
2026/01/10 01:39 1/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

howto write a bios

howto write a bios for cp/m 2.2
V. Pohlers, 2012

Zu CP/M 2.2 gibt es eine Datei cbios.asm mit, die als Ausgang für ein BIOS dienen kann. Diesen Code
habe ich hier genutzt, an Z80 angepasst und ggf. weiter vereinfacht.

Das BIOS folgt unmittelbar auf CCP und BDOS. Am Anfang des BIOS steht ein Sprungverteiler zu den
17 BIOS-Funktionen.

Die BIOS-Funktionen müssen keine Register retten.

Kalt- und Warmstart

 .Z80
; Skeletal CBIOS for first level of CP/M 2.0 alteration
;
CCP EQU xx00H ;base of ccp
BDOS EQU CCP+806H ;base of bdos
BIOS EQU CCP+1600H ;base of bios

CDISK EQU 0004H ;current disk number 0=A,...,15=P
IOBYTE EQU 0003H ;intel i/o byte
;
 ORG BIOS ;origin of this program

; jump vector for individual subroutines
 JP BOOT ;cold start
WBOOTE: JP WBOOT ;warm start
 JP CONST ;console status
 JP CONIN ;console character in
 JP CONOUT ;console character out
 JP LIST ;list character out
 JP PUNCH ;punch character out
 JP READER ;reader character out
 JP HOME ;move head to home position
 JP SELDSK ;select disk
 JP SETTRK ;set track number
 JP SETSEC ;set sector number
 JP SETDMA ;set dma address
 JP READ ;read disk
 JP WRITE ;write disk
 JP LISTST ;return list status
 JP SECTRAN ;sector translate

BOOT ist der Eintrittspunkt, der nach dem BOOT-Vorgang einmalig angesprungen werden sollte. Vom
CP/M aus wird niemals BOOT aufgerufen. Im einfachsten Fall kann BOOT im BIOS-Bereich komplett

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

leer bleiben, wenn die Systeminitialisierung im BOOT-Loader erfolgt.

Der Kaltstart wird nur nach dem erstmaligen Laden des Betriebsystems benötigt. Der Aufruf an den
Kaltstart erfolgt meist von einem speziellen Ladeprogramm, das nach dem Einschalten des Rechners
das BIOS von der Systemdiskette geladen hat.

Aufgabe des Kaltstart ist es, die einzelnen Systemkomponenten zu initialisieren und eine Meldung
über den erfolgten Systemstart auf der Console auszugeben.

Normalerweise wird nach einem Kaltstart ein Warmstart ausgeführt, der den CCP und das BDOS von
der Diskette lädt und die Sprungbefehle einsetzt. Dann braucht nur die zuerst anzuwählende Disk-
und Usernummer in die Speicheradresse 0004h eingetragen zu werden.

WBOOT wird beim Warmstart (z.b. ^C oder JP 0000) aufgerufen. Die BDOS- Funktion 0 geht direkt
zur BIOS-Funktion WBOOT weiter.

WBOOT muss CCP und BDOS im Speicher restaurieren. Für ein erstes BIOS kann dies übergangen
werden, solange keine Programe gestartet werden, die das CCP oder sogar CCP und BDOS
überschreiben. Zum Neuladen von CCP und BDOS sind folgende Verfahren üblich:

Laden aus Systemspuren der BOOT-Diskette (meist A:)
Laden aus einer Kopie im Speicher (z.B. bei Vorhandensein von Schattenspeicher)
Erstellen einer Kopie während des BOOT-Vorgangs in eine RAM-Disk und Laden von dieser
(üblicherweise auch hier aus Systemspuren)
Laden aus einer @OS-Datei von der Diskette. Dazu muss aber ein Mini-BDOS verfügbar sein,
was das logische Lesen von Diskette unterstützt. Die Records dieser @OS-Datei könnten ja
beliebig auf der Diskette verstreut liegen.

Nach dem Neuladen von CCP und BDOS werden die Systemsprünge für JP 0000 und CALL 5
eingerichtet, das aktuelle Laufwerk wieder selektiert und die Steuerung ans CCP übergeben.

