2025/10/30 15:25 1/74 SLIDING INTO BDOS

SLIDING INTO BDOS

PART |

SLIDING INTO BDOS

THE SMOOTH AND EASY WAY

by: Michael J. Karas
2468 Hansen Court
Simi Valley, CA 93065

What 1is this thing everybody is talking about called BDO0S?
This series will attempt to answer this question in some detail
but first we need a little basis to understand WHY in the first
place. Digital Research CP/M is an operating system for smaller
type micro processor computer systems that is designed to remove
much of the normal computer operation drudgery experienced by the
computer operator. The operating system software embodies a
"system philosophy" that structures and generalizes upon the
operating environment of a piece of electronics hardware. The
environment presented actually allows that piece of quiet,
transistorized machinery to be used at a much higher Tlevel. The
full dimpact of what this operating system provides to a computer
is most probably felt by the typical micro computer hacker that
worked the hard way to get a computer system wup and running.
While building, debugging, and integrating the pieces, the
computer was just a whole bunch of parts interfaced together 1in
an organized manner. However, when the thing is finally a
"computer" how does it get used. The low level process of poking
data into memory from a front panel or even filling, dumping, or
block moving memory data with an EPROM based "monitor program”
hardly makes this computer "useful". The process of putting on
disks and bringing up CP/M 1lights the torch for computer
usability. In this case the hacker experiences an elated feeling
now "NOW I CAN DO SOMETHING!"

Buried inside of the total operating system presentation 1is
the concept of generalization brought wup in the previous
paragraph. One of the major requirements in order to make a
computer wuseful 1is that there has to be applications software
that performs the jobs intended for the computer. Jobs 1like
accounting, word processing, spread sheet data analysis, or
inventory control. Unfortunately the process of producing
applications software is very, very expensive. A good package may
take anywhere from one to ten man years of development effort to

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

make. If the process of making an applications package had to be
custom taylored to a specific hardware environment, then there
would not be affordable software available for use upon a given
XYZ computer. Generalization in the operation of a computer
environment solves this problem however. With the understanding
that at a certain level "all microprocessor computer systems are
alike" it is possible, with minimum constraints, to define a set
of logical type operations that make a computer useful.

This 1logical set of operations, for the Digital Research
CP/M operating system, is defined within the BDOS portion of the
operating system. Here in about 3 1/2 K bytes of tightly written
assembly language is the "generalization converter" that takes
I/0 requests for hardware independant applications programs and
turns them into a lower level set of simplistic hardware oriented
functions that are then processed through the BIOS. This
conversion process is beneficial in the light that CP/M Ver 2.2
can be setup to run on a typical brand XYZ computer for about one
half of the effort needed to convert even one of the simplest
application packages had that application been written in a
hardware dependant manner. Conclusion; software developers can
make better, more sophisticated applications available for lower
cost and computer users find a competitive software market place
where there are many times multiple packages available that
perform similar functions.

The thrust of this presentation is to show the prospective
applications programmer how to use most of the generalized set
of "BDOS System Calls" within Digital Researches CP/M Ver 2.2.
The presentation scheme will be to describe all of the functions
and use simple examples. The reader is assumed to be modistly
familiar with 8080 Assembly Language Programming as all of the
examples will be given in machine language. Likewise, 1in this
environment it 1is assumed by default that the prospective
programmer 1is planning to code in assembly language. If a CP/M
compatible high level language is used for programming, such as
Digital Research PL/I-80 or Microsoft BASIC-80, then of course
the program interface at the "System Call" Tlevel becomes
transparent to the programmer. Run time subroutines make the high
level coded application get converted through yet another step.
(One major reason applications code in a high level language runs
slower than the equivalent function written in assembly
language) .

SUMMARY OF CP/M SYSTEM CALLS

The set of system or "BDOS" I/0 entry points available to
the CP/M programmer is complete yet simple. The primary beauty of
the CP/M system 1is this small world of completeness. Many
programmers familair with other operating systems complain that
the CP/M system is weak, unflexible, and incomplete. However, in

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 3/74

SLIDING INTO BDOS

a microprocessor type computer world, the generalization level
defined for the CP/M system allows 85% of all microprocessor type
appliciation jobs to be programmed with relative ease. Also, in
my opinion, 8-bit microprocessor hardware is easily capable of
performing about 90 percent of the typical tasks targeted for
microcomputers. So what is this set of functions? The chart of
Figure 1 summarizes, in function number order, all of the system
operations specific to CP/M Version 2.2 that will be covered in
this presentation. In the subsequent sections that follow the
functions will be grouped into categories so that related
operations may become familiar with reference to one another.

FIGURE 1. DETAILED SUMMARY OF CP/M 2.2 SYSTEM CALLS

Function Entry Value to Return Value from
Number BDOS Passed in BDOS Passed in

DEC HEX Function (DE) or (E) regs (HL) or (A) register
0 00 | System Reset HAAK KAk |
1 01 | Console Input e (A)=character |
2 02 | Console Output (E)=character SRR |
3 03 | Reader Input AR (A)=character |
4 04 | Punch Output (E)=character Kok K |
5 05 Printer Output (E)=character HAkK |
6 06 | Direct Console I/O (E)=0FFH is input| (A)=character |
(E)=chr is output SRR |
7 07 | Get IOBYTE KKKk (A)=IOBYTE |
8 08 | Set IOBYTE (E)=IOBYTE W |
9 09 | Display Console String (DE)=string addr ERERR |
10 OA | Input Console String (DE)=string addr (A)=# chr input |
11 0B | Get Console Status oSt (A)=000H idle |
(A)=0FFH ready |
12 0C | Get CP/M Version Number st (HL)=Version # |
13 OD | Reset Disk Subsystem SR BEEES |
|
|
|
|
|
|
|
|
|
|

I I I
| I I
I I I
| I I
| I I
I I I
| I I
| I I
| I I
I I I
| I I
| I I
I I I
I I I
| I I
| I I
14 OE | Select Disk Drive | (E)=disk number | e
I I I
I I I
| I I
I I I
I I I
| I I
I I I
I I I
I I I
| I I
I I I
I I I
I I I
| I I
| I I

15 OF | Open a File (DE)=FCB address (A)=dir code

16 10 Close a File (DE)=FCB address (A)=dir code

17 11 Search for File (DE)=FCB address (A)=dir code

18 12 Search for Next *Akk (A)=dir code

19 13 Delete File (DE)=FCB address (A)=dir code

20 14 | Read next Record (DE)=FCB address (A)=error code

21 15 Write next Record (DE)=FCB address (A)=error code

22 16 Create New File (DE)=FCB address (A)=dir code

23 17 Rename File (DE)=FCB address (A)=dir code

24 18 | Get Login Vector HAAK (HL)=login vector|

25 19 | Get Logged Disk Number oSSR (A)=logged disk |

26 1A | Set R/W Data Buff Addr (DE)=buffer addr oottt |

27 1B | Get Allocation Vector R (HL)=alloc vector|
address |

28 1C | Write Protect Disk (E)=disk number HAAK |

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

29 1D | Get Read Only Vector | AR | (HL)=R/0 vector |
30 1E | Set File Attributes | (DE)=FCB address | (A)=dir code |
31 1F | Get Addr of Disk Parms | HAkK | (HL)=parm addr |
32 20 | Get/Set User Select | (E)=0FFH get | (A)=current user |
33 21 | Read Random Record | (DE)=long FCB adr| (A)=error code |
34 22 | Write Random Record | (DE)=long FCB adr| (A)=error code |
35 23 | Get Size of File | (DE)=long FCB adr| (r0-2=rec cnt) |
36 24 | Set Random Record Num | (DE)=long FCB adr| (r@-2=rec numb) |
37 25 | Reset Drive | (DE)=drive vector| oSt |
38 26 | Not used | | |
39 27 | Not used | | |
40 28 | Write Random with | (DE)=long FCB adr| (A)=error code |

The technical means required to "use" or interface to the
CP/M system for each function contains a certain common structure
that will be discussed here. The base memory page of a CP/M
system memory map includes, at a specific memory address, a JUMP
instruction to the CP/M BDOS entry point. For most CP/M systems
this is address 00005H. To accomplish BDOS I/0 the number of the
function 1is placed into the (C) register. If the parameter
requires input parameters, then they are passed in the (DE)
register pair or the individual (E) register depending upon
whether the parameter is a word or byte value. Result information
returned by some functions is sent back to the users program in
either the (A) register or the (HL) register pair depending upon
if the value is a byte or word. The following simple program
segment demonstrates the scheme used to output the 26 characters
A-Z to the console screen through the use of function number 2.

BDOS EQU 0005H ; SYSTEM ENTRY

CONOUT EQU 2 ;OUTPUT FUNCTION
ORG 01006H ; TPA BASE
MVI B, 26 ; PRINT 26 COUNTER
MVI C,'A' ;START WITH 'A’

LOOP:
PUSH B ;SAVE COUNTER & LETTER
MOV E,C ;LETTER TO (E) FOR OUTPUT
MVI C, CONOUT ;BDOS FUNC TO (C)
CALL BDOS ;GO GO OUTPUT
POP B
INR C ; SEQUENCE TO NEXT CHAR
DCR B ;DECREASE CHR COUNTER
JINZ LOOP ;MORE TO DO IF NOT TO ZERO
RET ; IMMEDIATE CCP RETURN

SYSTEM CALLS FOR OPERATOR CONSOLE INPUT AND OUTPUT

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 5/74

SLIDING INTO BDOS

Intrinsic to the operation of any computer system,
especially of the CP/M gender, 1is the operator console. The
device provides the human interface to the machine and as such
the BDOS includes a generalized set of operator communication
functions to perform I/0 with the console device. The various
options available will each be presented with a brief example.

INPUT FROM CONSOLE KEYBOARD: Function 1.

This function waits for and reads in a character from the
console device keyboard. The operator typed character is echoed
automatically back to the console display if the character is an
ASCII printable character (020H to O7EH) or it is a carriage
return, 1line feed, back space, or tab. Note that the BDOS
automatically expands tabs to columns of eight characters. Upon
outputting the <character for the echo, a check is made for
console start/stop, CTL-S, and if so the console input routine
does not return to the users program until another arbitrary key
is depressed.

; CONSOLE INPUT EXAMPLE

CONIN EQU 001H ;FUNC # 1

BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START
MVI C,CONIN ; FUNCTION
CALL BDOS ;GO GET CHARACTER
STA INCHAR ; SAVE FOR WHATEVER REASON
RET ; IMMEDIATE CCP RETURN
INCHAR:
DS 1 ;PLACE TO STORE INPUT CHAR
END

OUTPUT TO CONSOLE DISPLAY: Function 2.

The ASCII character in the (E) register is sent to the
console display device. The output may be any byte value but many
times the hardware driver BIOS routines automatically strip off
the wupper bit of the byte. Upon output the printer echo flag
within BDOS is checked (CTL-P) and if set the character is also
sent to the printer peripheral device. Note that the BDOS
automatically expands output tabs to columns of eight characters.
Upon outputting the character a check is made for input of
console start/stop, CTL-S, and if so the console output routine
does not return to the users program until another arbitrary key
is depressed.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

; CONSOLE OUTPUT EXAMPLE

CONOUT EQU 002H ;FUNC # 2

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LDA OUTCHAR ; GET CHARACTER TO OUTPUT
MOV E,A
MVI C, CONOUT ; FUNCTION
CALL BDOS ;GO SEND CHARACTER
RET ; IMMEDIATE CCP RETURN
OUTCHAR:
DB ‘X! ;PLACE TO GET OUTPUT CHAR
END

DIRECT USER INTERFACE TO CONSOLE: Function 6.

Some programming applications require that the BDOS not
monitor the input/output character stream as 1is done with
functions 1 & 2. To allow for these functions the direct 1I/0
function is supported. The following example shows how it is used
to input values and echo them until an input control-Z character
is typed.

;DIRECT CONSOLE I/O0 EXAMPLE

DIRCIO EQU 006H ; FUNCTION NUMBER

BDOS EQU 0005H ;SYSTEM ENTRY POINT

CTLZ EQU 'Z'-040H yASCII CTL-Z CHARACTER

INPUT EQU OFFH ;DIRECT INPUT FLAG
ORG 0100H ; CONSOLE INPUT

LOOP:
MVI E, INPUT ;SET FOR INPUT
MVI C,DIRCIO ; FUNCTION
CALL BDOS ;GET INPUT OR STATUS
ORA A ;IF (A)=0 NO CHAR WAS READY
JZ LOOP ;CONTINUE TO WAIT FOR INPUT
CPI CTLZ ; IF INPUT WAS CTL Z THEN END
RZ ;CCP RETURN ON END
MOV E,A ; CHARACTER TO (E) FOR OUTPUT
MVI C,DIRCIO ; SAME FUNCTION NUMBER AGAIN
CALL BDOS ;GO OUTPUT IT
JMP LOOP yNEXT CHARACTER INPUT LOOP
END

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 7/74

SLIDING INTO BDOS

PRINTING STRINGS OF CHARACTERS TO THE CONSOLE: Function 9.

Message string sequences of characters to be sent to the
console are quite common in applications programming. Typical
uses may be for user prompt messages, program sign-on messages
etc. The BDOS provides a convenient mechanism to allow the
programmer to output a whole string of characters rather than
having to loop with single character outputs. The string is
intended to be stored in consecutive memory locations and end
with the ASCII '$' character. The (DE) registers are used to
point to the start of the string. The '$' signals the end of the
string to display and is not sent to the console. The output
bytes may be any 8-bit value but many times the hardware driver
BIOS routines automatically strip off the upper bit of the byte.
Upon output of each character the printer echo flag within BDOS
is checked (CTL-P) and if set the character is also sent to the
printer peripheral device. Note that the BDOS automatically
expands output tabs to columns of eight characters. Upon
outputting each character a check is made for input of console
start/stop, CTL-S, and if so the console string output routine
does not return to the users program until another arbitrary key
is depressed.

