2026/02/11 07:47 1/13 Teil 1

Teil 1

Zu CP/M 2.2 gibt es eine Datei cbios.asm mit, die als Ausgang fur ein BIOS dienen kann. Diesen Code
habe ich hier genutzt, an Z80 angepasst und ggf. weiter vereinfacht.

Das BIOS folgt unmittelbar auf CCP und BDOS. Am Anfang des BIOS steht ein Sprungverteiler zu den
17 BIOS-Funktionen.

Die BIOS-Funktionen mussen keine Register retten.

Kalt- und Warmstart

.Z280
o Skeletal CBIOS for first level of CP/M 2.0 alteration

CCP EQU XX00H ;base of ccp

BDOS EQU CCP+806H ;base of bdos
BIOS EQU CCP+1600H ;base of bios
CDISK EQU 0004H ;current disk number 0=A,...,15=P
IOBYTE EQU 0003H ;intel i/o0 byte
ORG BIOS ;origin of this program

; jump vector for individual subroutines

JP BOOT ;cold start
WBOOTE : JP WBOOT ;warm start
JP CONST ;console status
JP CONIN ;console character in
JP CONOUT ;console character out
JP LIST ;list character out
JP PUNCH ;punch character out
JP READER ;reader character out
JP HOME ;move head to home position
JP SELDSK ;select disk
JP SETTRK ;set track number
JP SETSEC ;set sector number
JP SETDMA ;set dma address
JP READ ;read disk
JP WRITE ;write disk
JP LISTST ;return list status
JP SECTRAN ;sector translate

BOOT ist der Eintrittspunkt, der nach dem BOOT-Vorgang einmalig angesprungen werden sollte. Vom
CP/M aus wird niemals BOOT aufgerufen. Im einfachsten Fall kann BOOT im BIOS-Bereich komplett
leer bleiben, wenn die Systeminitialisierung im BOOT-Loader erfolgt.

Der Kaltstart wird nur nach dem erstmaligen Laden des Betriebsystems benétigt. Der Aufruf an den

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

Kaltstart erfolgt meist von einem speziellen Ladeprogramm, das nach dem Einschalten des Rechners
das BIOS von der Systemdiskette geladen hat.

Aufgabe des Kaltstart ist es, die einzelnen Systemkomponenten zu initialisieren und eine Meldung
Uber den erfolgten Systemstart auf der Console auszugeben.

Normalerweise wird nach einem Kaltstart ein Warmstart ausgefiihrt, der den CCP und das BDOS von
der Diskette ladt und die Sprungbefehle einsetzt. Dann braucht nur die zuerst anzuwahlende Disk-
und Usernummer in die Speicheradresse 0004h eingetragen zu werden.

WBOOT wird beim Warmstart (z.b. ~C oder JP 0000) aufgerufen. Die BDOS- Funktion 0 geht direkt
zur BIOS-Funktion WBOOT weiter.

WBOOT muss CCP und BDOS im Speicher restaurieren. Fir ein erstes BIOS kann dies Ubergangen
werden, solange keine Programe gestartet werden, die das CCP oder sogar CCP und BDOS
uberschreiben. Zum Neuladen von CCP und BDOS sind folgende Verfahren Ublich:

e Laden aus Systemspuren der BOOT-Diskette (meist A:)
e Laden aus einer Kopie im Speicher (z.B. bei Vorhandensein von Schattenspeicher)

e Erstellen einer Kopie wahrend des BOOT-Vorgangs in eine RAM-Disk und Laden von dieser
(Ublicherweise auch hier aus Systemspuren)

e Laden aus einer @0S-Datei von der Diskette. Dazu muss aber ein Mini-BDOS verfugbar sein,
was das logische Lesen von Diskette unterstitzt. Die Records dieser @0S-Datei konnten ja
beliebig auf der Diskette verstreut liegen.

Nach dem Neuladen von CCP und BDOS werden die Systemspringe fur JP 0000 und CALL 5
eingerichtet, das aktuelle Laufwerk wieder selektiert und die Steuerung ans CCP Ubergeben.