;
BOOT: ;simplest case is to just perform parameter initialization
 XOR A ;zero in the accum
 LD (IOBYTE),A ;clear the iobyte
 LD (CDISK),A ;select disk zero
 JP GOCPM ;initialize and go to cp/m
;
WBOOT: ;simplest case is to read the disk until all sectors loaded
 LD SP,80H ;use space below buffer for stack
 ;...
 ..reread ccp+bdos into memory
 ;...
;
; end of load operation, set parameters and go to cp/m
GOCPM:
 LD A,0C3H ;c3 is a jmp instruction
 LD (0),A ;for jmp to wboot
 LD HL,WBOOTE ;wboot entry point
 LD (1),HL ;set address field for jmp at 0
;

2026/01/10 01:39 3/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LD (5),A ;for jmp to bdos
 LD HL,BDOS ;bdos entry point
 LD (6),HL ;address field of jump at 5 to bdos
;
 LD BC,80H ;default dma address is 80h
 CALL SETDMA
;
 EI ;enable the interrupt system
 LD A,(CDISK) ;get current disk number
 LD C,A ;send to the ccp
 JP CCP ;go to cp/m for further processing

Zeichen-I/O

Im BIOS sind die grundlegenden I/O-Funktionen zur zeichenweisen Ein- und Ausgabe für Konsole,
Drucker, Reader, Punch enthalten.

Ein einfaches BIOS braucht nur Ein- und Ausgabe für Konsole, die restl. Funktionen sind
Leerfunktionen.

Das I/O-Byte wird von CP/M selbst nicht genutzt. Die BDOS-Funktionen Nr. 7 und 8 lesen bzw.
beschreiben direkt die Speicherzelle IOBYTE. Das Systemprogramm STAT nutzt wiederum nur diese
BDOS-Funktionen.

Ein I/O-Byte-Unterstützung muss deshalb vollständig im BIOS erfolgen. Man kann problemlos darauf
verzichten; wenn man nicht verschiedene Geräte für die 4 I/O- Kanäle Konsole, Drucker, Reader,
Punch unterstützen muss/will.

Die BIOS-Funktion CONIN darf das eingetippte Zeichen nicht auf dem Bildschirm ausgeben.

;
;
; simple i/o handlers (must be filled in by user)
; in each case, the entry point is provided, with space reserved
; to insert your own code
;
CONST: ;console status, return 0ffh if character ready, 00h if not
 ..status subroutine
 LD A,00H
 RET
;
CONIN: ;console character into register a
 ..input routine
 AND 7FH ;strip parity bit
 RET
;
CONOUT: ;console character output from register c
 LD A,C ;get to accumulator
 ..output routine
 RET

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

;
LIST: ;list character from register c
 LD A,C ;character to register a
 RET ;null subroutine
;
LISTST: ;return list status (0 if not ready, 1 if ready)
 XOR A ;0 is always ok to return
 RET
;
PUNCH: ;punch character from register c
 LD A,C ;character to register a
 RET ;null subroutine
;
;
READER: ;read character into register a from reader device
 LD A,1AH ;enter end of file for now (replace later)
 AND 7FH ;remember to strip parity bit
 RET

Diskettenfunktionen

Der größte Teil des BIOS besteht in Funktionen zur Diskettenarbeit.

Eine Diskette besteht physikalisch aus Spuren (Tracks). Diese sind in physische Sektoren
unterteilt. Das BDOS greift immer über Track- und logische Sektornummer auf Laufwerke zu. Ein
logischer Sektor (sector, auch record) ist immer 128 Byte lang.

Eine Spur kann Werte von 0..FFFFh annehmen, ein logischer Sektor von 0..FFFFh. Üblich sind bei
Disketten aber Werte von 0..80 für die Spur und 0..255 für den logischen Sektor. Viele BIOSe arbeiten
deshalb auch nur mit 8-Bit-Registern für diese Werte. Damit sind immerhin 256 Tracks * 256 logische
Sektoren * 128 Byte = 8 MByte adressierbar.

Es ist Aufgabe des BIOS, die beiden Werte (Tracks und logischer Sektor) in

Diskettenseite
Spur
und physische Sektornummer

umzusetzen. Wie das erfolgt, ist dem BIOS-Schreiber überlassen (und hängt von der Hardware ab).
Beispiele folgen später.