; CONSOLE STRING PRINT EXAMPLE

CONSTR EQU ©OO9H ;FUNC # 9

BDOS EQU 0005H ; SYSTEM ENTRY
CR EQU ODH ;ASCITI CARRIAGE RETURN
LF EQU OAH ;ASCII LINE FEED

ORG 0100H ; START

LXI D, MESSAGE ;POINT AT STRING TO SEND

MVI C,CONSTR ; FUNCTION

CALL BDOS ;GO SEND STRING

RET ; IMMEDIATE CCP RETURN
MESSAGE :

DB CR,LF, 'Hello Operator',CR,LF,"'$’'

END

READING A STRING OF CHARACTERS IN FROM KEYBOARD: Function 10.

The CP/M console command processor (CCP) assumed to be vary
familiar to most CP/M system operators allows buffered command
input with editing features. It turns out that this operation is
a much needed function for getting in strings of text from the
operator console. Use of this function allows standardization of
the command input functions so that the operator can easily learn
the editing key functions. It also removes the pain of writing
the same function over and over again by the applications
programmer. The read string command inputs the edited text to a

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

buffer pointerd to by the (DE) register pair. The «caller
specifies the maximum length desired and the BDOS returns the
actual length of string entered if carriage return 1is entered
prior to exceeding the maximum input length. The input length is
returned in both the (A) register and as part of the buffer.
Bytes 1in the string buffer past the end of the entered text are
uninitialized. The example shown below gives an assembly language
view point of the buffer structure and how to program an input
function.

The editing functions supported are the following control
and/or special characters:

rub/del removes and echos the last entered char

ctl-C initiates system reboot if first char

ctl-E echos a CR & LF to console without
putting them into buffer

ctl-H (or back space key) back spaces one char
removing last entered character

ctl-J (or line feed key) terminates line input

ctl-M (or carriage return) terminates input

ctl-R retypes currently entered characters
under current line

ctl-U deletes all of currently entered data
and restarts buffer input on new line

ctl-X deletes all of currently entered data

and restarts buffer input on same line
; CONSOLE INPUT BUFFER EXAMPLE

CONBUF EQU 00AH ; STRING INPUT FUNCTION

BDOS EQU 0005H ;SYSTEM ENTRY POINT
LENGTH EQU 32 ;DESIRED MAXIMUM CHARACTERS
ORG 0100H ; START POINT
LXI D,STRING ;POINT AT BUFFER AREA
MVI C, CONBUF ; FUNCTION NUMBER
CALL BDOS ;GO GET STRING
RET ;RETURN TO CCP WITHOUT

;. .DOING ANYTHING WITH DATA

; CONSOLE INPUT BUFFER LAYOUT

STRING:

DB LENGTH ;MAXIMUM DESIRED INPUT LENGTH
AMOUNT :
DS 1 ;BYTE WHERE BDOS RETURNS
; . .ACTUAL BYTE COUNT
STRBF:

DS LENGTH ;RESERVED STORAGE FOR UP TO

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 9/74

SLIDING INTO BDOS

; "LENGTH" NUMBER OF CHARACTERS

END

DETERMINING IF THERE IS PENDING KEYBOARD INPUT: Function 11.

Some computer programs are designed to spend large amounts
of time processing inside of the computer or manipulating data
within disk files without stopping to ask the wuser if he/she
desires to stop the processing sequence. Also it is many times
desirable to have a "terminate" capability for application
programs without waiting for the operator to answer a character
input request. If the normal console input function is used the
user computer is not resumed until a character is already input.
The console input status check function may be used to poll the
user keyboard to determine if a character input is pending. If no
input 1is ready then the user program is immediately resumed with
an indication of if there was a pending input. If a character is
pending a OFFH is returned in the (A) register. Otherwise a 0O0OH
value 1is returned. The following example illustrates the use of
console status to terminate a normally endless loop that prints
the same string over and over.

; CONSOLE STATUS USAGE EXAMPLE

CONSTAT EQU 00BH ;FUNC # 11

CONSTR EQU 009H ; PRINT STRING FUNCTION
BDOS EQU 0005H ; SYSTEM ENTRY
CR EQU ODH ;ASCII CARRIAGE RETURN
LF EQU OAH ;ASCII LINE FEED

ORG 0100H ; START
LOOP:

LXI D, MESSAGE ;POINT AT STRING TO SEND

MVI C,CONSTR ; FUNCTION

CALL BDOS ;GO SEND STRING

MVI C, CONSTAT ;GET ABORT STATUS

CALL BDOS

ORA A ; CHECK STATUS

JZ LOOP ;NO KEY SO CONTINUE LOOP

RET ; IMMEDIATE CCP RETURN IF ABORT
MESSAGE:

DB CR,LF, 'Depress any Key to STOP','$'

END

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

AUXILLIARY PERIPHERAL CHARACTER INPUT AND OUTPUT FUNCTIONS

The generalized CP/M BDOS provides the capability for three
character by character logical I/0 devices to be atteched to the
computer system. This requirement stems from the fact that most
computers are designed to interface to the real world in more
ways than just a console device. The three devices are classified
as:

a) A lister type device that is generally expected to be a
printer of some sort. This classification is an output only
device.

b) An input device supporting character input from a source
other than the console. The device is specifcally an input type
unit. CP/M jargon refers to this device as the "READER" for no
particular reason.

c) A generalized character output only device wused as a
specific data destination other than the console or standard list
device. Some computer systems use this device, often times
referred to as the "PUNCH" device as a second printer output.

The three following examples illustrate the programming
techniques used to talk to each of these three devices.

;LIST DEVICE OUTPUT EXAMPLE

LIST EQU 005H ;FUNC # 5

BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START
LDA LSTCHAR ; GET CHARACTER TO OUTPUT
MOV E,A
MVI C,LIST ; FUNCTION
CALL BDOS ;GO SEND CHARACTER
RET ; IMMEDIATE CCP RETURN
LSTCHAR:
DB ‘L' ;PLACE TO GET OUTPUT CHAR
END

;READER DEVICE INPUT EXAMPLE

READER EQU 003H ;FUNC # 3

BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 11/74 SLIDING INTO BDOS
MVI C,READER ; FUNCTION
CALL BDOS ;GO GET CHARACTER
STA RDRCHR ; SAVE FOR WHATEVER REASON
RET ; IMMEDIATE CCP RETURN
RDRCHR:
DS 1 ;PLACE TO STORE INPUT CHAR
END

; PUNCH DEVICE OUTPUT EXAMPLE

PUNCH EQU 004H ;FUNC # 4

BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START
LDA PNCHCHR ; GET CHARACTER TO OUTPUT
MOV E,A
MVI C, PUNCH ; FUNCTION
CALL BDOS ;GO SEND CHARACTER
RET ; IMMEDIATE CCP RETURN
PNCHCHR:
DB ‘P’ ;PLACE TO GET OUTPUT CHAR
END

SYSTEM CONTROL BDOS FUNCTIONS

This family of system calls supported by the CP/M BDOS are
designed to allow the programmer a degree of flexibility in
manipulating the operation of general CP/M environment. Each
function here will generally be discussed individually due to the
unique nature of each operation.

SYSTEM RESET: Function 0.

The system reset function is designed to allow restart of
the CP/M system command processor after a wuser application
completes execution or is aborted. The system reset function is
equivalent to a JMP to address 0000H or a CTL-C which forces a
system WARM Reboot. The reboot operation de-activates all active
drives except drive A: which is re-logged. Operation is extremely
simple as:

RESET EQU 000H ; SYSTEM RESET FUNC

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H
MVI C,RESET
JMP BDOS ; CALL ALSO PERMISSABLE

; EXCEPT THAT FUNCTION
;DOES NOT RETURN TO USER
; PROGRAM

GET AND SET IOBYTE: Functions 7 & 8.

The generalized CP/M operating system environment
communicates via I/0 to "logical" type devices. This means that
the console, lister, "reader", and "punch" are just treated as a
generic device classsifications. The CP/M system allows for and
supports, to a degree, the capability for the hardware to contain
multiple physical devices (peripherals and/or real I/0 devices)
within each of the generic logical device «classifications. The
means to support the assignment of multiple physical devices to a
given classification is done through the IOBYTE, normally stored
at address 00003H of the base page of the CP/M memory. The BIOS
hardware 1I/0 software may thusly be written to easily know which
one of two printers to talk to when the BDOS requires output to
one of two printers. A "default standard" IOBYTE format has been
adopted based wupon an 8-bit microprocessor system convention
developed by Intel Corp as follows:

(lister) (punch) (reader) (console)
Logical Devices => LST: PUN: RDR: CON:
IOBYTE bits == 7 6 5 4 32 10
Bit pattern
dec binary

0 00 TTY: TTY: TTY: TTY:
1 01 CRT: PTP: PTR: CRT:
2 10 LPT: UP1: UR1: BAT:
3 11 ULT: UpP2: UR2: UCL:

The designators in the table specify the "standard types of
physical devices and are defined as follows:

TTY: A teletype console with keyboard, hard copy display and
possibly an integral tape reader/punch

CRT: An interactive cathode ray type terminal with keyboard
input and display screen

BAT: A batch processor workstation with a card reader type
input device and a hard copy display/output device

UC1l: A user defined alternate "console" unit

LPT: Line printer

UL1: A user defined list device

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 13/74

SLIDING INTO BDOS

PTR: Paper Tape Reader

UR1: User defined "reader" character input device
UR2: User defined "reader" character input device
PTP: Paper Tape Punch

UP1l: User defined "punch" character output device
UP2: User defined "punch" character output device

The BDOS support for the I/0 device assignment is a standard
mechanism to access the IOBYTE's current value and switch it to
some other value. Suppose a CP/M computer had two printers
connected as LST: and UL1l:. If the applications program needs to
switch printing output to another printer, the process could be
handeled as follows:

;GET AND SET IOBYTE EXAMPLE

SETIOB EQU 008H ; SET IOBYTE FUNCTION

GETIOB EQU 007H ;GET IOBYTE FUNCTION
BDOS EQU 00005H ;SYSTEM ENTRY POINT
LSTMASK EQU 11$00$00$00B ; IOBYTE MASK FOR LIST
;. .DEVICE
LPT EQU 10$00$00$00B ;BIT VALUE FOR LPT #1
ULl EQU 11$00$00$00B ;BIT VALUE FOR LPT #2
ORG 0100H ; PROGRAM START
MVI C,GETIOB ;GO GET CURRENT IOBYTE VAL
CALL BDOS
ANI (NOT LSTMASK) AND OFFH ;KEEP ALL OTHER BITS
ORI UL1 AND LSTMASK ;SET IOBYTE FOR PRINTER #2
MOV E,A
MVI C,SETIOB ; FUNCTION TO RESET THE IOBYTE
CALL BDOS
RET ; IMMEDIATE CCP RETURN
END

GET CP/M VERSION NUMBER: Function 12.

Sometimes it 1is necessary for an applications program to
"know" what version of CP/M the program is running under. Version
2.0 and above support a feature to tell the application program
what the version number is. One reason is to permit version
dependant functions such as random record file I/0 to be used if
it 1is supported by the version of CP/M being used. The system
call to get the version number returns a two byte value split
into two parts as follows:

if (H)=0 then this is a CP/M System
(H)=1 then this is an MP/M System
(L)=version number in hex

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

if =00 then older than CP/M 2.0

=20 then version CP/M 2.0
=21 then version CP/M 2.1
=22 then version CP/M 2.2
A program to read the CP/M version number is as follows:

; VERSION NUMBER EXAMPLE

GETVERS EQU ©00CH ; FUNCTION 12

BDOS EQU 00005H ;SYSTEM ENTRY POINT
ORG 0100H ; PROGRAM START
MVI C,GETVERS ; FETCH VERSION NUMBER
CALL BDOS
MOV AL ;SAVE CP/M VERSION NUMBER
STA CURVERS
RET ;BACK TO CCP
CURVERS:
DS 1 ;STORE THE VERSION NUM HERE
END

RESETTING THE CP/M DISK SYSTEM: Function 13.

The CP/M operating system contains features +to control
access to files wupon the disk drives. A directory checksum
scheme, beyond the scope of this presentation, permits the
operating system to determine when a disk has been changed in a
drive thus preventing the a wrong disk from being written upon.
This 1is neat except that in many cases an appliciations program
may require disk changes as functions are changed or new files
are required. This system control function permits the
application to force read/write status to be set for all drives,
drive A: to be logged, and reset of the default disk record
buffer address to its default value of 080H within the CP/M base
page. The following program sequence shows how to reset the disk
system.

;RESET DISK SYSTEM EXAMPLE

RESET EQU ODH ; FUNCTION 13

BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H ; PROGRAM START
MVI C,RESET ; SET UP FUNCTION
CALL BDOS ;GO RESET THE DRIVES
RET ;BACK TO THE CCP
END

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 15/74

SLIDING INTO BDOS

GET AND SET OF CURRENT USER CODE: Function 32.

CP/M Version 2.2 permits the file system on a given drive to
be partitioned into up to 15 individual directory areas so that
usage areas can be setup. For instance, the system operator could
put all assembly language development programs in one user area
while having disk utility programs in another. The BDOS allows
the application programmer to determine the currently logged user
number and to modify it if necessary. The following example sets
the current user number up by one. If the highest user number is
currently logged then the user 0 area is selected.