BOOT: ;simplest case is to just perform parameter initialization

XOR A ;zero in the accum
LD (IOBYTE) ,A ;clear the iobyte
LD (CDISK) ,A ;select disk zero
JP GOCPM ;yinitialize and go to cp/m
WBOOT: ;simplest case is to read the disk until all sectors loaded
LD SP,80H ;use space below buffer for stack

..reread ccp+bdos into memory

.
y oo

; end of load operation, set parameters and go to cp/m

GOCPM:
LD A,0C3H ;€3 is a jmp instruction
LD (0),A ;for jmp to wboot
LD HL,WBOOTE ;wboot entry point
LD (1),HL ;set address field for jmp at 0
LD (5),A ;for jmp to bdos
LD HL,BDOS ;bdos entry point
LD (6),HL ;address field of jump at 5 to bdos

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

2026/02/11 07:47 3/13 Teil 1

LD BC, 80H ;default dma address is 80h
CALL SETDMA

EI ;enable the interrupt system

LD A, (CDISK) ;get current disk number

LD C,A ;send to the ccp

JP CCpP ;go to cp/m for further processing
Zeichen-1/O

Im BIOS sind die grundlegenden I/O-Funktionen zur zeichenweisen Ein- und Ausgabe fur Konsole,
Drucker, Reader, Punch enthalten.

Ein einfaches BIOS braucht nur Ein- und Ausgabe flr Konsole, die restl. Funktionen sind
Leerfunktionen.

Das 1/0-Byte wird von CP/M selbst nicht genutzt. Die BDOS-Funktionen Nr. 7 und 8 lesen bzw.
beschreiben direkt die Speicherzelle IOBYTE. Das Systemprogramm STAT nutzt wiederum nur diese
BDOS-Funktionen.

Ein 1/0-Byte-Unterstitzung muss deshalb vollstandig im BIOS erfolgen. Man kann problemlos darauf
verzichten; wenn man nicht verschiedene Gerate fur die 4 1/O- Kanale Konsole, Drucker, Reader,
Punch unterstitzen muss/will.

Die BIOS-Funktion CONIN darf das eingetippte Zeichen nicht auf dem Bildschirm ausgeben.

Far ein minimales BIOS reicht es, die CON-Routinen zu implementieren. Drucker, Reader und Punch
konnen Null-Routinen bleiben.

; simple i/o handlers (must be filled in by user)
; in each case, the entry point is provided, with space reserved
; to insert your own code

CONST: ;console status, return Offh if character ready, 00h if not

. .status subroutine
LD A,0O0H
RET

CONIN: ;console character into register a
..1nput routine
AND 7FH ;strip parity bit
RET

CONOUT: ;console character output from register c
LD A,C ;get to accumulator
..output routine
RET

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

LIST: ; list character from register c
LD A,C ;character to register a
RET ;null subroutine

LISTST: ;return list status (0 if not ready, 1 if ready)
XOR A ;0 is always ok to return
RET

PUNCH: ;punch character from register c
LD A,C ;character to register a
RET ;null subroutine

READER: ;read character into register a from reader device
LD A, 1AH ;enter end of file for now (replace later)
AND 7FH ;remember to strip parity bit
RET

Diskettenfunktionen

Der grofte Teil des BIOS besteht in Funktionen zur Diskettenarbeit.

Eine Diskette besteht physikalisch aus Spuren (Tracks). Diese sind in physische Sektoren
unterteilt. Das BDOS greift immer uber Track- und logische Sektornummer auf Laufwerke zu. Ein
logischer Sektor (sector, auch record) ist immer 128 Byte lang.

Eine Spur kann Werte von 0..FFFFh annehmen, ein logischer Sektor von 0..FFFFh. Ublich sind bei
Disketten aber Werte von 0..80 fUr die Spur und 0..255 fir den logischen Sektor. Viele BIOSe arbeiten
deshalb auch nur mit 8-Bit-Registern fur diese Werte. Damit sind immerhin 256 Tracks * 256 logische
Sektoren * 128 Byte = 8 MByte adressierbar.