Die physischen Sektoren sind beispielsweise 1 KByte groß. Das BIOS muss einen Puffer bereitstellen,
um einen kompletten physischen Sektor einzulesen und diesen in logische Sektoren aufzuteilen.
Dieser Mechanismuss heiß Blocking/Deblocking. Das dies nicht trivial ist, gibt es zu CP/M 2.2 eine
Datei deblock.asm als Vorlage.

Die Routinen SETDMA, SETTRK, SETSEC speichern einfach die übergebenen Werte. Wenn die
Laufwerke nur mit max 256 Spuren zu max. 256 log. Sektoren arbeiten, kann man TRACK und
SECTOR als Byte belassen und nur Register C übernehmen. Das BDOS übergibt nur gültige Werte, so

2026/01/10 01:39 5/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

dass Register B in diesem Fall immer 0 ist und nicht beachtet werden muss.

HOME selektiert Spur 0. Ein phys. Zugriff aufs Laufwerk ist nicht erforderlich. Mam spart auch CALL
SETTRK und RET, wenn HOME direkt vor SETTRK steht. Diese Funktion war bei älteren Laufwerken zur
exakten Positionierung des Schreib/Lesekopfes gedacht. Da das BDOS vor jedem Diskzugriff die
Spurnummer über SETTRK anwählt, ist HOME bei neueren Laufwerken überflüssig.

SETTRK bezieht sich auf die im Registerpaar BC übergebene Spur. Diese Spurnummer errechnet sich
immer aus der BDOS-internen (logischen) Spurnummer plus dem OFF- Wert im DPB. Wie auch beim
SELDSK-Aufruf ist ein tatsächlicher Diskzugriff nicht garantiert.

SETSEC bezieht sich auf den im Registerpaar BC übergebenen Sektor. Die so gesetzte Sektornummer
ist immer das Ergebnis der SECTRAN-Funktion (s.u.). Auch hier ist ein tatsächlicher Diskzugriff auf
diesen Sektor nicht garantiert.

SETDMA: Alle nachfolgenden Diskzugriffe müssen die DMA-Adresse als Quell- (bei Schreibzugriffen)
bzw. Zieladresse (bei Lesezugriffen) benutzen. Die DMA-Adresse zeigt immer auf einen 128-Byte
großen Buffer, weshalb Diskzugriffe immer in Recordgröße erfolgen.

;
; i/o drivers for the disk
;
HOME: ;move to the track 00 position of current drive
 LD BC,0 ;select track 0
 ;CALL SETTRK
 ;RET
;
SETTRK ;set track given by register bc
 LD (TRACK),BC
 RET
;
SETSEC ;set sector given by register bc
 LD (SECTOR),BC
 RET

SETDMA ;set dma address given by registers b and c
 LD (DMAAD),BC
 RET

;

SECTRAN übernahm ursprünglich eine Sektornummertransformation bei hardsektorierten Disketten
(8„) anhand einer Sektorverschränkungstabelle (X- lation table XLT). Dies ist bei moderneren
Laufwerken nicht mehr üblich bzw. wegen größerer physischer Sektorlänge als 128 Byte auch nicht
möglich. Eine Sektorverschränkung physischer Sektoren erfolgt deshalb meist im phys.
Diskettentreiber (s. unten).

Im allgemeinen genügt es, einfach die im Registerpaar BC übergebene Sektornummer ins
Registerpaar HL zu kopieren.

im CP/A wird einfach der übergebene Wert genommen und um 1 erhöht (die Sektoren zählen in CP/A
bzw. auf Diskette ab 1). Nutzt man eine allgemeine SECTRAN- Routine für alle Laufwerke, muss dies

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

bei den phys. Laufwerkstreibern f. Read und Write beachtet werden.

SECTRAN: (allg)
;translate the sector given by BC using the
;translate table given by DE
 EX DE,HL ;HL=.trans
 ADD HL,BC ;HL=.trans(sector)
 LD L,(HL) ;L = trans(sector)
 LD H,0 ;HL= trans(sector)
 RET ;with value in HL
;
SECTRAN: (CP/A)
;translate the sector given by BC without translate table
 LD L,C ;L = trans(sector)
 LD H,B ;HL= trans(sector)
 inc HL
 RET ;with value in HL
;

SELDSK: Das BIOS muß die im C-Register übergebene Laufwerksnummer überprüfen und, falls ein
Laufwerk mit dieser Nummer existiert, in HL die Adresse des zugehörigen disk parameter header DPH
zurückgeben, Im CP/M ist nicht garantiert, daß nach einem SELDSK-Aufruf auch tatsächlich auf dieses
Laufwerk zugegriffen wird. Vielmehr hat der SELDSK-Aufruf nur eine 'Anmeldefunktion', damit sich das
BDOS auf das Laufwerk einstellen kann. Das BIOS muß die Laufwerksnummer aber intern speichern,
da sich nachfolgende Diskzugriffe immer auf das zuletzt selektierte Laufwerk beziehen.

