhalt des Registerpaares r, r+1 lesen
GETEB[a] Inhalt des auf der Adresse a abgespeicherten Bytes im
Datenspeicher lesen
GETEW(a) Inhalt der auf den Adressen a, a+1 abgespeicherten Bytes im
Daten-Speicher lesen

Darüber hinaus gibt es für den U883 einige Funktionen, mit denen man auf Register bzw. auf den
Datenspeicher zugreifen kann (Tafel 9). Dadurch hat der Anwender sofort, d. h. ohne erst eigene
Funktionen schreiben zu müssen, Zugriff auf fast alle Schaltkreisfunktionen. BASIC-Programme, die
von diesen Funktionen Gebrauch machen, sind natürlich nicht unverändert auf einen anderen
Rechner übertragbar. Deshalb sind diese vier Funktionen nicht Bestandteil der Sprache Tiny MPBASIC.
Würde man etwa einen Interpreter für den U880 schreiben, so wären hier die Funktionen

GETB(a) Byte aus dem Speicher von Adresse a lesen
GETW[a] Bytes aus dem Speicher von den Adressen a und a+1 lesen
IN[p] Port p lesen

sinnvoll.

7.3.2. Anweisungen

Da uns die BASIC-Anweisungen i. allg. schon bekannt sind, genügt es, hier die davon in Tiny MPBASIC
implementierten mit der Syntaxvorschrift aufzuführen, und nur die Besonderheiten zu erläutern (Tafel

2026/02/12 16:44 5/7 MPBASIC

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

10). Eine Anweisung besteht aus ihrem Namen, z. B. LET, und den Argumenten, z. B. A=0. Soll eine
Anweisung mehrmals nacheinander ausgeführt werden, so genügt es, den Namen nur einmal und
lediglich die Argumente mehrfach aufzuschreiben, wenn man letztere mit Komma voneinander trennt.
Zum Beispiel

10 LET A=0, B=0, I=10

Tafel 10. Anweisungen in Tiny MPBASIC
LET variable = aausdruck GOTO aausdruck
IF lausdruck THEN anweisung
IF lausdruck THEN anweisungsblock
ELSE anweisung
ELSE anweisungsblock
GOSUB aausdruck
RETURN
INPUT {"text"} variable
PRINT {"text"} {aausdruck}
PRINTHEX {"text") {aausdruck}
STOP
END
REM {kommentar}
CALL aausdruck
PROC {variablenliste =} prozedurname {parameterliste}
TRAP lausdruck TO aausdruck
CLRTRP
WAIT aausdruck

Bei der Anweisung GOTO ist ein Ausdruck zur Angabe der Zeilennummer zugelassen. Gleiches trifft
auf GOSUB zu. Die Anweisungen ON…GOTO und ON…GOSUB sind dadurch leicht zu umgehen. Ein
Anweisungsblock besteht aus beliebig vielen, durch Semikolon getrennten Anweisungen, die auf einer
Zeile stehen. Es ist möglich, mehrere Anweisungen auf eine Zeile zu schreiben, wenn man diese
durch Semikolon voneinander trennt. Bei dem in Anführungsstriche gesetzten Text in den
Anweisungen INPUT, PRINT und PRINTHEX handelt es sich im Grunde um eine Stringkonstante. Strings
gibt es ansonsten nicht. INPUT druckt zunächst den programmierten Text aus und erwartet dann die
Eingabe einer Zahl (dezimal oder hexadezimal). Wie wir bereits sahen (Tafel 8), gibt es INPUT auch
als Funktion. Dort kann kein Text ausgedruckt werden. Es erscheint statt dessen ein Fragezeichen.
INPUT hat als Funktion den Vorteil, daß es wie jede Funktion in Ausdrücken benutzt werden kann. Will
man z. B. den Nutzer seines Programms eine Temperatur in Zehntel Grad Celsius eingeben lassen, die
jedoch eigentlich in Zehntel Grad Kelvin benötigt wird, so kann man einfach

10 LET T = INPUT+2732

programmieren.

Die Anweisung PRINTHEX unterscheidet sich von PRINT nur dadurch, daß das Ergebnis des
Ausdrucks hexadezimal ausgegeben wird. Will man mehrere Ausgaben auf eine Zeile bringen, so
benutzt man bei Tiny MPBASIC anstelle des Semikolons (dieses wird schon zum Trennen von
Anweisungen benutzt) das Komma. Das Drucken in Spalten ist nicht möglich.

