2026/02/06 01:41 1/4 Teil 2

Teil 2

weiter geht es mit dem DPB

das folgende Beispiel stammt aus einer CP/A-Implementation. Bei CP/A erfolgt die Sektorzahlung ab 1,
deshalb steht in sectran ein inc hl. Die Zahlung ab 1 muss bei den direkten Zugriffen beachtet
werden!

sectran: 1d h, b
1d 1, c
inc hl :Sektoren zaehlen in CP/A ab 1
ret

Beispiel 2

Wir wollen ein RAM-Floppy ansteuern. Die RAM-Floppy (NANOS) hat folgende Eigenschaften:

e 256 K Gesamtkapazitat
e die RAM-Floppy kann einen Speicherbereich von 256 Byte in den Hauptspeicher einblenden

Ein Byte mit Adresse A17..A0 in der RAM-Floppy wird so angesprochen:

1. Ausgabe Al17..A16 auf Port ,Bank”,

2. Ausgabe A15..A8 auf Port , HiAdr“,

3. Einblenden in den Hauptspeicher (auf Adresse ,Window* bis , Window*“+255,
4. Zugriff auf ,Window“+A7..A0

Far die Nutzung im CP/M soll auBerdem eine Kopie von CCP+BDOS (5 KByte) auf der RAM-Disk
gehalten werden, sinnvollerweise in Systemspuren.

Eine RAM-Floppy hat keine physischen Spuren, deshalb kann man die Aufteilung in virtuelle Spuren
und Sektoren nach eigenen Ideen vornehmen.

Die Ansteuerung als Ubersicht:

S Vollstandige 18 bit RAM-Adresse (RAF 256K) ------ :
:17 16 151413121110 9 8 7 6 5 4 3 2 1 0°:

it dt e R e S R S s it (e
Bank | | Hi-Adr. | | Window
T S It i T S e N  h et A st SEIEE P R P SRR P S

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/


https://hc-ddr.hucki.net/wiki/doku.php/cpm/cpa
https://hc-ddr.hucki.net/wiki/doku.php/z1013/module/raf#nanos

Last update: 2018/02/01 06:57 cpm:write_a_bios:teil_2 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_2?rev=1517468245

:9 8 7 6 5 4 3 2 1 0:: 0: :
Variante 1 R TRACK------ommmmo- R RECORD- - - - - - - :

:7 6: 5 4 3 2 1 0:32 10: :
Variante 2 R TRACK--------- :-SECTOR--:------- RECORD------- :

Variante 1

Die FenstergroRe von 256 Byte bietet es an, die Spurgrdle als 256 Byte zu wahlen. Hi-Byte und Lo-
Byte der Tracknummer sind dann direkt ,,Bank” und ,HiAdr“. Das macht die Ansteuerung besonders
einfach.

also:

1 Track = 256 Byte (Fenstergrofie)

d.h. 2 Records/track

wir brauchen damit 1600h/256 = 22 Tracks f. Systemspur

insg. 1024 tracks » DSM = 1023-22 = 1011

wir wahlen die kleinstmagliche BlockgroRe 2k (1k gehen nicht wg. EXM, da DSM > 255)
und z.B. 128 Dir-Eintrage (d.h. 2 Dir-Blocke)

Fur den DPB ergibt sich damit:

;DISKDEF ©0,1,2,,2048,1012,128,0,22

dpb00: dw 2 ;SPT sectors per track
db 4 ;BSF block shift factor
db 15 ;BLM block mask
db 0 ;EXM null mask
dw 1011 ;DSM disk size-1
dw 127 ;DRM directory max
db Coh ;ALO alloc 0
db 0 ;Al1 alloc 1
dw 0 ;CKS check size
dw 22 ;OFS track offset
alvO0: ds 007Fh ;allocation vector
csv00: ds 0000 ;check vector

Die BIOS-Routinen zum Blocklesen und -schreiben verweisen auf folgende Routinen. Wegen der
SpurgroRe von 256 Byte = 2 Records muss ein Blocking/Deblocking erfolgen. Glucklicherweise ist das
bei einer RAM-Disk nicht weiter schwierig umzusetzen, da innerhalb des Zugriffsfensters nur der
angesprochene Bereich von 128 Byte gelesen bzw. verandert wird.

; Lesen von Diskette
READ: CALL ADRE
READ1: LDIR

ouT (READDI), A

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/06 01:41



2026/02/06 01:41 3/4 Teil 2

ouT (RAMDI), A
XOR A
RET

; Schreiben auf Diskette
WRITE: CALL ADRE

EX DE,HL

JR READ1-#

; Berechnung Adr.
ADRE: ouT (RAMEN), A
ouT (READEN), A

LD HL, (TRACK)

ouT (LDAH), L ; hi-adr.
ouT (LDBB), H ; Bank
LD HL, WINDOW ; das ist eine xx00h-Adr.
LD a, (SECTOR) ; 1 oder 2 (in CP/A wg. SECTRAN)
CP 2
jr nz, ADREOa
LD L,80h
ADREa: LD DE, (DMAAD)
LD BC, 128
RET
Variante 2

Um eine kleinere BlockgrdRe nutzen zu kénnen, muss die Anzahl der Spuren < 256 werden. Da geht
z.B. mit einer SpurgréRe von 2 KByte.

1 Track = 2048 Byte

d.h. 16 Records/Track

wir brauchen damit 1600h/2048 = 3 Tracks f. Systemspur
insg. 256 Tracks—» DSM = 255-3

kleinste Blockgroe 1k

und z.B. 64 Dir-Eintrage (d.h. 2 Dir-Blocke)

Diese Aufteilung ist aufgrund der kleineren BlockgroBe gunstiger, wenn viele kleine Dateien auf der

RAM-Disk gehalten werden sollen. Auch wird weniger Platz fur den Allocation Vektor ALVxx bendtigt.
Aber die Umrechnung logischer Track-Sektor = Adr. f. RAM-Disk ist aufwendiger!

;DISKDEF 1,1,16,,1024,252,64,0,3

dpb01l: dw 16 ;SPT sectors per track
db 3 ;BSF block shift factor
db 7 ;BLM block mask
db 0 ;EXM null mask
dw 251 ;DSM disk size-1
dw 63 ;DRM directory max
db COH ;ALO alloc 0
db 0 ;AL1 alloc 1

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/



Last update: 2018/02/01 06:57 cpm:write_a_bios:teil_2 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_2?rev=1517468245

dw
dw

alvOl: ds

csvOl:

0 ;CKS check size
3 ;OFS track offset
0020h ;allocation vector

0000h :check vector

Read und Write sind wie oben implementiert, die Adressierung ist jetzt umfangreicher:

ADRE: ouT (RAMEN), A
ouT (READEN), A
;Adr. Fenster = (track*16+sector)/2
LD HL, (TRACK)
ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL ; HL = Track * 10h (SPT)
LD DE, (SECTOR)
DEC DE ; wg. CP/A
ADD HL,DE ; HL := HL + Sector
XOR A y A=0, Cy =0
RR H
RR L ; HL := HL/2 ( da 2 Sektoren/Fenster )
RR A ; L BitO nach A Bit7 ( A = 0 oder 80h)
ouT (LDAH), L ; hi-adr.
ouT (LDBB), H ; Bank
LD H, Hi(WINDOW)
LD L,A
LD DE, (DMA)
LD BC, 128
RET

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR E ]
Permanent link: -- e
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teiI_2?rev=1517468245& T
[m] ARk

Last update: 2018/02/01 06:57

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/06 01:41


https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_2?rev=1517468245

	Teil 2
	Beispiel 2
	Variante 1
	Variante 2