In einem aufwendigen BIOS kann bei SELDSK eine Analyse der Diskette erfolgen, um das konkrete
Diskettenformat automatisch zu ermitteln. Im CP/A-BIOS gibt es eine Liste von Formaten, die
hier getestet werden (z.B. 624k, 780k, 800k). Als Resultat dieser Analyse wird ein passender DPB
ausgewählt (oder dynamisch zusammengestellt) und im DPH eingetragen.

Die Laufwerke müssen nicht in alphabetischer Reihenfolge und durchlaufend angelegt sein. Man kann
die Laufwerksbuchstaben A..P willkürlich den Laufwerken zuordnen. SELDSK muss für ein existierenes
Laufwerk den passenden DPH und andernfalls 0000 zurückgeben.

Für jeden Laufwerksbuchstabe, der vom BIOS angesprochen werden kann, muss es einen eigenen
disk parameter header DPH geben.

Ein disk parameter header DPH ist 16 Byte lang und muss im RAM stehen. BDOS beschreibt die freien
Felder des DPH mit eigenen Werten.

Ein DPH umfasst 8 Einträge zu je 16 Bit und hat folgende Struktur: <ditaa>

 +---+
 | XLT | NHDE | CLTK | FSCT | DIRBUF | DPB | CSV | ALV |
 +---+

Byte 0/1 2/3 4/5 6/7 8/9 A/B C/D E/F </ditaa>

XLT (s.o.), NHDE, CLTK, FSCT sind mit 0 vorbelegt, DIRBUF ist ein 128 Byte großer Puffer (für alle
Laufwerke derselbe), DPB ist die Adresse des Disk Parameter Blocks, CSV die Adresse des
Prüfsummenvektors (Check Sum Vector) und ALV die Adresse des Belegungsvektors (Allocation

2026/01/10 01:39 7/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Vector).

Der DPB enthält die Laufwerkseigenschaften und wird weiter unten beschrieben. Ein DPB kann für
mehrere DPH genommen werden, wenn die Laufwerkseigenschaften gleich sind (z.B. für 2 gleiche
Diskettenlaufwerke).

CSV und ALV sind Speicherbereiche im RAM, deren Größe von den Laufwerkseigenschaften abhängen
(s. DPB).

; fixed data tables for four drives

DPBASE:
; disk parameter header for disk 00
DPH0: DW 0000H,0000H
 DW 0000H,0000H
 DW DIRBF,DPB0
 DW CHK00,ALL00
; disk parameter header for disk 01
DPH1: DW 0000H,0000H
 DW 0000H,0000H
 DW DIRBF,DPB1
 DW CHK01,ALL01
; disk parameter header for disk 02
DPH2: DW 0000H,0000H
 DW 0000H,0000H
 DW DIRBF,DPB2
 DW CHK02,ALL02
; disk parameter header for disk 03
DPH3: DW 0000H,0000H
 DW 0000H,0000H
 DW DIRBF,DPB3
 DW CHK03,ALL03
;

; werden die Laufwerksbuchstaben durchgehend vergeben (A:..D:) und
; folgen die DPH direkt aufeinander, kann der DPH durch DPBASE + 16*DISKNO
berechnet werden
SELDSK: ;select disk given by register C
 LD HL,0000H ;error return code
 LD A,C
 LD (DISKNO),A
 CP 4 ;must be between 0 and 3
 RET NC ;no carry if 4,5,...
; compute proper disk parameter header address
 LD A,(DISKNO)
 LD L,A ;L=disk number 0,1,2,3
 LD H,0 ;high order zero
 ADD HL,HL ;*2
 ADD HL,HL ;*4
 ADD HL,HL ;*8
 ADD HL,HL ;*16 (size of each header)