Es ist Aufgabe des BIOS, die beiden Werte (Tracks und logischer Sektor) in

¢ Diskettenseite
e Spur
e und physische Sektornummer

umzusetzen. Wie das erfolgt, ist dem BIOS-Schreiber Uberlassen (und hangt von der Hardware ab).
Beispiele folgen spater.

Die physischen Sektoren sind beispielsweise 1 KByte grof8. Das BIOS muss einen Puffer bereitstellen,
um einen kompletten physischen Sektor einzulesen und diesen in logische Sektoren aufzuteilen.
Dieser Mechanismuss heils Blocking/Deblocking. Das dies nicht trivial ist, gibt es zu CP/M 2.2 eine
Datei deblock.asm als Vorlage.

Die Routinen SETDMA, SETTRK, SETSEC speichern einfach die Ubergebenen Werte. Wenn die
Laufwerke nur mit max 256 Spuren zu max. 256 log. Sektoren arbeiten, kann man TRACK und
SECTOR als Byte belassen und nur Register C Ubernehmen. Das BDOS ubergibt nur gultige Werte, so

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

2026/02/11 07:47 5/13 Teil 1

dass Register B in diesem Fall immer 0 ist und nicht beachtet werden muss.

HOME selektiert Spur 0. Ein phys. Zugriff aufs Laufwerk ist nicht erforderlich. Mam spart auch CALL
SETTRK und RET, wenn HOME direkt vor SETTRK steht. Diese Funktion war bei alteren Laufwerken zur
exakten Positionierung des Schreib/Lesekopfes gedacht. Da das BDOS vor jedem Diskzugriff die
Spurnummer Uber SETTRK anwahlt, ist HOME bei neueren Laufwerken Uberflussig.

SETTRK bezieht sich auf die im Registerpaar BC Ubergebene Spur. Diese Spurnummer errechnet sich
immer aus der BDOS-internen (logischen) Spurnummer plus dem OFF- Wert im DPB. Wie auch beim
SELDSK-Aufruf ist ein tatsachlicher Diskzugriff nicht garantiert.

SETSEC bezieht sich auf den im Registerpaar BC Ubergebenen Sektor. Die so gesetzte Sektornummer
ist immer das Ergebnis der SECTRAN-Funktion (s.u.). Auch hier ist ein tatsachlicher Diskzugriff auf
diesen Sektor nicht garantiert.

SETDMA: Alle nachfolgenden Diskzugriffe mussen die DMA-Adresse als Quell- (bei Schreibzugriffen)
bzw. Zieladresse (bei Lesezugriffen) benutzen. Die DMA-Adresse zeigt immer auf einen 128-Byte
grolRen Buffer, weshalb Diskzugriffe immer in Recordgrole erfolgen.

.
’

g i/o drivers for the disk

HOME : ;move to the track 00 position of current drive
LD BC,0 ;select track 0
; CALL SETTRK
;RET
SETTRK ;set track given by register bc
LD (TRACK) ,BC
RET
SETSEC ;set sector given by register bc
LD (SECTOR) ,BC
RET
SETDMA ;set dma address given by registers b and c
LD (DMAAD) ,BC
RET

SECTRAN ubernahm ursprunglich eine Sektornummertransformation bei hardsektorierten Disketten
(8,)) anhand einer Sektorverschrankungstabelle (X- lation table XLT). Dies ist bei moderneren
Laufwerken nicht mehr tblich bzw. wegen groRerer physischer Sektorlange als 128 Byte auch nicht
maglich. Eine Sektorverschrankung physischer Sektoren erfolgt deshalb meist im phys.
Diskettentreiber (s. unten).

Im allgemeinen genugt es, einfach die im Registerpaar BC Ubergebene Sektornummer ins
Registerpaar HL zu kopieren.

® im CP/A wird einfach der Ubergebene Wert genommen und um 1 erhéht (die Sektoren zahlen in

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

CP/A bzw. auf Diskette ab 1). Nutzt man eine allgemeine SECTRAN- Routine fur alle Laufwerke, muss
dies bei den phys. Laufwerkstreibern f. Read und Write beachtet werden.