; GET/SET USER EXAMPLE

GSUSR EQU 020H ; FUNCTION 20

GET EQU OFFH ; GET FLAG

BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H ; START UP POINT
MVI E,SET yMAKE THIS A FETCH NUM RQST
MVI C,GSUSR
CALL BDOS ;GET THE CURRENT USER #
INR A ;BUMP RETURNED USER UP 1
ANI O0FH yMASK TO MOD(15)
MOV E,A ;yMOVE FOR SET TO NEW USER
MVI C,GSUSR
CALL BDOS
RET ; CCP GETS US BACK
END

SYSTEM FUNCTIONS THAT CONTROL THE DISKS

The data storage files for applications programs are stored
upon the disk drives attached to the CP/M computer. The BDOS
supports a number of functions that allow the state and selection
status of the drives to be controlled.

SELECT DISK: Function 14.

The simplest control function is to select the current disk
with which to refer +to as the logged or default disk. The
function is equivalent to the console CCP command:

A>B:<cr>
B>

Which changed the currently logged disk to drive B:. A BDOS
program to affect the same thing is given in the example program
of the next section below. Drive numbers correspond to the

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

console displayed drive designators as follows:

A: = Drive # 0
B: = Drive # 1
X Kk

P: = Drive # 15

Once a drive has been selected it has its directory "activated"
and is maintained in a logged in status until the next warm boot,
cold boot, or disk reset BDOS function.

DETERMINE LOGGED DISK: Function 25.

An applications program can determine which disk drive is
the currently 1logged or default drive through use of this
function. The BDOS will return in the (A) register the number of
the currently selected drive according to the table given above.

The program segment below shows a sequence of BDOS interface
code that first determines if drive B: 1is selected, and if not
then does a BDOS call to change it.

;SELECT AND POLL LOGGED DISK DRIVE EXAMPLE

SELECT EQU OEH ; FUNCTION 14

ASKDRV EQU 19H ; FUNCTION 25
BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H ; PROG START
MVI C,ASKDRV ;FIND OUT IF B: IS SELECTED
CALL BDOS
CPI '‘B'-'A'
RZ ;DONT SELECT IF ALREADY
; + . LOGGED
MVI E,'B'"-'A' ;SET TO LOG AND SELECT B:
MVI C,SELECT
CALL BDOS
RET ; FINISHED WITH ANOTHER PROG
END

DRIVE STATUS SET AND RESET: Functions 28 & 37.

Drive status may be individually controlled by these
functions. Operation 28 allows a the currently selected drive to
be write protected (set to read/only). The process is simply:

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 17/74 SLIDING INTO BDOS

WPDSK EQU O1CH

BDOS EQU ©0005H
MVI C,WPDSK ;WRITE PROTECT DISK
CALL BDOS

The write protect status of a specific disk may be removed by
function 37 which deactivates the directories of each drive
specified at call time. Each drive by default then becomes
read/write again but requires reactivation through reselection.
The reset drive vector is a 16-bit value passed to the BDOS with
a "1" bit in each bit position for a drive that -equires
resetting. The most significant bit of the 16 bit quanity
corresponds to drive P: and the LSB to drive A:. The code
sequence to reset drive B: would be:

RESDSK EQU 025H

BDOS EQU 0005H
MVI C,RESDSK ; FUNCTION CODE
LXI D,0000$0000$0000$0010B ;DRIVE B: BIT SET
CALL BDOS

GET DRIVE LOGIN AND READ?ONLY VECTORS: Function 24 & 29.

The BDOS keeps track of all drives that have been selected
since the last boot or disk reset functions. These drives are
considered in a online status in that the system knows
immediately what the space allocation map of the drive 1is and
whether the drive is in read/only status or not. Function 24
allows the application program to determine what subset of the
current drive complement are in this online logged status. The
vector returned in the (HL) register pair is a bit map like above
where a "1" bit means the drive is active. The most significant
bit of the 16-bit number corresponds to drive P:. The code below
fetches the vector and saves it in a local data area.

; LOGIN VECTOR EXAMPLE

LOGIN EQU 018H ; FUNCTION 24

BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H
MVI C,LOGIN ; FUNCTION
CALL BDOS
SHLD LOCLOG ; SAVE VECTOR HERE
RET ;TO CCP
LOCLOG:
DS 2
END

In a similar manner the BDOS allows determination of which

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

drives are in the write protected read/only status. A "1" bit in
the returned vector indicates read/only status for a specific
drive. The code here shows how to fetch it.

;READ/ONLY VECTOR EXAMPLE

ROVEC EQU 01DH ; FUNCTION 29

BDOS EQU 0005H ;SYSTEM ENTRY POINT
ORG 0100H
MVI C,ROVEC ; FUNCTION
CALL BDOS
SHLD LOCROV ; SAVE VECTOR HERE
RET ; TO CCP
LOCROV:
DS 2
END

GET ALLOCATION VECTOR AND DISK PARM POINTER: Function 27 & 31.

Two more miscellaneous disk drive interface functions are
provided that permit several special types of functions to be
performed. The first, function 27 returns an address in the (HL)
registers that points to a bit string in memory that corresponds
to the data block allocation map of the currently selected drive.
The map contains one bits in each position where a block
allocated, starting with the MSB of the forst byte in the string.
The T1length of the bit string depends upon the total capacity of
the drive in allocatable blocks. Function 31 permits an
application to determine the characteristics of the currently
selected drive. The BDOS returns an address in the (HL) registers
that points to a table of 33 bytes that describe the current
drive. Data in the table includes such data as number of
possible directory entries on the disk, number of allocatable
blocks on the disk, and, indirectly, the size of each disk block.
The program below 1is a comprehensive example of how these
functions can be used to determine the remaining space left on a
the selected drive. The program stores the available space of the
drive specified in the first byte of the default FCB into memory
location "KPDISK" and then exits to the CCP. The reader can adapt
the code as desired.

;CP/M BDOS INTERFACE EQUATES

BASE EQU 0000H ;BASE OF CP/M SYSTEM

LOGDRIV EQU 0004H+BASE ; LOCATION OF CURRENTLY LOGGED DRIVE
BDOS EQU 0005H+BASE ; THE BDOS I/0 VECTOR

SLCTDSK EQU 14 ; SELECT DISK DRIVE

GALVEC EQU 27 ; GET ADDRESS ALLOCATION VECTOR

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 19/74 SLIDING INTO BDOS

GDSKP EQU 31 ; GET ADDRESS OF DISK PARAMETER TABLE

ORG 0100H

; PROGRAM TO FETCH REMAINING DISK SPACE IN KBYTES

SPCGET:

LDA LOGDRIV ; GET CURRENTLY LOGGED DRIVE AND SAVE
ANI OFH ; STRIP OUT USER NUMBER
STA SAVDRIV ; SAVE CODE
LDA FCB ;CHECK IF SAME AS SELECT
DCR A ;ADJUST FCB DRIVE TO MATCH SELECT DRIVE
MoV E,A ;. .SELECT IN BDOS
MVI C,SLCTDSK ; SELECT DISK FUNCTION
CALL BDOS
MVI C, GDSKP ; FIND ADDRESS OF DISK PARAMETER HEADER
CALL BDOS
LXI B,0002H ; INDEX TO BLOCK SHIFT FACTOR
DAD B
MoV B,M ; (B) = BYTE BLOCK SHIFT FACTOR
INX H
INX H
INX H
MoV E,M ; (DE) = WORD DISK BLOCK COUNT
INX H
MoV D,M
INX D
MoV A,B yADJUST SHIFT FOR KBYTE SIZE
SUI 03H
LXI H,0001H ; CALCULATE BLOCK SIZE
SPCCAL:
ORA A ; KNOW KBYTES PER BLOCK?
JZ SPCKNW
DAD H ;DOUBLE # SECTORS PER TRACK
DCR A ;DECREMENT BLOCK SHIFT

JMP SPCCAL

SPCKNW:

MoV C,L ; (BC)=KBYTES PER BLOCK

MoV B,H

LXI H,0 ; INITIALIZE KPDISK

SHLD KPDISK

PUSH B ; SAVE KBYTES/BLOCK

PUSH D ; SAVE NUMBER OF BLOCKS

MVI C,GALVEC ;NOW POINT TO THE ALLOCATION VECTOR
CALL BDOS ; (HL)=ALLOCATION VECTOR ADDRESS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

POP D

POP B

SHLD ALLSAVE ;SAVE ALLOCATION POINTER

MVI H,1 ;SET MINIMUM START BIT COUNT
UALLOC:

DCR H ;DEC BIT COUNT

INZ STACT ;STILL ACTIVE BYTE

LHLD ALLSAVE ;GET POINTER

MOV AM

INX H

SHLD ALLSAVE ; SAVE NEW POINTER

MVI H,08H ;SET BIT COUNTER TO MAX
STACT:

RLC ;GET ALLOCATION BIT TO CARRY

JC ALLOC ;DONT COUNT ALLOCATED BLOCKS

PUSH H

LHLD KPDISK ;GET KBYTES LEFT COUNT

DAD B ;ADD IN ONE MORE BLOCK COUNT

SHLD KPDISK

POP H
ALLOC:

DCX D ;DEC TOTAL BLOCK COUNT

MOV L,A

MOV A,D

ORA E ;ALL BLOCKS SCANNED YET

MOV AL ;RESTORE ALLOC BIT PATTERN

INZ UALLOC ;MORE TO COUNT

LDA SAVDRIV ;RETURN DISK SELECT TO PREVIOUS

MOV E,A ; . .SELECT IN BDOS

MVI C,SLCTDSK ; SELECT DISK FUNCTION

CALL BDOS

RET ;BACK TO THE CCP

’
.
’

; PROGRAM DATA STORAGE ALLOCATIONS

BLKSIZ:

DS 2 ; STORAGE FOR ALLOCATION BLOCK SIZE
ALLSAVE:

DS 2 ; STORAGE FOR ALLOCATION PNT SAVE
SAVDRIV:

DS 1 ; SAVE CURRENT DISK SELECT DURING RELOG
KPDISK:

DS 2 ; STORAGE FOR KBYTES PER DRIVE LEFT

.
’

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 21/74

SLIDING INTO BDOS

END

The next part in this series will present the the CP/M file
system as viewed from the BDOS interface aspect. The FILE CONTROL
BLOCK (FCB) will be presented. 1In addition the procedures to
prepare files for I/0 and then the actual I/0 procedures will be
presented. The series will round out to a conclusion with a
comprehensive programming example that presents a sequential file
I/0 set of subroutines that permit character by character 1I/0
with a file to be done.

PART I

SLIDING INTO BDOS (Part II)

WITH FILES MADE EASY

by:

Michael J. Karas

2468 Hansen Court
Simi Valley, CA 93065
(805) 527-7922

Since I know that all devoted Life Lines readers have
anxiously been waiting for this "second in a series" tutorial on
using files with the CP/M BDOS, I will not go on a 1long time
telling you why this thing about CP/M BDOS file interface 1is
so important. Nor will I try to justify why the turorial should
be valuable. You wouldn't be reading here at this time if you had
any inclination to find my work disinteresting. If you are new on
the scene and have some questions about what this is all about I
would like to direct your attention to the November 1982 issue of
Life Lines where the first part of this tutorial series was
presented. There the purpose of the BDOS and the general
interface concepts were presented. The article went on to include
a description of the physical device system calls and other
miscellaneous system control type functions.

THIS TIME IT'S FILES

This month the tutorial continues with a description of the
sequential file I/0 system supported within the BDOS. The con-
cepts of CP/M file storage are to be described along with
appropiate CP/M directory structure definition as it relates to

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

the access of the files stored upon a CP/M disk. The FILE CONTROL
BLOCK (FCB) will be described in terms of its functions as
related the a file to be accessed upon a disk. I have also
included a comprehensive programming example that allows a
sequential file to be accessed character by character.

HOW FILES ARE STORED UPON THE DISK

The CP/M operating system manages the available space on a
disk by dividing the total available space up into a number of
relatively small data block storage areas called "GROUPS". A
group size is usually described as the minimum allocatable space
that a file can occupy. What this means is that the operating
system, in its disk space management scheme, lumps sets of the
normal 128 byte logical records of a file together into these
things called groups. The number of groups that may be contained
on a disk depends upon the total file storage space of the disk
in logical 128 byte records divided by the number of 128 byte
logical records lumped together into a group. (A note to the less
casual reader is that the number of groups on a disk is limited
by design to 65K groups. Secondly a group is always an integral
power of two number of 128 byte logical records with a minimum
size of 8 records (1K byte). Group size is necessarily limited to
16K bytes due to the extent system described below).

As a file is stored upon a CP/M disk it consumes disk space
in 128 byte logical records. Each time a group becomes filled
with records the operating system allocates another group to the
file. Hence the term "minimum allocatable size". If, as the file
grows in size, the last allocated group assigned to a file is not
completely filled the remaining space in the group is "burned" in
that it is not usable by other files. The CP/M system keeps track
of the group assignments made to the various files on a disk,
the files names, and the total number of 128 byte logical records
in each file through a stored directory. The first portion of the
disk 1is reserved for the file directory. A fixed number of
directory entries, determined by the system's BIOS design, are
available, wusually a number like 64, 128, or 256, depending upon
the size of the disk.

Each file has a unique directory entry "set" that describes
the file location upon the disk. A "set" of directory entries is
specified because each entry is designed to "point to" or store
the group allocation numbers for that file. Each directory entry
has a number slots where group numbers can be stored. The system
design allows each directory entry to specify the storage for 16K
bytes of storage space. For files larger than 16K bytes a
seperate directory entry is used for each 16k bytes (or remainder
portion thereof). Each such piece of a file is referred to as an
"EXTENT" of the file. The directory entry "set" for a file

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 23/74 SLIDING INTO BDOS

contains a byte in each extent directory entry that stores the
extent number of the file. Extent numbers start with 0 and may
increase to a theoretical limit of 255 or the size of the disk in
16K byte pieces, whichever is smaller.