Mit der Anweisung PROC werden Prozeduren vom BASIC-Interpreter aufgerufen. Die Variablenliste
sind in eckige Klammern gesetzte und durch Komma getrennte Variablen. Bei der Parameterliste

Last update: 2021/08/02 13:37 elektronik:u883:mpbasic https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627911451

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/12 16:44

handelt es sich um in eckige Klammern gesetzte und durch Komma getrennte Ausdrücke. Zum
Beispiel

10 PROC [A, 3, X] = MPROG [3*A, X, 2] .

Es gibt bereits implementierte Prozeduren (Tafel 11). Der Sinn der Prozeduren besteht allerdings vor
allem darin, daß der Anwender, wenn er selbst welche schreibt, Tiny MPBASIC einem gegebenen
Anwendungsfall optimal anpassen kann. Mit Prozeduren realisiert man elementare Steuerfunktionen,
die in BASIC nicht oder nur umständlich zu programmieren wären, oder deren Realisierung in BASIC
ein zu langsames Programm ergeben würde.

Tafel 11. Prozeduren im U883
PTC[z] Zeichen z an die Konsole ausgeben (benutzt PUTCHR)
SETR(r,w] Register r mit dem Wert w belegen
SETRR[r,w] Registerpaar r, r+1 mit dem Wert w belegen
SETEB[a,w] Byte im Datenspeicher auf der Adresse a mit dem Wert w belegen
SETEW[a,w] Bytes im Datenspeicher auf den Adressen a, a+1 mit dem Wert w
belegen

Die SET-Prozeduren in Tafel 11 sind, wie die GET-Funktionen, wiederum nicht Bestandteil der Sprache
Tiny MPBASIC. Sie haben ebenfalls nur den Zweck, den Interpreter im U883 für den Anwender sofort,
d. h. ohne daß er selbst erst eine Prozedur schreiben muß, nutzbar zu machen.

Eine weitere, speziell für Steuerungen gedachte Anweisung, ist TRAP (Falle). Nachdem TRAP
abgearbeitet wurde, testet der Interpreter vor der Abarbeitung jeder neuen Programmzeile die
gesetzte Trapbedingung (lausdruck). Sobald diese erfüllt ist, erfolgt automatisch ein GOSUB zu der
durch aausdruck gegebenen Zeile. Die Bedingung wird vorher gelöscht. Danach wird die Traproutine
abgearbeitet, bei der es sich um ein gewöhnliches Unterprogramm handelt, welches mit RETURN
endet. RETURN bringt die Programmabarbeitung schließlich wieder zu der Stelle, an der sie
unterbrochen wurde. Soll die Trapbedingung danach weiter überwacht werden, so muß in der
Traproutine eine entsprechende TRAP-Anweisung gestanden haben. Es kann immer nur eine
Bedingung aktiv sein. Das Setzen einer neuen führt zum Löschen der alten Bedingung. Oft ist es
jedoch möglich, eine Bedingung so zu formulieren, daß sie mehrere in sich vereint, wenn das nötig
sein sollte. Welche dann davon das Trap ausgelöst hat, kann in der Traproutine ermittelt werden. An
einem Anwendersystem mögen z. B. zwei 8-Bit-A/D-Wandler angeschlossen sein, die mit den selbst
geschriebenen Funktionen AD1 und AD2 abgefragt werden können. Wenn AD1>200 oder AD2>180
wird, soll ein Trap ausgelöst werden. Dann kann man

10 TRAP AD1/201 $OR (AD2/181)>0 TO ...

programmieren. Die Division AD1/201 ergibt so lange Null, wie AD1⇐200 ist, weil die Stellen nach
dem Komma abgeschnitten werden. Genauso bleibt AD2/181 Null, wenn AD2⇐180 ist. Überschreitet
einer der beiden, AD1 oder AD2, den vorgeschriebenen Maximalwert, so liefert die Verknüpfung $OR
ein Ergebnis >0, und es kommt zum Trap.

Will man die Trapbedingung nur löschen, ohne dabei eine neue zu setzen, so gibt man die Anweisung
CLRTRP (clear trap, lösche Trap).

Schließlich sei noch WAIT erläutert. Diese Anweisung berechnet zunächst den Ausdruck und ruft
danach eine Software-Warteschleife auf, die so oft durchlaufen wird, wie das Ergebnis des Ausdrucks
angibt. Ein Durchlauf dauert genau eine Millisekunde. (Beim U883 wird dabei ein 8-MHz-Quarz

2026/02/12 16:44 7/7 MPBASIC

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

vorausgesetzt.) Bei der Anwendung von WAIT beachte man, daß die Berechnung des Ausdrucks und
die vor- und nachher abzuarbeitenden Anweisungen ebenfalls Zeit brauchen. Weiterhin hat man bei
WAIT mit großen Zeiten zu beachten, daß während des Wartens keine Trapbedingung getestet wird.

7.4. Anwendungsbeispiele
1)

Tiny bedeutet klein, winzig

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627911451

Last update: 2021/08/02 13:37

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/elektronik/u883/mpbasic?rev=1627911451

	MPBASIC
	7.1. Tiny BASIC
	7.2. Konzept von Tiny MPBASIC
	7.3. Interpreter
	7.3.1. Ausdrücke
	7.3.2. Anweisungen

	7.4. Anwendungsbeispiele