SECTRAN: (allg)
;translate the sector given by BC using the
;translate table given by DE

EX DE, HL ;HL=.trans

ADD HL, BC ;HL=.trans(sector)
LD L, (HL) ;L = trans(sector)
LD H,0 ;HL= trans(sector)

RET swith value in HL

SECTRAN: (CP/A)
;translate the sector given by BC without translate table

LD L,C ;L = trans(sector)
LD H,B ;HL= trans(sector)
inc HL

RET ;with value in HL

.
’

SELDSK: Das BIOS muR die im C-Register Ubergebene Laufwerksnummer Uberprifen und, falls ein
Laufwerk mit dieser Nummer existiert, in HL die Adresse des zugehorigen disk parameter header DPH
zurlckgeben, Im CP/M ist nicht garantiert, dals nach einem SELDSK-Aufruf auch tatsachlich auf dieses
Laufwerk zugegriffen wird. Vielmehr hat der SELDSK-Aufruf nur eine 'Anmeldefunktion’, damit sich das
BDOS auf das Laufwerk einstellen kann. Das BIOS muf3 die Laufwerksnummer aber intern speichern,
da sich nachfolgende Diskzugriffe immer auf das zuletzt selektierte Laufwerk beziehen.

! In einem aufwendigen BIOS kann bei SELDSK eine Analyse der Diskette erfolgen, um das
konkrete Diskettenformat automatisch zu ermitteln. Im CP/A-BIOS gibt es eine Liste von
Formaten, die hier getestet werden (z.B. 624k, 780k, 800k). Als Resultat dieser Analyse wird ein
passender DPB ausgewahlt (oder dynamisch zusammengestellt) und im DPH eingetragen.

Die Laufwerke muissen nicht in alphabetischer Reihenfolge und durchlaufend angelegt sein. Man kann
die Laufwerksbuchstaben A..P willkirlich den Laufwerken zuordnen. SELDSK muss flr ein existierenes
Laufwerk den passenden DPH und andernfalls 0000 zurtckgeben.

Fr jeden Laufwerksbuchstabe, der vom BIOS angesprochen werden kann, muss es einen eigenen
disk parameter header DPH geben.

Ein disk parameter header DPH ist 16 Byte lang und muss im RAM stehen. BDOS beschreibt die freien
Felder des DPH mit eigenen Werten.

Ein DPH umfasst 8 Eintrage zu je 16 Bit und hat folgende Struktur: <ditaa>

Byte 0/1 2/3 4/5 6/7 8/9 A/B C/D E/F </ditaa>

XLT (s.0.), NHDE, CLTK, FSCT sind mit 0 vorbelegt, DIRBUF ist ein 128 Byte grolRer Puffer (fur alle

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

2026/02/11 07:47 7/13 Teil 1

Laufwerke derselbe), DPB ist die Adresse des Disk Parameter Blocks, CSV die Adresse des
Prafsummenvektors (Check Sum Vector) und ALV die Adresse des Belegungsvektors (Allocation
Vector).

Der DPB enthalt die Laufwerkseigenschaften und wird weiter unten beschrieben. Ein DPB kann fur
mehrere DPH genommen werden, wenn die Laufwerkseigenschaften gleich sind (z.B. fur 2 gleiche
Diskettenlaufwerke).

CSV und ALV sind Speicherbereiche im RAM, deren GroRe von den Laufwerkseigenschaften abhangen
(s. DPB).

g fixed data tables for four drives

DPBASE:
; disk parameter header for disk 00
DPHO: DW ©0000H, 00006H

DW 0000H, 0000H

DW DIRBF,DPBO

DW CHKOO,ALLOO
; disk parameter header for disk 01
DPH1: DW ©0000H, 00006H

DW 0000H, 0000H

DW DIRBF,DPB1

DW CHKO1,ALLO1
; disk parameter header for disk 02
DPH2: DW ©0000H, 00006H

DW 0000H, 0000H

DW DIRBF,DPB2

DW CHK02,ALLO2
; disk parameter header for disk 03
DPH3: DW ©0000H, 00006H

DW 0000H, 0000H

DW DIRBF,DPB3

DW CHKO3,ALLO3

’

; werden die Laufwerksbuchstaben durchgehend vergeben (A:..D:) und
; folgen die DPH direkt aufeinander, kann der DPH durch
; DPBASE + 16*DISKNO berechnet werden

SELDSK: ;select disk given by register C
LD HL,0000H ;error return code
LD A,C
LD (DISKNO) ,A
CP 4 ;must be between 0 and 3
RET NC ;no carry if 4,5,...