The chart below describes the functions of all bytes in a
typical directory entry. Each entry is 32 bytes long and they are
packed four to a logical sector with the number of logical
sectors filled up with directory entries limited to the
predetermined number of directory entries divided by four.

Figure 1. DISK DIRECTORY ENTRY DEFINITION

byte 00 byte 01 byte 02 byte 03 byte 04 byte 05 byte 06 byte 07

+--mm - +--m - - - +---m - +--mm - +---m - +--- - - - +--mm - +--mm oo +
|Active | |
I

|Entry | Eight Character ASCII File Name Bytes 01 to 08 |
|& User | |
|Flag | I
+--mm oo +--m - - - +---m - +--mm - - +---m - +--mm - - +--mm - +--m - - +

+------ +------- t--mm- - +---m-- - +------- +------- +--mm- - F---mm-- +
| Last | | | |Record |
I

File	Three character ASCII	Extent	Two Bytes	Count
Name	File Name extension	Number	Reserved	of this
Char				Extent
+------- +------- +---mm- - +---mm- - +------- +------- +---mm- - +--mmm- - +

Group Number storage for groups attached to this file
One byte used per group number if disk contains less
255 groups. Two bytes if greater than 256.

Additional Group Number storage.

Group Number storage for groups attached to this file
One byte used per group number if disk contains less
255 groups. Two bytes if greater than 256.

The bytes of the disk directory entry are each described in
the following paragraphs. The first byte stored in an entry 1is
set to indicate if this slot in the predetermined directory area

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

is empty or if it describes an active file extent. A value of
OE5H 1indicates an empty slot. This value was chosen presumably
due to that a freshly formatted diskette contains all OE5H bytes
in the empty sectors, thus making such disk appear to have no
files contained thereon. If the byte value is non OE5H, then the
slot contains a valid file extent descriptor. The CP/M user
number area to which an active file is associated is stored 1in
the first directory entry byte. User number values range from 0
to 15.

The next eight bytes contain the primary name of the file
in ASCII characters. If the name is shorter than 8 characters
then the name is padded to the right with spaces. Following the
name field is a three byte file name extension field in ASCII
characters. The extension field, if shorter than 3 characters is
padded to the right with spaces. For CP/M version 2.2, the upper
bits (bit 7) of the extent name bytes are used to describe
certain attributes about the file. If the upper bit of the first
extent name character is set, then the file is described as a
read-only file. The upper bit of the second extent name
character, if set, 1indicates that the file name should not be
displayed in directory listings.

Each directory entry, as a file descriptor extent, has the
next byte set to a number that specifies which 16K byte chunk of
the file that this entry describes. Two bytes after the extent
byte are not used within the directory and are normally set to
zero by default. The number of records stored in the extent,
described by this directory entry, is recorded in the byte 15
position. The maximum value for the record count is 128 (Q80H)
which if equal to (128 * 128) or 16K bytes, the maximum size of
an extent.

Byte positions 16 to 31 contain the group numbers upon the
disk that contain the data belonging to the file named in the
directory entry. The number of bytes within the total 16
available that are used for group number storage 1is dependant
upon the amount of file data described by this extent and by the
group size of the disk. The group numbers are single byte
numbers, up to 16 total, if the number of groups upon the disk is
less than or equal to 255. If the number of groups upon the disk
is more than 255 then byte positions 16 to 31 contain two byte
group numbers, stored in low byte/high byte order. The group
numbers contained within a directory entry do not have to be 1in
increasing sequential order nor do they have to be consecutive.

The figure below shows two logical records of the directory
from a single sided double density disk with 2K byte groups. The
total number of groups available is 243 so the group numbers are
single byte numbers. Note that only one half of the 16 byte space
for group numbers is used due to the fact that 8 entries for 2K

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

25/74

SLIDING INTO BDOS

byte groups is all that is needed to describe the storage for one
full 16K byte extent.

00
10
20
30
40
50
60
70

00
10
20
30
40
50
60
70

bytes

Figure 2. EXAMPLE HEX/ASCII DIRECTORY RECORD DISPLAY

00414449
07000000
004D4552
16171819
00434F50
0C000000
00435243
0DO00000

E5555345
04050600
00444454
0F101100
0044552D
12131400
00464F52
15000000

The
each.

file.

HOW FILES ARE ACCESSED

The

description

The

for quick educational reference.

same as that of a directory entry with a few minor

changes differences are as follows,

file control block,
system calls,

above

files

52202020
00000000
47505249
00000000
59202020
00000000
4B202020
00000000

52202020
00000000
20202020
00000000
56373520
00000000
4D415420
00000000

20434F4D
00000000
4E4F5652
00000000
20434F4D
00000000
20434F4D
00000000

204C4F47
00000000
20434F4D
00000000
20434F4D
00000000
20434F4D
00000000

0000000B
00000000
0000003C
00000000
0000000E
00000000
0000000A
00000000

00000030
00000000
00000026
00000000
0000002E
00000000
0000000C
00000000

examlpes all show files that are less

COPY COM.
.CRCK COM....
eUSER LOG...0
DT COM...&
.DU-V75 COM. ...
_FORMAT COM. ...

than 16K

Note also the display showing the erased "USER.LOG"

block

upon

a disk

are

accessed through a
called a File Control Block (FCB for
used by virtually all file access

user
short).
BDOS

has the structure as shown in Figure 3. This chart
is taken from a Digital Research CP/M manual and is included here

Note that the structure of a file control block is much the

and/or

The
byte

changes.
otherwise the

descriptions are the same as for the disk directory entry.

are

The

specified

as

for the access.

pointers

An FCB

for

contains
file access position.

four additional bytes that
The

first byte of an FCB allows the programmer
which drive should be used for the file access.
1 to 16 respectively while a
indicates that the currently logged default drive should be

to
Drive A:
value of

specify
to P:
zero
used

used as
record

are

"cr", current

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

number, indicates the sequential record number of this extent
that will be accessed upon the next file read or file write
system call. The wuser normally sets the "cr" byte to zero to
begin file access at the first logical record of the file. Each
time a read or write is performed the current record number 1is
incremented. When the "cr" byte attains a value of 080H during a
sequential file operation the BDOS automatically realizes that
the current extent of the file has been fully accessed and
performs the necessary disk directory accesses to setup the FCB
to allow file access to the next extent. For reading this simply
means that the next extent descriptor directory entry from the
disk, for this file, 1is read into memory (ie. the group
allocation numbers from the disk are copied into the d0-dn bytes
of the FCB, the extent number becomes one greater, the record
count from the disk for the new extent is copied into the "rc"
byte and the cr byte is zeroed). During a writing operation the
"cr" byte attaining a value of 080H indicates that the current
extent of the file is full and so the BDOS automatically finds
the appropiate directory entry spot on the disk to write in the
newly assigned group allocation bytes, record count value and
extent number. The BDOS will then create another directory entry
on the disk for the new extent of the file. In this case the dO-
dn bytes of the FCB are zeroed to indicate that storage has not
yet been allocated for this extent.
Figure 3. FILE CONTROL BLOCK DESCRIPTION

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35
where:
dr drive code (0 - 16)

O => use default drive for file access
1 => select drive A: for file access
2 => select drive B: for file access

16=> select drive P: for file access

fl...f8 contain the files name in ASCII upper case
with high bits equal to zero.

tl,t2,t3 contain the file type in ASCII upper case
with high bits normally equal zero. tn' denotes
the high bit of these bit positions.
tl' = 1 => Read/Only file
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but is

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 27/74

SLIDING INTO BDOS

in the range 0 - 31 during file I/O.

sl reserved for internal system use

s2 reserved for internal system use, set to
zero on call to OPEN, MAKE, SEARCH system
calls.

rc record count for extent "ex," takes on values
0 to 128.

do...dn filled-in by BDOS to indicate file group numbers
for this extent.

cr current record to read or write in a sequential
file operation. Normally set to zero by the user

upon initial access to a file.

ro,rl,r2 optional random record number in the range of 0 to

65535, with overflow to r2. r0/rl are a 16 bit value

in low/high byte order.

The Tlast three bytes of the FCB, r0,rl, & r2 are used for
random record file I/0 and will be covered in the third and final
part of this turorial. For simpler sequential I/O0 the FCB in fact
does not even need to be setup for the 36 bytes of storage. 33
bytes suffice for all sequential file I/0 FCB operations.

FILE ACCESS SETUP SYSTEM FUNCTIONS

The procedure for the programmer to use in accessing a file
generally starts in one of two ways. The first senario starts
with, "Lets see if our file exists on the disk?" There are two
BDOS system calls related to the functions of searching the disk
directory for a file name match against the FCB specified by the
user. These operations allow for the programmer to find out if a
specific file name already exists upon the disk. 1In addition it
provides a mechanism to scan a directory to determine all file
names that exist in the directory. The second situation comes
into being if the programmer is already aware of the file status
with respect to "presence" on the disk or as the logical sequence
of events following the first senario. These latter functions are
used to work with specific files for opening, closing, creating,
renaming and deleting.

SEARCH FIRST AND SEARCH NEXT: Functions 17 and 18.

The search functions scan the directory for match of a file
name that compares with the user specified FCB pointed to by the
(DE) register pair. The match is made on the basis of comparing

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

the f1-f8, t1-t3, and ex bytes of the FCB to the corresponding
bytes of the disk directory entries. Any FCB position that
contains an ASCII question mark "?" (03FH) is specified as a
"match any character" from the disk directory. The function calls
return a value of OFFH in the (A) register if no more matched
directory entries can be found. The search functions cause the
currently valid disk buffer address and the following 128 bytes
to be filled with a copy of the directory record containing the
matched entry, if one is found. The (A) register is returned with
a 0 to 3 value to indicate which one of the four possible 32 byte
chuncks of the directory record contain the matched entry.

Search first means to find the first occurrance of a matched
entry to the FCB. The search next function scans the directory
from the current search position instead of from the beginning.
Note that it is not normally valid to perform the search next
functon without first performing the search first function. Also
it 1is not valid to perform other directory or file operations
between the search first and search next functions.

The program example below shows a technique for reading all
directory entries from the disk drive specified by the first FCB
byte into a memory resident list. The list starts at the LIST
label with the total matched file count stored in the FILECNT
variable. The LISTPOS label stores the next available list load
point during the directory scan operation. The search FCB uses
the CP/M default FCB location at address 05CH and specifies a
total wild card (*.*) match. The "ex" byte is zeroed before the
search first call so that only the zero extents of the files are
returned. The file names are stored in the list in character
strings of 16 bytes each with a preceeding drive designator byte
and padded to the right with 4 zero bytes. Please note that this
program 1is a segment only and will not directly assemble and run
as a CP/M .COM file without a little added lead in and error exit
coding.

Listing 1. A DIRECTORY SCANNING PROGRAM

BUFR EQU 80H+BASE ;DEFAULT CP/M BUFFER

BDOS EQU 0005H ;ENTRY POINT FOR BDOS OPERATIONS
SRCHF EQU 17 ; SEARCH DIR FOR FIRST OCCUR.

SRCHN EQU 18 ; SEARCH DIR FOR NEXT OCCUR.

STDMA EQU 26 ; SET DMA ADDRESS

FCB EQU 5CH+BASE ;DEFAULT FILE CONTROL BLOCK

FCBEXT EQU FCB+12 yEXTENT BYTE IN FCB

FCBRNO EQU FCB+32 ;RECORD NUMBER IN FCB

’

;SETUP SIZE OF ELEMENTS IN THE FILE NAME LIST

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 29/74 SLIDING INTO BDOS

ITEMSZ EQU 16 ;EACH LIST ITEM IS 16 BYTES

’

; SETUP WILD CARD FILE IMAGE LIKE *.*

’

LXI H, FCB+1 ;PLACE TO PUT WILD CARD IMAGE
MVI B,11 ;SIZE TO SET
ALFN:
MVI M,'?! ;PUT IN A JOKER CHAR
INX H ;BUMP FILL POINTER
DCR B ;DCR BYTE COUNTER
INZ ALFN

.
’

;ZERO INITIAL TOTAL FILE COUNT

’

LXI H, 0000H
SHLD FILECNT

yHERE IF NAME PROPERLY POSITIONED IN THE DEFAULT FCB AREA FOR LIST BUILD

NAMEPRES:

MVI C,STDMA ; INITIALIZE DMA ADDRESS TO DEFAULT BUFFER
LXI D,BUFR

CALL BDOS

XRA A ; CLEAR APPROPIATE FIELDS OF SEARCH FCB
STA FCBEXT ; EXTENT BYTE

STA FCBRNO ;AND RECORD NUMBER

LXI D,FCB yUSE DEFAULT FCB FOR SEARCH

MVI C, SRCHF ; SEARCH FOR FIRST OCCURRANCE
CALL BDOS

CPI OFFH ;SEE IF FOUND

INZ LOADLIST ; IF SOME FOUND THEN GO BUILD LIST

; PUT INSTRUCTIONS HERE TO HANDLE A SITUATION WHERE NO FILES
;MATCHING THE FCB WILD CARD IMAGE ARE FOUND.