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

 LD DE,DPBASE
 ADD HL,DE ;HL=.dpbase(diskno*16)
 RET

; Alternativ: sind die Laufwerksbuchstaben nicht durchgehend vergeben, kann
die Ermittlung auch direkt
; erfolgen, hier Laufwerke A:, B:, F:, P:
SELDSK: ;select disk given by register C
 LD A,C
 LD (DISKNO),A
 LD HL, DPH0
 CP 'A'-'A' ; Laufwerk A
 RET Z
 LD HL, DPH1
 CP 'B'-'A' ; Laufwerk B
 RET Z
 LD HL, DPH2
 CP 'F'-'A' ; Laufwerk F
 RET Z
 LD HL, DPH3
 CP 'P'-'A' ; Laufwerk P
 RET Z
 ;
 LD HL,0000H ;error return code
 RET

Die READ-Funktion liest einen (logischen) Sektor von der Diskette in den DMA-Buffer. Die
Disknummer, Spurnummer und Sektornummer sind jeweils durch die letzten SELDSK-, SETTRK- und
SETSEC-Aufrufe festgelegt.

Bei physikalischen Sektorlängen vom mehr als 128 Bytes muß das BIOS einen Sektorbuffer
entsprechender Große selbst bereitstellen und aus diesem Buffer 128 Bytes zum zuletzt definierten
DMA-Buffer kopieren. Falls ein Lesefehler auftritt, sollte das BIOS den Diskzugriff ein paar Mal
wiederholen und, falls der Fehler bestehen bleibt, den Fehlercode 1 im A-Register zurückgeben.

Die WRITE-Funktion schreibt einen (logischen) Sektor vom DMA-Buffer auf die Diskette. Die
Disknummer, Spurnummer und Sektornummer sind jeweils durch die letzten SELDSK-, SETTRK- und
SETSEC-Aufrufe festgelegt.

Bei physikalischen Sektorlängen von mehr als 128 Bytes kann das Record-Flag zur Realisierung eines
'Blocking'-Algorithmus verwendet werden. Bei einem normalen Schreibzugriff reicht es, den logischen
Sektor nur in den BIOS-internen Sektorbuffer zu übernehmen. Dies hat den Vorteil, daß nachfolgende
Schreibzugriffe auf den selben physikalischen Sektor keinen Diskettenzugriff verlangen. Erst wenn der
neue logische Sektor in einem anderen physikalsichen Sektor liegt, muß der Sektorbuffer auf die
Diskette geschrieben werden. Directory-Schreibzugriffe sollten immer direkt auf die Diskette geleitet
werden.

Je nach Laufwerkstyp (Diskette, RAM-Floppy etc.) können Read und Write völlig unterschiedlich
implementiert sein. Die BIOS-Routinen READ und WRITE müssen in diesem Fall je nach Laufwerk
DISKNO auf spezielle Routinen READx und WRITEx verzweigen.

Man spricht von physischen Laufwerkstreibern für Read und Write, wenn diese den physischen

2026/01/10 01:39 9/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Transfer eines (physischen) Sektors von/zum Laufwerk übernehmen. Die logischen Laufwerkstreiber
übernehmen das Blocking/Deblocking und andere Aufgaben zur Laufwerksverwaltung wie
Optimierung der Zugriffe auf verschiedene Laufwerke etc. In einem einfachen BIOS z.B. für eine RAM-
Disk mit 128 Byte großen Sektoren braucht man diese Unterteilung nicht.

Ganz einfache Routinen:

;
READ: CALL calcadr
 ..read log. Sektor nach (DMAAD)
 ld a,0 ; keine Fehler
 ret
;
WRITE: CALL calcadr
 ..schreibe log. Sektor von (DMAAD)
 ld a,0 ; keine Fehler
 ret
;
calcadr: ..aus log. Track TRACK und log. Sektor SECTOR
 die physikalische Position berechnen
 ret

Es verbleiben die RAM-Speicherbereiche, die nicht vorbelegt sind und deshalb am Ende des BIOS
stehen sollten, damit das BIOS in den Systemspuren nicht zu groß wird.