; compute proper disk parameter header address
LD A, (DISKNO)

LD L,A ;L=disk number 0,1,2,3
LD H,0 ;high order zero

ADD HL, HL)

ADD HL,HL ;¥4

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

ADD HL,HL ; ¥8

ADD HL,HL ;¥16 (size of each header)
LD DE, DPBASE

ADD HL,DE ;HL=.dpbase(diskno*16)
RET

; Alternativ: sind die Laufwerksbuchstaben nicht durchgehend vergeben,
; kann die Ermittlung auch direkt erfolgen, hier Laufwerke A:, B:, F:, P:
SELDSK: ;select disk given by register C

LD A,C

LD (DISKNO) ,A

LD HL, DPHO

CP "A'-'A ; Laufwerk A
RET z

LD HL, DPH1

CP '‘B'-'A' ; Laufwerk B
RET VA

LD HL, DPH2

CP 'F'-'A' ; Laufwerk F
RET Z

LD HL, DPH3

CP 'P'-'A' ; Laufwerk P
RET z

LD HL, O0006H serror return code
RET

Die READ-Funktion liest einen (logischen) Sektor von der Diskette in den DMA-Buffer. Die
Disknummer, Spurnummer und Sektornummer sind jeweils durch die letzten SELDSK-, SETTRK- und
SETSEC-Aufrufe festgelegt.

Bei physikalischen Sektorlangen vom mehr als 128 Bytes muf das BIOS einen Sektorbuffer
entsprechender GrofRRe selbst bereitstellen und aus diesem Buffer 128 Bytes zum zuletzt definierten
DMA-Buffer kopieren. Falls ein Lesefehler auftritt, sollte das BIOS den Diskzugriff ein paar Mal
wiederholen und, falls der Fehler bestehen bleibt, den Fehlercode 1 im A-Register zurickgeben.

Die WRITE-Funktion schreibt einen (logischen) Sektor vom DMA-Buffer auf die Diskette. Die
Disknummer, Spurnummer und Sektornummer sind jeweils durch die letzten SELDSK-, SETTRK- und
SETSEC-Aufrufe festgelegt.

Bei physikalischen Sektorlangen von mehr als 128 Bytes kann das Record-Flag zur Realisierung eines
'‘Blocking'-Algorithmus verwendet werden. Bei einem normalen Schreibzugriff reicht es, den logischen
Sektor nur in den BIOS-internen Sektorbuffer zu Gbernehmen. Dies hat den Vorteil, dal nachfolgende
Schreibzugriffe auf den selben physikalischen Sektor keinen Diskettenzugriff verlangen. Erst wenn der
neue logische Sektor in einem anderen physikalsichen Sektor liegt, mul§ der Sektorbuffer auf die
Diskette geschrieben werden. Directory-Schreibzugriffe sollten immer direkt auf die Diskette geleitet
werden.

Je nach Laufwerkstyp (Diskette, RAM-Floppy etc.) kdnnen Read und Write véllig unterschiedlich
implementiert sein. Die BIOS-Routinen READ und WRITE mussen in diesem Fall je nach Laufwerk
DISKNO auf spezielle Routinen READx und WRITEXx verzweigen.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

2026/02/11 07:47 9/13 Teil 1

Man spricht von physischen Laufwerkstreibern fir Read und Write, wenn diese den physischen
Transfer eines (physischen) Sektors von/zum Laufwerk Ubernehmen. Die logischen Laufwerkstreiber
ubernehmen das Blocking/Deblocking und andere Aufgaben zur Laufwerksverwaltung wie
Optimierung der Zugriffe auf verschiedene Laufwerke etc. In einem einfachen BIOS z.B. fir eine RAM-
Disk mit 128 Byte groen Sektoren braucht man diese Unterteilung nicht.