’

JMP ERROR$EXIT ; TO USER SUPPLIED ROUTINE

;BUILD UP LIST WITH ALL FOUND ENTRIES

LOADLIST:

LXI H,LIST ; INITIALIZE LIST POINTER PARAMETERS
SHLD LISTPOS ; START = CURRENT POS OF LIST

.
’

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46

cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

; PUT CURRENTLY FOUND NAME TO LIST
; (A) = OFFSET IN DEFAULT BUFFER OF NAME

.
’

NM2LST:

ANI 3 ; ZERO BASED TWO BIT INDEX

ADD A ; TIMES 32 TO MAKE POSITION INDEX

ADD A

ADD A

ADD A

ADD A

MoV C,A ;PUT IN BC

XRA B ; CLEAR HIGH ORDER

LXI H, BUFR ;TO NAME POSITION IN DEFAULT BUFFER

DAD B ; (HL) = CURRENT FOUND NAME POINTER

LDA FCB ;PUT DISK DRIVE NUMBER INTO NAME PLACE

MoV M,A ; INTO BUFFER

XCHG

LHLD LISTPOS ;POINTER TO CURRENT LOAD POINT IN LIST

XCHG

MVI B,12 yMOVE DRIVE DESIGNATOR AND NAME TO LIST
MOVLP:

MoV AM ;GET NAME BYTE FROM DEFAULT BUFFER

STAX D ; PLACE INTO LIST

INX H ;BUMP POINTERS

INX D

DCR B ; CHECK MOVE BYTE COUNT

INZ MOVLP

XCHG ; (DE) WAS LEFT WITH LEXT LOAD POINT ADDRESS

MVI B, ITEMSZ-12 ;REMAINING LIST ITEM SPACES TO ZERO OUT
FILZRO:

MVI M, OOH ;PUT IN A ZERO BYTE

INX H

DCR B ;ALL REST FILLED YET

INZ FILZRO

SHLD LISTPOS
LHLD FILECNT

INX H

SHLD FILECNT

.
’

; KEEP NEXT LOAD POINT IN SAFE PLACE
; INCREASE FILE COUNT FOR EACH FILE

; SEARCH FOR NEXT OCCURANCE OF SPECIFIED FILE NAME

’

MVI C,SRCHN

LXI D,FCB
CALL BDOS
CPI OFFH

INZ NM2LST

; SEARCH NEXT FUNCTION CODE
; FILE NAME SPECIFICATION FIELD

;SEE IF ALL THROUGH DIRECTORY YET
; IF NOT GO PUT NAME INTO LIST

https://hc-ddr.hucki.net/wiki/

Printed on 2025/10/30 15:25

2025/10/30 15:25 31/74

SLIDING INTO BDOS

.
’

; PROGRAM EXECUTION TO HERE IF THE LIST CONTAINS SOME FILE NAMES
; FROM THE DISKETTE

;USER DOES HIS OWN THING FROM HERE

’

;DIRECTORY NAME LIST FOR STORAGE OF INPUT NAMES

FILECNT:

DS 2 ; COUNTER FOR NUMBER OF FILES
LISTPOS:
DS 2 ; STORAGE FOR CURRENT LIST
; LOAD POINTER
LIST:
DS 1 ; START POINT FOR FILE NAME LIST

.
’

:+++,..END OF LISTING 1.
OPEN FILE: Function 15.

An existing file on a disk may not be read until the user
FCB contains the information about where the file is stored upon
the diskette. Function 15 provides a means where the user fills
in the file name and then calls the operating system to get the
dl-dn bytes of the FCB filled in. Once the file is OPEN then it
may be read because subsequent calls to the BDOS to READ will
"know where" the file is located. The OPEN function returns a
value of OFFH if the file cannot be found, otherwise the (A)
register contains a value of 0 to 3 to indicate that the file was
successfully opened. To open a file the programming procedure 1is
simply:

;OPEN FILE EXAMPLE

OPEN EQU 15 ;OPEN FUNCTION CODE

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LXI D,FCB ;POINT AT FILE CONTROL BLOCK
MVI C,OPEN ; FUNCTION
CALL BDOS
CPI OFFH ; CHECK IF NOT FOUND
JZ ERROR
RET ;IF OPEN GO TO CCP
ERROR:

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

MVI c,9 ; PRINT ERROR MESSAGE
LXI D, ERRMS
CALL BDOS
RET
ERRMS :
DB "FILE NOT FOUND','$'

; FILE ACCESS FILE CONTROL BLOCK

FCB:

DB O0H ;SET TO USE DEFAULT DRIVE
DB 'TEST DAT',0,0,0,0

DS 16 ; STORAGE FOR D1 TO DN BYTES
DB 0 ; CURRENT RECORD BYTE

END

CLOSE FILE: Function 16.

Whenever a file is accessed for writing new space 1is
allocated for that file on the disk. This implies that the user
FCB contains disk group numbers that are not stored upon the
diskette in the directory entry for the file. Function 16
provides a means where the user completes the file writing
operation and then <calls the operating system to set the
directory entry group allocation bytes, the rc byte and the
extent byte from the corresponding bytes of the FCB. A file that
has been opened for reading only need not be closed because there
is no change in the stored disk directory information. The CLOSE
function returns a value of OFFH if the file cannot be found,
otherwise the (A) register contains a value of 0 to 3 to indicate
that the file was successfully closed. To close a file the
programming procedure is simply:

;CLOSE FILE EXAMPLE

CLOSE EQU 16 ; CLOSE FUNCTION CODE

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LXI D,FCB ;POINT AT FILE CONTROL BLOCK
MVI C,CLOSE ; FUNCTION
CALL BDOS
CPI OFFH ; CHECK IF NOT FOUND
JZ ERROR
RET ; IF CLOSED GO TO CCP
ERROR:

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 33/74 SLIDING INTO BDOS

MVI c,9 ; PRINT ERROR MESSAGE
LXI D, ERRMS
CALL BDOS
RET
ERRMS :
DB "FILE NOT FOUND','$'

; FILE ACCESS FILE CONTROL BLOCK

FCB:

DB O0H ;SET TO USE DEFAULT DRIVE
DB 'TEST DAT',0,0,0,0

DS 16 ; STORAGE FOR D1 TO DN BYTES
DB 0 ; CURRENT RECORD BYTE

END

DELETE FILE: Function 19.

Often time the programmer will create and write files which
will subsequently not be needed. The file or files may be deleted
through use of function 19. The user sets an FCB to the
appropiate file name in the f1-f8, and tl-t3 bytes. The BDOS
function then removes the specified file from the directory of
the appropiate disk. The user specified file name in the FCB may
contain ASCII question marks in which case the delete function
may delete multiple files if the file name matches more than one
file on the disk with the name. The "?" matches any character at
the position of its occurrance in the name. The DELETE function
returns a value of OFFH if the file(s) cannot be found, otherwise
the (A) register contains a value of 0 to 3 to indicate that the
file was successfully deleted. To delete a file the programming
procedure is simply:

yDELETE FILE EXAMPLE

DELETE EQU 19 ; CLOSE FUNCTION CODE

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LXI D,FCB ;POINT AT FILE CONTROL BLOCK
MVI C,DELETE ;FUNCTION
CALL BDOS
CPI OFFH ; CHECK IF NOT FOUND
JZ ERROR
RET ; IF CLOSED GO TO CCP

.
’

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

ERROR:
MVI c,9 ; PRINT ERROR MESSAGE
LXI D, ERRMS
CALL BDOS
RET
ERRMS :
DB "FILE NOT FOUND','$'

; FILE ACCESS FILE CONTROL BLOCK

FCB:

DB O0H ;SET TO USE DEFAULT DRIVE
DB 'TEST DAT',0,0,0,0

DS 16 ; STORAGE FOR D1 TO DN BYTES
DB 0 ; CURRENT RECORD BYTE

END

CREATE FILE: Function 22.

Whenever a new file is desired it must first be created so
that there 1is a spot in the directory to later save the file
allocation information (see close function above). The BDOS
assumes that the programmer has specified a file name that does
not exist upon the disk. If there is a chance that a new file is
desired that may duplicate the name of one already upon the disk
the peviously described delete function should be used to erase
the old file before creating the new file. Otherwise the
directory may contain two files by the same name. The CREATE
function returns a value of OFFH if there is no room in the
directory to store the freshly created directory entry, otherwise
the (A) register contains a value of 0 to 3 to indicate that the
file was successfully created. A newly created file may be
immediately written since the BDOS prepares the user FCB to 1look
like an empty file. To create a file the programming procedure is
simply:

; CREATE FILE EXAMPLE

CREATE EQU 22 ; CREATE FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START
LXI D,FCB ;POINT AT FILE CONTROL BLOCK
MVI C,CREATE ;FUNCTION
CALL BDOS

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 35/74

SLIDING INTO BDOS

CPI OFFH ; CHECK IF DIRECTORY FULL

JZ ERROR

RET ; IF CLOSED GO TO CCP
ERROR:

MVI c,9 ; PRINT ERROR MESSAGE

LXI D, ERRMS

CALL BDOS

RET
ERRMS :

DB '‘DIRECTORY FULL','$'

.
’
.
’

; FILE ACCESS FILE CONTROL BLOCK

FCB:

DB O0H ;SET TO USE DEFAULT DRIVE
DB 'TEST DAT',0,0,0,0

DS 16 ; STORAGE FOR D1 TO DN BYTES
DB 0 ; CURRENT RECORD BYTE

END

RENAME FILE: Function 23.

Sometimes it is necessary to change the name of a disk file
from that already existing in the disk directory. With function
23 the user specifies the name of an existing file on the disk
with a standard FCB format except that on calling the BDOS the
dl-dn byte area of the FCB are set to the new name desired for
the file. All occurrances of the existing file name (ie. all
extents) are changed to match the new name. The drive select byte
specifies the drive upon which the rename operation should be
done. The first byte of the second 16 bytes of the FCB (d0®) 1is
expected to be zero. The RENAME function returns a value of OFFH
if the old name file could not be found, otherwise the (A)
register contains a value of 0 to 3 to indicate that the file was
successfully renamed. To rename a file the programming procedure
is simply:

yRENAME FILE EXAMPLE

RENAME EQU 23 ; RENAME FUNCTION CODE

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LXI D,FCB ;POINT AT FILE CONTROL BLOCK
MVI C,RENAME ; FUNCTION

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

CALL BDOS
CPI OFFH ; CHECK IF DIRECTORY FULL
Jz ERROR
RET ; IF CLOSED GO TO CCP
ERROR:
MVI c,9 ; PRINT ERROR MESSAGE
LXI D, ERRMS
CALL BDOS
RET
ERRMS :
DB "FILE NOT FOUND','$'

; FILE ACCESS FILE CONTROL BLOCK

FCB:

DB O0H ;SET TO USE DEFAULT DRIVE
DB 'TEST DAT',0,0,0,0 ;OLD NAME
DB O0H ;BYTE ASSUMED TO BE ZERO
DB '‘NEWNAME DAT',0,0,0,0 y NEW NAME
DB 0 ; CURRENT RECORD BYTE

END

ACCESSING FILE DATA

The previous section showed the reader how to find and setup
files for subsequent I/0. Other file/directory handling functions
were also presented. This has all led up to the big moment when
the users program is finally ready to read or write data from/to
a disk file. So here it is at last...

CP/M disk file data is moved between the disk and memory in
blocks of 128 bytes called logical records or "sectors" in older
fashioned CP/M 1lingo. Two functions to be presented here are
included in the CP/M BDOS function code to allow sequential
access to blocks of data in a file. The READ function starts at
the beginning of a file and reads data blocks till the end of the
file. The opposing WRITE operation moves data blocks to a new
disk file and writes till the end of the users data when the file
is closed (or the disk is full if the programmer has too much
data). The BDOS includes one other function that allows the user
to specify the area in his program where the 128 byte disk record
buffer 1is to be located. These three functions will each be
individually described below.

SET DISK BUFFER ADDRESS: Function 26.

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 37/74 SLIDING INTO BDOS

The 128 byte data buffer that is to be used by the BDOS for
file I/0 is based at an address commonly referred to as the "DMA
ADDRESS". This address or "buffer pointer" is passed to the BDOS
in the (DE) registers when performing function 26. The program
below simply sets the buffer address to "DATBF", a storage area
after the end of the short program.

; SET BUFFER ADDRESS EXAMPLE

STDMA EQU 26 ; SET BUFFER ADDRESS FUNCTION CODE

BDOS EQU 0005H ; SYSTEM ENTRY
ORG 0100H ; START
LXI D,DATBF ; POINT AT DATA BUFFER
MVI C,STDMA ; FUNCTION
CALL BDOS
RET ;BACK TO CCP
DATBF:
DS 128 ;SETUP 128 BYTE BUFFER
END

READ AND WRITE DISK RECORDS: Functions 20 and 21.

The disk read and write functions are very similar in
operation in that both move 128 bytes of data to/from the wusers
program. The READ assumes entry with (DE) pointing to an active
FCB setup by the open file function. The read sequential function
reads the 128 byte record specified by the "cr" field of the FCB
into the buffer pointer to by the current disk buffer address.
After each READ operation the "cr" field is incremented to the
next record number. If the "cr" field overflows past the end of
the extent without encountering the end of the file then the BDOS
automatically opens the next extent in preparation for the next
read operation. The READ function returns a 00H code in the (A)
register if the READ was performed successfully. If the end of
file is encountered a non zero value is returned in (A).

The WRITE function assumes, on entry to the BD0OS, that the
(DE) registers point at a validly opened of created FCB. The
WRITE will move 128 bytes of data from the buffer specified by
the current disk buffer address to the disk. The written record
is placed at the "cr" record position of the extent. As each
record 1is written the "cr" field is incremented in preparation
for the next write operation. Similar to the READ, if the "cr"
field overflows past the end of the current extent, the BDOS
automatically closes the current extent and creates a new extent
in preparation for the next write operation. The WRITE command

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

may be performed on an existing file. If the file currently
contains data at the "cr" record then the WRITE will overlay the
current data with the new 128 byte record. The WRITE function
returns a O00H value in the (A) register if the operation 1is
successful. A non-zero value is returned if the write function
was unsuccessful due to a full disk or directory.

The small program below is designed to read the first record

of a file 'TEST.DAT', and write it into the small file
'"ONEREC.DAT'. The program should be reasonably self documenting.