; the remainder of the CBIOS is reserved uninitialized
; data area, and does not need to be a part of the
; system memory image (the space must be available,
; however, between "begdat" and "enddat").
;
TRACK: DS 2 ;two bytes for expansion
SECTOR: DS 2 ;two bytes for expansion
DMAAD: DS 2 ;direct memory address
DISKNO: DS 1 ;disk number 0-15
;
; scratch ram area for BDOS use
DIRBF: DS 128 ;scratch directory area
ALL00: DS xx ;allocation vector 0 benötigte Größe siehe
DPB
ALL01: DS xx ;allocation vector 1
ALL02: DS xx ;allocation vector 2
ALL03: DS xx ;allocation vector 3
CHK00: DS xx ;check vector 0 benötigte Größe siehe
DPB
CHK01: DS xx ;check vector 1
CHK02: DS xx ;check vector 2
CHK03: DS xx ;check vector 3

BUFFER: DS xxK ;Puffer für physischen Sektor, bei einfachen BIOS
pro Laufwerk!
;

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

 END

Der Disk Parameter Block

Ein DPB umfasst 15 Bytes in folgender Aufteilung: <ditaa> +———————————————————-+

SPT BSH BLM EXM DSM DRM AL0 AL1 CKS OFF

+———————————————————-+

0/1 2 3 4 5/6 7/8 9 A B/C D/E
 16 8 8 8 16 16 8 8 16 16

</ditaa>

Beschreibung s.a. der_disk_parameter_block

Zur Erstellung eines DPB braucht man folgende Angaben:

Gesamtkapazität der Diskette in KByte1.
physischer Aufbau der Diskette2.

Anzahl der Spuren (Tracks)1.
Anzahl physischer Sektoren pro Spur2.
Anzahl der beschreibbaren Diskettenseiten3.

max. Anzahl der Direktory-Einträge3.
Anzahl der Systemspuren4.
gewünschte Blockgröße5.

CP/M kennt keine Diskettenseiten, man muss im physischen Diskettentreiber die Seite aus TRACK
oder SECTOR ermitteln. Möglich ist z.B. bei einer Diskette mit 2 Seiten, 80 Spuren, 5 phys. Sektoren
pro Spur:

gerader Track Vorderseite (0,2,4,..), ungerader Track Rückseite (1,3,5,..)
Track 0..79 Vorderseite, Track 80..159 Rückseite
Sektor 1..5 Vorderseite, 6..10 Rückseite
…

CP/A nutzt die erste Variante.

Unabhängig von der physischen Sektorlänge gibt es im CP/M noch die Blockgröße. Das BDOS teilt
jede Diskette in Blöcke (engl. Blocks) auf, um damit den Verwaltungs- und Speicheraufwand für die
Belegungstabelle zu verkleinern. Die Länge eines Blocks ist 1, 2, 4, 8 oder 16 kByte.

Die Disketten-Belegungstabelle wird in Blöcken geführt, somit kann das BDOS Diskettenplatz auch nur
blockweise vergeben. Nachteil dieser Aufteilung ist, das ein File immer ganze Blöcke belegt, auch
wenn die tatsächliche Filelänge kleiner ist.

Beispiel 1: eine 800K Diskette mit 2 Seiten, 80 Spuren, 5 phys. Sektoren pro Spur

https://hc-ddr.hucki.net/wiki/doku.php/intern/systemdoku#der_disk_parameter_block

2026/01/10 01:39 11/12 BIOS schreiben

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

2 Seiten * 80 Spuren → 160 TRACKs
800 KByte / 160 → 5 KByte / Spur
5 phys. Sektoren pro Spur → 1 KByte großer phys. Sektor
SPT = 5 KByte / Spur → 5K/128 = 40 logische Sektoren (records) pro Spur

Man muss sich für eine Blockgröße entscheiden. Nimmt man 2 KByte große Blöcke, gibt es insgesamt
800k/2k = 400 Blöcke. Damit braucht man 16 bit große Blocknummern. Nimmt man 4 KByte große
Blöcke, gibt es insgesamt 800k/4k = 200 Blöcke. Damit braucht man nur 8 bit große Blocknummern.
Aber man bekommt weniger kleine Dateien auf der Diskette unter.

Allgemein sollte die Blockgröße mit der Diskettengröße wachsen.