Ganz einfache Routinen:

READ: CALL calcadr

..read log. Sektor nach (DMAAD)
1d a,o ; keine Fehler
ret
WRITE: CALL calcadr
..schreibe log. Sektor von (DMAAD)
1d a,o ; keine Fehler
ret
calcadr: ..aus log. Track TRACK und log. Sektor SECTOR
die physikalische Position berechnen
ret

Es verbleiben die RAM-Speicherbereiche, die nicht vorbelegt sind und deshalb am Ende des BIOS
stehen sollten, damit das BIOS in den Systemspuren nicht zu gro wird.

; the remainder of the CBIOS is reserved uninitialized
; data area, and does not need to be a part of the
; system memory image (the space must be available,

0 however)
TRACK: DS 2 ;two bytes for expansion
SECTOR: DS 2 ;two bytes for expansion
DMAAD: DS 2 ;direct memory address

1 ;disk number 0-15

DISKNO: DS

’

; scratch ram area for BDOS use

DIRBF: DS 128 ;scratch directory area

ALLOO: DS XX ;allocation vector 0 benotigte GroBe siehe
DPB

ALLO1: DS XX ;allocation vector 1

ALLO2: DS XX ;allocation vector 2

ALLO3: DS XX ;allocation vector 3

CHKOO: DS XX ;check vector 0 benotigte GroBe siehe
DPB

CHKO1: DS XX ;check vector 1

CHKO2: DS XX ;check vector 2

CHKO3: DS XX ;check vector 3

BUFFER: DS xxK ;Puffer far physischen Sektor, bei einfachen BIOS

pro Laufwerk!

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

.
’

END

Der Disk Parameter Block

Ein DPB umfasst 15 Bytes in folgender Aufteilung:

<ditaa> + +

SPT|BSH|BLM|EXM|DSM|DRM]|ALO|AL1|CKS|OFF|

+ +

0/1 2 3 4 5/6 7/8 9 A B/C D/E
16 8 8 8 16 16 8 8 16 16

</ditaa>

SPT Anzahl der logischen Sektoren pro Spur (engl. Sectors Per Track)

BSH 2-er Exponent der Blockgroie (engl. Block SHift factor)

BLM Anzahl von Records pro Block -1 (engl. Block Length Mask)

EXM Anzahl der Extends pro Eintrag -1 (engl. Extend Mask)

DSM Hochste Blocknummer der Diskette (engl. Data Storage Maximum)

DRM Hochste Eintragnummer in der Directory (engl. DiRectory Maximum)

ALO Erstes Byte des ALV (engl. Allocation Vector byte 0)

AL1 Zweites Byte des ALV (engl. Allocation Vector byte 1)

CKS Anzahl der zu prufenden Directory-Records (engl. ChecK vector Size)

OFF Anzahl der reservierten Spuren am Anfang der Diskette (engl. track OFFset)

Beschreibung s.a. der_disk_parameter_block

Zur Erstellung eines DPB braucht man folgende Angaben:

=

. Gesamtkapazitat der Diskette in KByte

N

. physischer Aufbau der Diskette
1. Anzahl der Spuren (Tracks)
2. Anzahl physischer Sektoren pro Spur
3. Anzahl der beschreibbaren Diskettenseiten
3. max. Anzahl der Direktory-Eintrage
4. Anzahl der Systemspuren
5. gewunschte Blockgrolie

CP/M kennt keine Diskettenseiten, man muss im physischen Diskettentreiber die Seite aus TRACK
oder SECTOR ermitteln. Mdglich sind z.B. bei einer Diskette mit 2 Seiten, 80 Spuren, 5 phys. Sektoren
pro Spur:

e gerader Track Vorderseite (0,2,4,..), ungerader Track Ruckseite (1,3,5,..)
e Track 0..79 Vorderseite, Track 80..159 Ruckseite

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

https://hc-ddr.hucki.net/wiki/doku.php/cpm/systemdoku#der_disk_parameter_block

2026/02/11 07:47 11/13 Teil 1

e Sektor 1..5 Vorderseite, 6..10 Riickseite

CP/A nutzt die erste Variante.