;READ AND WRITE FUNCTION EXAMPLES

READ EQU 20 ;READ FUNCTION CODE

WRITE EQU 21 ;WRITE FUNCTION CODE
OPEN EQU 15 ;OPEN FUNCTION CODE
CLOSE EQU 16 ; CLOSE FUNCTION CODE
DELETE EQU 19 ;DELETE FUNCTION CODE
CREATE EQU 22 ; CREATE NEW FILE
STDMA EQU 26 ; SET DISK BUFFER ADDRESS
BDOS EQU 0005H ;SYSTEM ENTRY
ORG 0100H ; START
LXI D,DATBF ; POINT AT DATA BUFFER
MVI C,STDMA ; FUNCTION
CALL BDOS
LXI D,FCBIN ;POINT AT AND OPEN INPUT FILE
MVI C,OPEN
CALL BDOS
CPI OFFH ; CHECK FOR OPEN ERROR
JZ ERROR
LXI D,FCBOUT ;DEFAULT DELETE OF NEW FILE
MVI C,DELETE ;..IN CASE IT EXISTS ALREADY
CALL BDOS
LXI D,FCBOUT ;POINT AT FILE CONTROL BLOCK
MVI C,CREATE ;FUNCTION TO MAKE NEW FILE
CALL BDOS
CPI OFFH ;CHECK IF DIRECTORY FULL
JZ ERROR
XRA A ;CLEAR THE INPUT CR FIELD TO READ
STA INCR ; .. FIRST RECORD
LXI D,FCBIN ;READ FIRST FILE
MVI C,READ
CALL BDOS
ORA A ;CHECK IF READ WAS 0.K.
INZ ERROR
LXI D,FCBOUT ;WRITE TO OUTPUT FILE

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

39/74

SLIDING INTO BDOS

MVI C,WRITE

CALL BDOS

ORA A ; CHECK THAT DISK WASNT FULL

INZ ERROR

LXI D,FCBOUT ;CLOSE THE OUTPUT FILE

MVI C,CLOSE

CALL BDOS

CPI OFFH ; CHECK CLOSE STATUS

RNZ ;BACK TO CCP IF NO ERROR
ERROR:

MVI c,9 ; PRINT ERROR MESSAGE

LXI D, ERRMS

CALL BDOS

RET
ERRMS :

DB 'PROGRAM FILE ERROR','$’

.
’

; FILE ACCESS FILE CONTROL BLOCKS

FCBIN:

DB OOH

DB 'TEST

DS 16
INCR:

DB 0
FCBOUT:

DB O0H

DB 'ONEREC

DS 16

DB 0
DATBF:

DS 128

END

;SET TO USE DEFAULT DRIVE

DAT',0,0,0,0

; STORAGE FOR D1 TO DN BYTES

; CURRENT RECORD BYTE

;SET TO USE DEFAULT DRIVE

DAT',0,0,0,0

; STORAGE FOR D1 TO DN BYTES
; CURRENT RECORD BYTE

;SETUP 128 BYTE BUFFER

SEQUENTIAL FILE I/0 PROGRAMMING EXAMPLE

The assembly language

code of Listing 2 presents
comprehensive set of I/0 routines that allow either an input

output sequential file to be processed on a byte by byte
The routines perform all necessary sector buffering. The

is encouraged to fully study the code and gain an
of how it all works. The program uses most of the BDOS functions

understanding

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

presented in this turorial.

Listing 2. CHARACTER BY CHARACTER DISK I/0 ROUTINES

;**

; DEMONSTRATION SEQUENTIAL CP/M FILE CHARACTER BY
; CHARACTER I/0 ROUTINES. NOTE THAT THE MAIN BODY
; OF THIS PROGRAM IS NOT DESIGNED TO RUN AS IS IN
; ANY NORMAL MANNER.

; MANY THANKS ARE DUE TO WARD CHRISTENSEN WHO PREPARED THE
; ORIGINAL SET OF SIMILAR I/0 ROUTINES BURIED INSIDE OF

; THE CP/M USERS GROUP MODEM PROGRAM THAT HAS BECOME SO

; VERY POPULAR. THANKS AGAIN WARD.

;**

;CP/M BDOS EQUATES

RDCON EQU 1
WRCON EQU 2
PRINT EQU 9

OPEN EQU 15 ;OPEN FILE

CLOSE EQU 16 ; CLOSE FILE

SRCHF EQU 17 ; SEARCH FOR FIRST

ERASE EQU 19 ;DELETE FILE

READ EQU 20 ;READ FILE RECORD

WRITE EQU 21 ;WRITE FILE RECORD

MAKE EQU 22 ; CREATE NEW FILE

STDMA EQU 26 ; SET DATA BUFFER POINTER

BDOS EQU ©0005H ;SYSTEM I/0 ENTRY POINT
FCB EQU 5CH ;SYSTEM FCB

FCBEXT EQU FCB+12 y FILE EXTENT

FCBSNO EQU FCB+32 ; SECTOR #

FCB2 EQU 6CH ; SECOND FCB

DSKBUF EQU 080H ;DEFAULT DISK BUFFER ADDRESS
SECSIZ EQU 080H ;CP/M SECTOR SIZE

WBOOT EQU 00 ;CP/M WARM BOOT ENTRY ADDRESS

’

;DEFINE ASCII CHARACTERS USED

LF EQU 10 ; LINEFEED

CR EQU 13 ; CARRIAGE RETURN
EOFCHR EQU 01AH ;CP/M END OF FILE CHAR

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

41/74 SLIDING INTO BDOS

.
’

; START OF EXECUTABLE CODE

’

ORG
LXI

.
’

100H
SP,STACK

;SETUP A STACK TO USE

; SEQUENTIAL I/0 WRITE OF CP/M FILE ENABLED BY USING THIS SEQUENCE
;OF SUBROUTINE CALLS. THE FILE CONTROL BLOCK IS ASSUMED TO BE
;STORED AT THE DEFAULT LOCATION AT O5CH IN THE BASE PAGE OF

; CP/M MEMORY MAP.

SIOWR:
CALL
CALL
CALL

.
’

ERASFIL
MAKEFIL
INITWR

yMAKE FOLLOWING CALL
; INTO THE CP/M FILE.

; IS NEEDED.

’

CALL

CALL
CALL

.
’

WRCHAR

WREOF
CLOSFIL

; ERASE RECIEVED FILE
;ESTABLISH NEW FILE
; INITIALIZE FILE WRITE PARAMETERS

TO PLACE A CHARACTER FROM THE (A) REGISTER
LOOP DOING THIS TILL YOU HAVE ALL IN FILE THAT
;PUT CHAR IN FILE

; FLUSH LAST SECTOR TO CP/M FILE
;CLOSE IT UP

; SEQUENCE OF COMMAND CALLS TO OPEN AND USE A SEQUENTIAL CHARACTER
;FILE FOR READING. THE FILE CONTROL BLOCK IS ASSUMED TO BE LOCATED
;AT THE DEFAUT LOCATION OF O05CH IN THE BASE CP/M PAGE.

;ONCE THE FILE IS INITIALIZED THE CHARACTERS CAN BE READ ONE BY
;ONE UNTIL THE RDCHAR SUBROUTINE RETURNS A SET CARRY FLAG

; INDICATING A END OF PHYSICAL FILE CONDITION. EOF IS SENSED AS

; PHYSICAL END OR 01AH CHARACTER WHICHEVER COMES FIRST

SIORD:
CALL
CALL
CALL
JC

EOF:

OPENFIL
INITRD
RDCHAR

EOF

;OPEN THE CP/M FILE

;GO INIT FOR FILE READ

;GET CHAR FROM CP/M FILE
; CHECK FOR EOF

; PLACE CODE HERE FOR END OF FILE HANDLING

; I/0 HANDLING SUBROUTINES

’
.
’

’

;>--> ERASFIL: ERASE THE INCOMING FILE.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46

cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

; IF IT EXISTS, ASK

ERASFIL:

IF IT MAY BE ERASED.

LXI D,FCB ;POINT TO CTL BLOCK

MVI C, SRCHF ;SEE IF IT..

CALL BDOS ;. . EXISTS

INR A ; FOUND?

RZ ;..NO, RETURN

CALL ILPRT ; PRINT:

DB '++CP/M FILE EXISTS, TYPE Y TO ERASE: ',0
CALL KEYIN ;GET A CHARACTER FROM CONSOLE
ANI 5FH yMAKE UPPER CASE

CPI Y! ;WANT ERASED?

INZ EXIT ;QUIT IF NOT ERASE

CALL CRLF ;BACK TO START OF LINE

; ERASE OLD FILE

’

LXI D,FCB
MVI C, ERASE
CALL BDOS
RET

.
’

.
’

yPOINT TO FCB
;GET BDOS FNC
;DO THE ERASE
; FROM "ERASFIL"

;>--> MAKEFIL: MAKES THE FILE TO BE RECEIVED

MAKEFIL:

LXI D,FCB
MVI C,MAKE
CALL BDOS
INR A

RNZ

.
’

.
’

;POINT TO FCB
; GET BDOS FNC
; TO THE MAKE

; FF=BAD?

;OPEN OK

;DIRECTORY FULL - CAN'T MAKE FILE

’

CALL ERXIT
DB '++ERROR - CANNOT MAKE FILE',CR,LF
DB '++DIRECTORY MUST BE FULL',CR,LF,'$’

.
’

.
’

;>--> OPENFIL: OPENS THE FILE TO BE SENT

OPENFIL:

LXI D,FCB
MVI C,0PEN
CALL BDOS
INR A

RNZ

;POINT TO FILE
; GET FUNCTION
;OPEN IT

;OPEN OK?

; FILE OPENED OK

https://hc-ddr.hucki.net/wiki/

Printed on 2025/10/30 15:25

2025/10/30 15:25

43/74

SLIDING INTO BDOS

CALL
DB

.
’

ERXIT ;. .NO, ABORT
'++CANNOT OPEN CP/M FILE','$'

;>--> CLOSFIL: CLOSES THE RECEIVED FILE

CLOSFIL:
LXI
MVI
CALL
INR
RNZ
CALL
DB

.
’

D,FCB ;POINT TO FILE
C,CLOSE ;GET FUNCTION
BDOS ;CLOSE IT
A ; CLOSE OK?
;.. YES, RETURN
ERXIT ;. .NO, ABORT

'++CANNOT CLOSE CP/M FILE','$'

;>--> INITRD: INITIALIZES FILE READ PARAMETERS

INITRD:
MVI
STA
LXI
PUSH
MVI
CALL
POP
XCHG
SHLD
RET

.
’

A, 0O0H ;SET THE BUF CNT TO EMPTY
CHRINBF
D, DSKBUF ;SET THE DMA BUFFER POINTER
D
C,STDMA
BDOS
D

;SET SECTOR POINTER
SECPTR

;>--> RDCHAR: READS A CHARACTER FROM FILE

;RETURN IS WITH DESIRED CHARACTER IN
; THE A REGISTER. IF EOF, THEN
;RETURN IS WITH THE CARRY FLAG SET.

RDCHAR:
LDA
ORA
JZ
DCR
STA
LHLD
MoV
INX
SHLD
CPI
STC
RZ
CMC

CHRINBF ; GET NUMBER OF CHAR IN BUF
A ;CHECK IF BUFFER EMPTY
RDBLOCK ;GO GET A SECTOR IF EMPTY
A ; DECREMENT
CHRINBF
SECPTR ;GET BUFFER POINTER
A,M ; GET CHARACTER FOR CALLER
H ; INCREMENT POINTER
SECPTR
EOFCHR ; CHECK FOR LOGICAL CP/M EOF

;RETURN EXIT FOR LOGICAL EOF
; CLEAR CARRY SO EOF NOT INDICATED

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

;ON NORMAL RETURN
RET ; FROM "RDCHAR"

;BUFFER IS EMPTY - READ IN ANOTHER SECTOR

RDBLOCK:

LXI D,FCB

MVI C,READ

CALL BDOS

ORA A ;READ OK?

JZ RDBFULL ; YES

DCR A ; EOF?

JZ REOF ;GOT EOF
;READ ERROR

’

CALL ERXIT

DB '++CP/M FILE READ ERROR','$'

REOF:
STC ;SET CARRY FLAG FOR EOF EXIT
RET

;BUFFER IS FULL

RDBFULL:

MVI A,SECSIZ ; INIT BUF CHAR COUNT
STA CHRINBF

LXI H, DSKBUF ; INIT BUFFER. .

SHLD SECPTR ;. .POINTER

JMP RDCHAR ; PASS CHAR TO CALLER

.
’
.
’

;>--> INITWR: INITIALIZES FILE WRITE PARAMETERS

INITWR:

MVI A,0O0H ;SET THE BUF CNT TO EMPTY
STA CHRINBF

LXI D, DSKBUF ;SET THE DMA BUFFER POINTER
PUSH D

MVI C,STDMA

CALL BDOS

POP D

XCHG ; SET SECTOR POINTER

SHLD SECPTR

RET

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 45/74 SLIDING INTO BDOS

;>--> WRCHAR: WRITE A CHARACTER TO FILE
;ENTRY IS WITH CHARACTER IN A

yENTRY AT WREOF FILLS REMAINING BYTES

;OF SECTOR WITH ©01AH PER CP/M CONVENTION.