Aus Blockgröße und Blocknummeranzahl ergeben sich die Felder BSH, BLM und EXM des disk
parameter blocks:

OFS := Anzahl der Systemspuren (logische TRACKs!)
SPT := Anz.Phys.Sektoren*Größe.Phys.Sektor / 128

block size BLS in Byte (1024, 2048, .. ,16384)

DSM := Gesamtkapazität - 1 = Anz.Blöcke * (block size) - 1

BSH := log2 (block size / 128)
BLM := (block size / 128) - 1
EXM := (block size / 1024) - 1 bei 8 bit-Blocknummern (DSM/block size ⇐ 255)
EXM := (block size / 2048) - 1 bei 16 bit-Blocknummern (DSM/block size > 255)

Die Anzahl der Directory-Einträge ist frei wählbar. Es werden immer ganze Blöcke vergeben, diese gilt
auch für das Directory. Maximal können 16 Blöcke genutzt werden. Ein Directory-Eintrag ist 32 Byte
lang, damit sind BLS/32 Directory-Einträge pro Block möglich. Die Maximal-Zahl ergibt sich zu

DRM := Anz.Dir.Blöcke * (block size / 32) - 1

Das Verhältnis zwischen Anzahl der Directory-Einträge und Anzahl der Blöcke sollte gewahrt bleiben.
Es ist wenig sinnvoll, mehr Directory-Einträge als Blöcke zu haben. DSM/(durchschnittliche
Dateigröße) kann ein Anhaltspunkt sein.

Im Beispiel ergibt sich für drei 2K-Blöcke 3 * 2048/32 = maximal mögliche 192 Einträge, das sollte
man auch nutzen und DRM auf 191 setzen.

CP/M erkennt Diskettenwechsel, indem ein Prüfvektor über die Directory-Records gebildet wird.

CKS := (DRM + 1) / (128 / 32) = (DRM + 1) / 4

Diese Maximalgröße muss nicht immer genommen werden; gerade bei großen Disketten oder
Festplatten würde eine Prüfung zu lange dauern. Bei nicht wechselbaren Laufwerken wie Festplatten
oder RAM-Disketten kann CKS auch auf 0 gesetzt werden. Damit wird nicht auf Diskettenwechsel
geprüft.

Im DPH (s.o.) wird für den Prüfsummenvektor Speicherplatz definiert (CHKxx). Dieser muss CKS Byte
groß sein:

CHK00: DS xx ;check vector 0 = CKS Byte

Last update: 2012/03/07 15:27 cpm:write_a_bios https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/10 01:39

Der Allocation Vektor (ALV) bildet die Belegungstabelle (besser: Belegungsvektor) der Diskette. Für
jeden Block der Diskette ist im ALV ein Bit vorhanden, das entsprechend auf 0 (Block frei) oder 1
(Block belegt) gesetzt wird. Die Zuordnung der Blöcke zu den Bits geschieht in absteigender
Bitnummernfolge (höchstes Bit eines Bytes zuerst) und aufsteigender Bytefolge (erstes Byte des ALV
zuerst). Für ALLxx muss man deshalb (DSM+1)/8 Byte groß sein:

ALL00: DS xx ;allocation vector 0 = (DSM+1)/8 Byte

Achtung: Bei automatischer Formaterkennung müssen die Speicherplätze CHKxx und ALLxx für die
größtmöglichen Werte ausgelegt sein!

Im disk parameter block sind die ersten beiden Byte des Allocation Vektors einzutragen. Je ein Bit ist
für einen genutzten Directory-Block zu setzen:

AL0,AL1 = 11..100..00b

Im Beispiel gilt für 3 Directory-Blöcke

AL0 = 1110000b = E0h, AL1 = 00000000b = 00h

insgesamt ergibt sich für Beispiel 1

DPB00: DW 40 ;SPT sectors per track
 DB 4 ;BSF block shift factor
 DB 15 ;BLM block mask
 DB 0 ;EXM null mask
 DW 224 ;DSM disk size-1
 DW 191 ;DRM directory max
 DB 0E0h ;alloc 0
 DB 00h ;alloc 1
 DW 48 ;check size
 DW 0 ;track offset

CHK00: DS 48 ;check vector 0
ALL00: DS 50 ;allocation vector 0

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

Last update: 2012/03/07 15:27

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios?rev=1331134022

	howto write a bios
	Kalt- und Warmstart
	Zeichen-I/O
	Diskettenfunktionen
	Der Disk Parameter Block