Unabhangig von der physischen Sektorlange gibt es im CP/M noch die BlockgroRe. Das BDOS teilt
jede Diskette in Blocke (engl. Blocks) auf, um damit den Verwaltungs- und Speicheraufwand fur die
Belegungstabelle zu verkleinern. Die Lange eines Blocks ist 1, 2, 4, 8 oder 16 kByte.

Die Disketten-Belegungstabelle wird in Blécken geflhrt, somit kann das BDOS Diskettenplatz auch nur
blockweise vergeben. Nachteil dieser Aufteilung ist, das ein File immer ganze Blocke belegt, auch
wenn die tatsachliche Filelange kleiner ist.

Beispiel 1: eine 800K Diskette mit 2 Seiten, 80 Spuren, 5 phys. Sektoren pro Spur

2 Seiten * 80 Spuren - 160 TRACKs

800 KByte / 160 —» 5 KByte / Spur

5 phys. Sektoren pro Spur = 1 KByte groBer phys. Sektor

SPT = 5 KByte / Spur = 5K/128 = 40 logische Sektoren (records) pro Spur

Man muss sich fur eine Blockgroie entscheiden. Nimmt man 2 KByte grol3e Blocke, gibt es insgesamt
800k/2k = 400 Blocke. Damit braucht man 16 bit groe Blocknummern. Nimmt man 4 KByte grof3e
Blocke, gibt es insgesamt 800k/4k = 200 Blocke. Damit braucht man nur 8 bit grolSe Blocknummern.
Aber man bekommt weniger kleine Dateien auf der Diskette unter.

Allgemein sollte die BlockgréBe mit der DiskettengréfSe wachsen.

Aus BlockgroBe und Blocknummeranzahl ergeben sich die Felder BSH, BLM und EXM des disk
parameter blocks:

OFS := Anzahl der Systemspuren (logische TRACKs!)
SPT := Anz.Phys.Sektoren*GroRe.Phys.Sektor / 128

block size BLS in Byte (1024, 2048, .. ,16384)

Gesamtkapazitat := (Anzahl Spuren - Anzahl der Systemspuren) * Anz.Phys.Sektoren *
Grolke.Phys.Sektor

DSM := Gesamtkapazitat/(block size) - 1 = Anz.Blocke - 1

BSH := log2 (block size / 128)

BLM := (block size / 128) - 1

EXM := (block size / 1024) - 1 bei 8 bit-Blocknummern (DSM/block size < = 255) bzw.
EXM := (block size / 2048) - 1 bei 16 bit-Blocknummern (DSM/block size > 255)

block size BSHBLM|EXM (8) EXM (16)
2| 3 0 -

* 512 Byte
1 KByte 3 7 0 -
2 KByte 4/ 15 1 0
4 KByte 5/ 31 3 1

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2016/07/08 09:11 cpm:write_a_bios:teil_1 https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

block size |BSH/BLM|EXM (8)|EXM (16)
8 KByte 6 63 7 3
16 KByte 7| 127 15 7

® 512 Byte funktionieren in CP/A und CP/M 2.2, sind aber nicht dokumentiert. Fir eine kleine RAM-
Disk reicht es. Die cpmtools kommen damit nicht klar!

Die Anzahl der Directory-Eintrage ist frei wahlbar. Es werden immer ganze Bldcke vergeben, dies gilt
auch fur das Directory. Maximal konnen 16 Blocke genutzt werden. Ein Directory-Eintrag ist 32 Byte
lang, damit sind BLS/32 Directory-Eintrage pro Block moglich.

Die Maximal-Zahl ergibt sich zu

DRM := Anz.Dir.Blocke * (block size / 32) - 1

Das Verhaltnis zwischen Anzahl der Directory-Eintrage und Anzahl der Blocke sollte gewahrt bleiben.
Es ist wenig sinnvoll, mehr Directory-Eintrage als Blocke zu haben. DSM/(durchschnittliche
DateigroRe) kann ein Anhaltspunkt sein.