WRCHAR:

LHLD SECPTR ;PUT CHAR IN BUFFER
MoV M,A
INX H ;BUMP POINTER
SHLD SECPTR
LDA CHRINBF ; INCR CHAR COUNT
INR A
STA CHRINBF
CPI SECSIZ ; CHECK IF SECTOR FULL
RNZ ;GO BACK IF OK
WRBLOCK:
LXI D,FCB ; IF FULL THEN WRITE
MVI C,WRITE ;.. THE. .
CALL BDOS ;. .BLOCK
ORA A
INZ WRERR ;O0PS, ERROR
MVI A, 00H yRESET THE CHAR CNT
STA CHRINBF
LXI H, DSKBUF yRESET BUFFER. .
SHLD SECPTR ; . .POINTER
RET
WRERR:
CALL ERXIT EXIT W/MSG:
DB '++ERROR WRITING CP/M FILE',CR,LF,'$"
WREOF :
LDA CHRINBF ;FILL REST OF SECTOR WITH 01AH

LHLD SECPTR
MVI B, EOFCHR

WREND:
MoV M,B ;PUT IN THE CP/M EOF CODE
INX H
INR A ; INC THE CHAR CNT
CPI SECSIZ ;BUFFER FULL YET
INZ WREND
JMP WRBLOCK ;GO PUT FILLED BLOCK ON DISK

.
’
.
’

;>--> KEYIN: GETS A KEY CODE IN FROM CONSOLE

KEYIN:

PUSH B ; SAVE. .
PUSH D ;. .ALL. .

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46

cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

PUSH
MVI
CALL
MOV
POP
POP
POP
RET

.
’

H
C,RDCON
BDOS
,E

oo x>

;. . REGS
;GET CON CHAR FUNCTION CODE
; GET CHARACTER

;RESTORE. .
;. JALL..
; « . REGS

;>--> CTYPE: TYPES VIA CP/M SO TABS ARE EXPANDED

CTYPE:
PUSH
PUSH
PUSH
MoV
MVI
CALL
POP
POP
POP
RET

.
’

;>--> CRLF: TYPE A

CRLF:
MVI

CALL

MVI

CALL

RET

.
’

I O W

E,A

C,WRCON

BDOS
H
D
B

A,CR
CTYPE

A,LF
CTYPE

; SAVE. .

;.. ALL. .

;. .REGS

;CHAR TO E
;GET BDOS FNC
;PRIN THE CHR

;RESTORE. .

;. .ALL. .

;. .REGS
;FROM "CTYPE"

CARRAGE RETURN LINE FEED PAIR AT CONSOLE

;>--> ILPRT: INLINE PRINT OF MSG

; THE CALL TO ILPRT IS FOLLOWED BY A MESSAGE,

;BINARY © AS THE END.

BINARY 1 MAY BE USED TO

; PAUSE (MESSAGE 'PRESS RETURN TO CONTINUE')

ILPRT:

XTHL

ILPLP:
MoV
ORA
JZ
CPI
JZ

CALL

ILPNEXT:

A,M
A

ILPRET

1

ILPAUSE

CTYPE

;SAVE HL, GET HL=MSG

;GET CHAR
;END OF MSG?
;.. YES, RETURN
; PAUSE?
;.. YES
;TYPE THE CHARACTER OF MESSAGE

https://hc-ddr.hucki.net/wiki/

Printed on 2025/10/30 15:25

2025/10/30 15:25 47]74 SLIDING INTO BDOS

INX H ; TO NEXT CHAR
JMP ILPLP ; LOOP

.
’

; PAUSE WHILE TYPING HELP SO INFO DOESN'T
; SCROLL OFF OF VIDEO SCREENS

ILPAUSE:
CALL ILPRT ; PRINT:
DB CR,LF, '"PRESS RETURN TO CONTINUE OR ~C TO EXIT'
DB CR,LF,0

CALL KEYIN ; GET ANY CHAR
CPI ‘C'-40H ; REBOOT?
JZ EXIT ; YES.
JMP ILPNEXT ; LOOP
ILPRET:
XTHL ;RESTORE HL
RET ; & RETURN ADDR PAST MESSAGE

.
’
.
’

;>--> PRTMSG: PRINTS MSG POINTED TO BY (DE)

;A '$' IS THE ENDING DELIMITER FOR THE PRINT.
yNO REGISTERS SAVED.

PRTMSG:

MVI C,PRINT ; GET BDOS FNC
JMP BDOS ; PRINT MESSAGE, RETURN

.
’
.
’

;>--> ERXIT: EXIT PRINTING MSG FOLLOWING CALL

ERXIT:

POP D ; GET MESSAGE
CALL PRTMSG ; PRINT IT
EXIT:
LXI D,0806H ;RESET DEFAULT DMA ADDRESS FOR EXIT
MVI C,STDMA
CALL BDOS
LHLD STACK ; GET ORIGINAL STACK
SPHL yRESTORE IT
JMP WBOOT ;GO DO A WARM BOOT OF CP/M TO BRING

;BACK IN CCP

; FOLLOWING 2 USED BY THE CP/M DISK BUFFERING ROUTINES

SECPTR DW DSKBUF ;POINTER TO DISK BUFFER POS
CHRINBF DB 0 ;# OF CHARACTERS IN BUFFER

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

.
’

;SETUP A STACK AREA

DS 38 ; STACK AREA
STACK DS 2 ; STACK POINTER
END

;+++...END OF LISTING 2

The reader 1is invited to be with us again next month when
the tutorial continues into its third and final part. The
functions of random record file I/0 will be presented with
complete programming examples to show how random I/0 works.
Several special file I/0 tricks will be shown that permit unique
problems to be solved under the CP/M operating system. One of
these will be a program that does "update" on an exisiting file
without the use of the random record I/0 capabilities. So 1long
till January and I hope that all Life Lines readers have a joyous
holiday season.

PART lil

SLIDING INTO BDOS (Part III)

UNDERSTANDING RANDOM FILES

by:

Michael J. Karas

2468 Hansen Court
Simi Valley, CA 93065
(805) 527-7922

The time has arrived to complete the third and final part of

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 49/74

SLIDING INTO BDOS

this series on the operation of the CP/M BDOS as viewed from the
assembly language programmers perspective. Presently we will
build upon the extensive treatment of sequential files presented
in Part II of the series to provide a basis for understanding the
CP/M 2.2 random file I/0 capability. Please note that functions
of the BDOS presented here are specific to CP/M Versions 2.2 and
3.0. Older CP/M systems using Version 1.4 do not directly support
random access file I/0 and as such are not compatible with the
programming examples presented below.

WHY RANDOM FILE I/0 ANYWAY

In the beginning of the CP/M era, sometime around the
release of Version 1.3 by Digital Research, small inexpensive
single-user micro processor systems were typically used for
simple-minded data processing applications. Most computing
operations were linear with respect to the data handling by the
CPU. Data entered from paper tape, cassette, card readers, or
human entry from a keyboard tended to be limited to a sequential
processing from start to finish. The usage of such data by the
computer in data analysis, program compilation, or logging
applications was also largely sequential. Finally the data output
operations based upon the needs of hard copy, backup, and
transmission from micro to micro were relegated to sequential
processing applications.

Anticipated applications of micro type computer hardware by
operating system designers, at that time, seemed to dictate that
the disk file structures of the operating systems should be
sequential in nature. This was true for the earliest releases of
CP/M and Intel's ISIS II operating system. Other simple floppy
disk operating systems like PERTEC's FDOS and MITS' Disk Extended
Basic operating systems were also strictly sequential in the
treatment of the disk file allocation and storage. However, these
two systems permitted random record I/0 within the bounds of an
already existng file provided the space to store the records was
previously pre-allocated as contiguous disk space in the file
structure. The process of random I/0 was then easy as a relative
offset between the beginning record number for the file and the
offset desired within the file.

As the micro processor applications market opened up in the
late 1970's it seemed that new uses for computers were being
found weekly. It has gotton to the point that micro processor
computer users have a large array of very sophisticated software
packages to choose from and utilize in their business and hobby
activities. The main thing that can be pointed out about many of
these packages 1is that the processes they perform are hardly
linear with respect to the handling of data. Interactive programs
like word processors, data base managers, spelling checkers, and

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

spread sheet analysis programs may very well need to be able to
store or access data to/from a disk file in a manner that cannot
be handled in the old sequential manner. The sequential
philosophy generally limited file update to appending to the end
of the file and read access to a particular record had to read N-
1 records from the beginning of the file prior to being able to
read record N.

Random access file I/0 within an operating system
anticipates the requirements of non-sequential I/0 by permitting

access to various records directly. Any record that was
previously written may be read upon demand. Likewise the
user/programmer may write any record desired. The Digital

Research CP/M operating system supports this type of I/0 in a
powerful yet elegantly simple manner through a set of four BDOS
system functions. These calls allow random access disk files to
be implemented within the standard CP/M compatible file
structure.

RANDOM FILE STRUCTURE UNDER CP/M 2.2

The structure of random files under the CP/M operating
system is much the same as that for sequential files. Part II of
this series (Lifelines, January 1982) described and illustrated
the sequential structure in detail. The reader will recall that
CP/M treats disk data in fixed records of 128 bytes. These
records are collected together into "groups" that are stored on
the disk as an allocated group. The disk space reserved for a
given file, in its directory entry, is always marked, identified,
and allocated in the even multiples of the "allocation group
size".

I previously mentioned two older operating systems that
supported random file I/0 within the confines of a pre-allocated
file. This system requires that all of the space for an "N"
record file be reserved as contiguous disk space even if the file
only contains two records (#0 and #N). Making a random access
file bigger than the pre allocated size was virtually impossible.
The CP/M Ver 2.2 random file access system has overcome the
problems described above. A random file under CP/M contains only
the number of allocated groups required to hold the stored
records. The holes between the defined records do not consume
unused disk space.

If a file under CP/M is created with only random record 0 of
the file written then that file contains 128 bytes of real data
and consumes one allocation group of disk space. The allocation
group consumed also may contain other adjacent random records to
fill out the size of the group. For instance, on single density
8" disks with a 1024 byte allocation group size, a one record
(#0) file would be able to be written with additional record

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 51/74

SLIDING INTO BDOS

numbers 1 to 7 within the same allocation group. Likewise if a
single record file was created with only record number 9 written,
that file would consume only one allocation group of disk space.
Additional record numbers 8, and 10 to 15 could then be written
without requiring additional disk space.

RANDOM FILE I/0 SYSTEM CALLS

Let us next investigate the five BDOS system calls that CP/M
supports for random I/0 within files. The chart of Figure 1 on
the following page details the look of a random access file
control block. Note that the file control block contains three
bytes at the end that are used to store the random record number
that will currently be accessed. The random access system calls
all wutilize this field to determine the portion of the file to
access at read/write time.

A CP/M random file may contain up to 64K records of 128
bytes numbered from 0 to 65535. Two bytes of the file control
block hold this record number, r0 as the low byte and rl as the
high byte. This provides accessability to records up to a maximum
file size of 8 megabytes. The r2 byte of the file control block
is not used except as the overflow or carry out of the rl1 byte.
If byte r2 ever contains a value that is non-zero the record
number is beyond the end of the 8 megabyte limit for the file.

To access a random file, it must first be opened in the
normal manner with the "open" BDOS function call. In the case of
creating a new random file the make file BDOS call is sufficient
in that the the results of the make operation are equivalent to
the open function on a zero length file.

READ RANDOM RECORD: Function 33.

This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to read. The BDOS then fetches the
addressed record from the file and places it 1in the «callers
record buffer pointed to by the last set buffer address function

Figure 1. FILE CONTROL BLOCK DESCRIPTION

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where:

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

dr drive code (0 - 16)
0 => use default drive for file access
1 => select drive A: for file access
2 => select drive B: for file access

16=> select drive P: for file access

fl...f8 contain the files name in ASCII upper case
with high bits equal to zero.

tl,t2,t3 contain the file type in ASCII upper case
with high bits normally equal zero. tn' denotes
the high bit of these bit positions.
tl' = 1 => Read/Only file
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but is
in the range 0 - 31 during file I/O.

sl reserved for internal system use

s2 reserved for internal system use, set to
zero on call to OPEN, MAKE, SEARCH system
calls.

rc record count for extent "ex," takes on values
0 to 128.

do...dn filled in by BDOS to indicate file group numbers
for this extent.

cr current record to read or write in a sequential
file operation. Normally set to zero by the user
upon initial access to a file.

ro,rl,r2 optional random record number in the range of 0 to
65535, with overflow to r2. r@/rl are a 16 bit value
in low/high byte order.
call. The r0-r2 fields of the file control block are not changed
as a result of the random read function such that a subsequent
random read operation would read the same record. The random read
function may return a number of error codes as described below:

Error Code 00 - The random read function worked without
error and the user buffer contains the desired data.

Error Code 01 - The random read operation addresses a record
that is contained in a disk allocation group not
allocated to the file. This means that the group field
number slot of the appropriate extent of the file that

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 53/74

SLIDING INTO BDOS

should contain the record is equal to 0.

Error Code 03 - The random read operation just requested
required that a different extent descriptor directory
entry had to be open for the impending operation,
however prior to opening the new extent the current
extent could not be closed due to disk read/only status
or a disk change.

Error Code 04 - The random read operation just requested
required access to an extent of the file that does not
exist on the disk.

Error Code 06 - The random read operation just requested
required access to a record number beyond the bounds of
the disk drive, 1ie the disk drive is 1less than 8
megabytes and the record requested is within an
allocation group beyond the end of the disk.

WRITE RANDOM RECORD: Function 34.

This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to write. The BDOS then moves the data in
the <callers record buffer pointed to by the 1last set buffer
address function call to the addressed record in the file. The
ro-r2 fields of the file control block are not changed as a
result of the random write function such that a subsequent random
write operation would write the same record. The random write
function may return a number of error codes as described below:

Error Code 00 - The random write function worked without
error and the user buffer contains the desired data.

Error Code 03 - The random write operation just requested
required that a different extent descriptor directory
entry had to be open for the impending operation,
however prior to opening the new extent the current
extent could not be closed due to disk read/only status
or a disk change.