Im Beispiel ergibt sich flr drei 2K-Blocke 3 * 2048/32 = maximal mdgliche 192 Eintrage, das
Maximum sollte man auch nutzen und DRM auf 191 setzen.

block size/Anz. Dir.Blocke

1 2 3 4 5 6 7 8 9 10 (11 (12 (13 (14 (15 |16
1 KByte 31| 63| 95| 127 159| 191 223| 255/ 287| 319| 351| 383| 415| 447| 479| 511
2 KByte 63| 127| 191| 255 319| 383| 447| 511 575| 639| 703| 767| 831| 895| 959/1023
4 KByte (127 255| 383| 511| 639| 767 895(1023|1151(1279/1407|1535/1663|1791/1919|2047
8 KByte |[255| 511| 767|1023|1279|1535|1791|2047|2303|2559|2815|3071|3327/3583|3839/4095
16 KByte 511|1023/1535/2047|2559|3071|3583|4095|4607|5119|5631/6143|6655/7167|7679/8191

CP/M erkennt Diskettenwechsel, indem ein Prufvektor Uber die Directory-Records gebildet wird.
CKS := (DRM +1)/(128/32)=(DRM +1) /4

Diese MaximalgroRe muss nicht immer genommen werden; gerade bei groRen Disketten oder
Festplatten wlrde eine Prufung zu lange dauern. Bei nicht wechselbaren Laufwerken wie Festplatten
oder RAM-Disketten kann CKS auch auf 0 gesetzt werden. Damit wird nicht auf Diskettenwechsel
gepruft.

Im DPH (s.0.) wird fir den Prifsummenvektor Speicherplatz definiert (CHKxx). Dieser muss CKS Byte
groR sein:

CHKOO0: DS xx ;check vector 0 = CKS Byte

Der Allocation Vektor (ALV) bildet die Belegungstabelle (besser: Belegungsvektor) der Diskette. Fur
jeden Block der Diskette ist im ALV ein Bit vorhanden, das entsprechend auf 0 (Block frei) oder 1
(Block belegt) gesetzt wird. Die Zuordnung der Blocke zu den Bits geschieht in absteigender
Bitnummernfolge (héchstes Bit eines Bytes zuerst) und aufsteigender Bytefolge (erstes Byte des ALV
zuerst). Fir ALLxx muss man deshalb (DSM+1)/8 Byte bereitstellen:

ALLOO: DS xx ;allocation vector 0 = (DSM+1)/8 Byte

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/11 07:47

2026/02/11 07:47 13/13 Teil 1

Achtung: Bei automatischer Formaterkennung mussen die Speicherplatze CHKxx und ALLxx fur die
grolltmaglichen Werte ausgelegt sein!

Im disk parameter block sind die ersten beiden Byte des Allocation Vektors einzutragen. Je ein Bit ist
fur einen genutzten Directory-Block zu setzen:

ALO,AL1 = 11..100..00b
Im Beispiel gilt fur 3 Directory-Blocke
ALO = 1110000b = EOh, AL1 = 00000000b = 00h

insgesamt ergibt sich fur Beispiel 1

DPBOO: DW 40 ;SPT sectors per track
DB 4 ;BSF block shift factor
DB 15 ;BLM block mask
DB 0 ;EXM null mask
DwW 399 ;DSM disk size-1
DwW 191 ;DRM directory max
DB OEOh ;ALO alloc 0
DB 00h ;All alloc 1
DwW 48 ; CKS check size
DwW 0 ;OFS track offset
CHKO0O: DS 48 ;check vector 0
ALLOO: DS 50 ;allocation vector 0

die Berechnung des DPB und der GréRe der Speicherbereiche kann durch ein Makro erfolgen.

MACLIB DISKDEF ;LOAD DEFINTION FOR DISKS
DISKS 1
DISKDEF 0,1,40,,2048,400,192,192,0
ENDEF
END

Dieses Beispiel erzeugt genau obige Daten flir Beispiel 1.

¢ Die originale diskdef.lib funktioniert nur mit dem MAC/RMAC-Assembler. Fir den M80 gibt es
eine angepasste Version BUGS fixed 07/07/82 JDW Software.

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil 1?rev=1467969078

Last update: 2016/07/08 09:11

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/write_a_bios/teil_1?rev=1467969078

	Teil 1
	Kalt- und Warmstart
	Zeichen-I/O
	Diskettenfunktionen
	Der Disk Parameter Block