Error Code 05 - The random write operation just requested
required access to an extent of the file that does not
exist on the disk. 1In the process of creating the new
extent the disk directory was found to be full.

Error Code 06 - The random write operation just requested
required access to a record number beyond the bounds of

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

the disk drive, ie the disk drive is 1less than 8
megabytes and the record requested is within an
allocation group beyond the end of the disk.

WRITE RANDOM RECORD WITH ZERO FILL: Function 40.

This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to write. The BDOS then moves the data in
the <callers record buffer, pointed to by the last set buffer
address function call, to the addressed record in the file. The
ro-r2 fields of the file control block are not changed as a
result of the random write function such that a subsequent random
file operation would access the same record. If the random write
operation caused a new allocation group to be allocated to the
file the other records of the same block are filled with zeros.
The random write with zero fill function may return a number of
error codes identical to those described for function number 34
above.

COMPUTE FILE SIZE: Function 35.

This system call determines the number of 128 byte records
in a file and sets the number of records into the r@ and rl bytes
of the 36 byte file control block addressed by the (DE) register
pair. The returned size is a virtual size in that if the file was
created by random write operations and the file contains "holes"
the file size function does not take the holes into account.
Another way of looking at this is to think of this function as
returning a record number that is one greater than the maximum
record number currently in the file. If the file had no "holes"
or it had been written in the conventional sequential fashion,
then the file size reported by this function is the real file
size. This function provides a convenient function of positioning
a file at its end so that subsequent sequential or random update
could be performed.

SET RANDOM RECORD: Function 36:

The (DE) register pair is set to point to a 36 byte file
control block that has previously been used to reference a file
in the sequential mode. Upon reference with this system call the
ro to r2 fields are filled in with the random record number that
corresponds to the current file position, ie the BDOS simply
computes the real current record number as follows:

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 55/74

SLIDING INTO BDOS

The current extent number is multiplied by 128, the number
of records per extent, and to this product is added the

numerical value of the CR field, current record 1in

extent. The final result is placed into the r0-r2 fields of

the FCB.

LOOKING AT SOME EXAMPLES

The following simple assembly language program is designed

to write record numbers 0 and 143 into a file on the disk.

write random function is used to write the first record with all

A's and the second record, # 143, with all B's.

;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

; THIS FIRST LEVEL DEMONSTRATION IS DESIGNED TO

; SHOW HOW TO INITIALLY SET UP A FILE TO BE A RANDOM FILE
; AND TO WRITE TWO RECORDS INTO THE FILE SUCH THAT THE

; FIRST RECORD (RECORD NUMBER 0) AND THE SEVENTEENTH

; RECORD OF THE SECOND EXTENT (RECORD NUMBER 143) BOTH

; CONTAIN DATA. THE PURPOSE IS TO DEMONSTRATE THE

; RESULTING DISK DIRECTORY ENTRIES THAT RESULT FROM

; AN INCOMPLETE FILE. THIS DEMO PROGRAM DOES NO RANDOM

; WRITE ERROR CHECKING.

;SYSTEM LEVEL INTERFACE EQUATES

BDOS EQU 0005H ;SYSTEM INTERFACE VECTOR

MAKE EQU 22 yMAKE NEW FILE FUNCTION
SBADDR EQU 26 ;SET DISK BUFFER ADDR
OPEN EQU 15 ;OPEN FILE FUNCTION
CLOSE EQU 16 ; FILE CLOSE FUNCTION
DELETE EQU 19 ;DELETE FILE FUNCTION
RRAND EQU 33 ;READ RANDOM FUNCTION
WRAND EQU 34 ;WRITE RANDOM FUNCTION
WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL

ORG 0100H ;START OF A PROGRAM

XRA A ; ZERO BYTES OF THE FCB

STA EXT y EXTENT FIELD

STA CR ; CURRENT RECORD COUNT

STA RR+2 ;AND THE R2 FIELD

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

LXI H, 0000H ;ALSO ZERO RANDOM RECORD FIELED
SHLD RR

LXI D,BUFFER ; SET DISK BUFFER ADDRESS

MVI C, SBADDR

CALL BDOS

LXI D,RANDFCB ;POINT AT OUR FCB

MVI C,DELETE ;ERASE TEST FILE IF IT ALREADY EXISTS
CALL BDOS

LXI D,RANDFCB yMAKE A NEW FILE FOR TEST

MVI C,MAKE

CALL BDOS

MVI A, 'AY ;FILL FIRST RECORD WITH A'S

CALL FILL ;GO FILL

LXI H, 0000H ; SET RECORD NUMBER TO WRITE A'S INTO
SHLD RR

LXI D,RANDFCB ;WRITE RECORD OF A'S

MVI C, WRAND ;NORMAL WRITE RANDOM FUNCTION

CALL BDOS

MVI A,'B' ; FILL NEXT RECORD WITH B'S

CALL FILL ;GO FILL

LXI H,143 ; SET RECORD NUMBER TO WRITE B'S INTO
SHLD RR

LXI D,RANDFCB ;WRITE RECORD OF B'S

MVI C, WRAND ;NORMAL WRITE RANDOM FUNCTION

CALL BDOS

LXI D,RANDFCB ; CLOSE JUST WRITTEN FILE

MVI C,CLOSE

CALL BDOS

RET ;BACK TO CCP BY IMMEDIATE RETURN

; SUBROUTINE TO FILL BUFFER WITH A PATTERN

’

; ENTRY WITH (A) CONTAINING BYTE TO FILL BUFFER WITH

FILL:

LXI H,BUFFER ;POINT AT BUFFER FOR FILL
MVI B,128 ; FILL BYTE COUNTER
FILLP:
MOV M,A ;PUT A BYTE INTO BUFFER
INX H ;BUMP POINTER
DCR B ;DECREMRNT BYTE COUNT
INZ FILLP ; CONTINUE TILL BUFFER FULL

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

57/74

SLIDING INTO BDOS

.
’

RET

;RANDOM FILE TEST DATA AREA

RANDFCB:

;USE CURRENT LOGGED DRIVE FOR TEST
;NAME OF FILE TO PLAY WITH
;. .AND THE EXTENSION NAME

;EXTENT, S1, S2, AND FCBSZ BYTES

; STORAGE FOR THE ALLOCATION NUMBERS

; CURRENT RECORD BYTE

;RANDOM RECORD NUMBER (RO,R1)

DB 00
DB '"RANDFILE'
DB "TST!
EXT:
DB 00,00,00,00
DS 16
CR:
DS 1
RR:
DS 2
DS 1

.
’

;RANDOM RECORD OVERFLOW BYTE (R2)

;RANDOM DISK I/0 DATA BUFFER

BUFFER:

empty

DS

END

The

128

above
single
following display

density disk

in

;ONE RECORD BUFFER

the

program was assembled and caused to
default disk drive.
shows how the directory upon the disk looked

run

on an

The

after running the program. Notice that the file only consumes two

allocated groups.

disk with 1024 byte allocation groups of 8 records each,

record
wou'ld

number 8 was subsequently written the
change to include an allocation block number in the second

group number slot of the first extent of the file.

G=00:00, T=2, S=1,

00
10
20
30
40
50
60
70

0052414E
02000000
0052414E
00030000
ESES5ESES
ESESESES
ESESESES
ES5E5E5ES

The

4446494C
00000000
4446494C
00000000
ESESESES
ESESESES
ESESESES
ES5E5E5SES

PS=1

45545354
00000000
45545354
00000000
ESESESES
ESESESES
ESESESES
ES5E5E5ES

following two sector

00000001
00000000
01000010
00000000
ESESESES
ES5ESESES
ES5ESESES
E5E5E5ES

displays off the

*
*
*
*

.RANDFILETST..

directory

Due to the fact that this was a single density

then if
entries

*
*
*
*

eeeeeeeeeeeeeceee
eeeeeeeceeceeeeceee’
eeeeeeeeeeeceeeee
eeeeeeeeeeeeeeee

single

density

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46

cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

disk show the A's and B's written by the program above. All other

sectors

G=02:00, T=2, S=17, PS=20

00
10
20
30
40
50
60
70

41414141 41414141
41414141 41414141
41414141 41414141
41414141 41414141
41414141 41414141
41414141 41414141
41414141 41414141
41414141 41414141

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

G=03:07, T=3, S=6, PS=5

00
10
20
30
40
50
60
70

the

42424242 42424242
42424242 42424242
42424242 42424242
42424242 42424242
42424242 42424242
42424242 42424242
42424242 42424242
42424242 42424242

first demonstration program was changed to cause the

42424242
42424242
42424242
42424242
42424242
42424242
42424242
42424242

in the group numbers 02 and 03 were empty,
whatever data that used to be there.
of the write random with zero fill function.

41414141
41414141
41414141
41414141
41414141
41414141
41414141
41414141

42424242
42424242
42424242
42424242
42424242
42424242
42424242
42424242

This brings up the

ie conta

A small segmen

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBB
**BBBBBBBBBBBBBBBB*
**BBBBBBBBBBBBBBBB*
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
**BBBBBBBBBBBBBBBB*

ined

subject

t of

second

write operation to be done with zero fill. The changed portion of
the program is shown below:

LXI D, RANDFCB

MVI C,WRAND
CALL BDOS

MVI A,'B'
CALL FILL

LXI H, 143
SHLD RR

LXI D, RANDFCB

MVI C,WRANDF
CALL BDOS

LXI D, RANDFCB
Note from the

change

;WRITE RECORD OF A'S
;NORMAL WRITE RANDOM FUNCTION

; FILL NEXT RECORD WITH B'S

;GO FILL

; SET RECORD NUMBER TO WRITE B'S INTO

;WRITE RECORD OF B'S
;WRITE RANDOM ZERO FILL FUNCTION

; CLOSE JUST WRITTEN FILE

directory display below that there
in the appearance of the entries from the first example.

is

no

https://hc-ddr.hucki.net/wiki/

Printed on 2025/10/30 15:25

2025/10/30 15:25 59/74

SLIDING INTO BDOS

This time the only thing that changed was the data in allocation
group 3. Due to the second write this allocation group contains a
sector of B's at GROUP=03:07 with the other seven sectors of the
group now containing zeroes from the zero fill operation. The
function of zero fill is to leave a clean slate on records
numbers subsequently read from the same allocation block. The
BDOS 1is capable of reporting unwritten record information for
records that correspond to group number slots in the directory
entries that contain a '00' byte indicating unallocated. However
once a group 1is allocated for one record the BDOS cannot
determine if other sectors of that group have been written or
not. Thus ero function may be issued when creating a random
access file for the first time. The programmer may then use a
record of 128 zeroes to indicate that the record is not used as
opposed to accidentally mistaking the garbage data from un-
initialized sectors written without zero fill as real data.

G=00:00, T=2, S=1, PS=1

00
10
20
30
40
50
60
70

0052414E
02000000
0052414E
00030000
ESESESES
ES5E5E5ES
ES5E5E5ES
ESE5ESES

4446494C
00000000
4446494C
00000000
ESESESES
ES5E5E5SES
ES5E5E5ES
ESESESES

45545354
00000000
45545354
00000000
ESESESES
ES5E5E5SES
ES5E5E5ES
ESESESES

00000001
00000000
01000010
00000000
ES5ESESES
E5E5E5ES
ES5E5E5ES
ESESESES

*

.RANDFILETST....

*
* ----------------
*
*

*

X
=
=
o
M
[
—
m
b |
wn
-
*

eeeeeeeceeceeeeeee
eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee

The next example program is included here to show a clever
means of implementing arbitrary record selection I/0 within a
file without resorting to random file I/0. The intent is not to
indicate that the following scheme is the preferred method. The
program below was developed with the CP/M Ver 1.4 operating
system in mind. However the algorithm works fine with CP/M 2.2 as
well. The technique wused to play with random records by using
sequential read and write operations is to manipulate the "cr"
field of a standard 33 byte file control block. The "cr" byte is
the only meand that the BDOS uses to indicate the next record to
access. The programmer may change this byte value to force the
BDOS to go to any record within the current extent.

If the first extent of a file 1is opened, the group
allocation values for that extent lie in the file control block.
If the technique of performing "your own" random I/0 is done, the
code must access record numbers not to excede 07fh without first
closing the current extent and opening the next. This can be done

with either the conventional open and close operations or the
programmer, when done working with the current extent may open
next automatically by performing a dummy read of record 080H of

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

the current extent. The programming example below uses the "roll
your own" technique but does not anticipate a file size greater
than 16K (one extent size).

The program below is a skeleton structure of a .COM file
serialization procedure. The idea is to insert a six byte serial
number string into the target file PROG.COM on drive B:. The
serial number is inserted into the file at the places specified
by the labels in the table at the start of the 1listing. These
values are stripped out of the symbol table that is generated at
the assembly of the PROG.ASM file. If the assembler does not
generate a symbol table then the label values may be pulled off
the .PRN listing output. The insert points are places within the
“to be serialized" program where the programmer has determined
that he would like to place the serial number string. Within the
file itself, the labels point to the place where the string is to
be inserted with respect to run time load address. The real file
offset 1is 0100H bytes less. In addition, the scheme does not
insert all six bytes of the program serial number at each
location. The byte at each label address minus one contains a
value between 1 and 6 of thenumber of serial number bytes that
should actually be inserted at seralization time.

The 1list of label values in the program below is used to
build, at assembly time, a table of record numbers where the
specific serial number strings are to be inserted. This table is
then wused to fill in the "cr" byte of the file control block as
each serial number is to be inserted. The table also contains the
byte offset within the record where the insert point is to start.
As each serial number is to be inserted the appropriate record is
read, the number is inserted (with length specified by the value
from the file record just accessed), and the record is written
back to the disk. Sequentail read and write operations are used
for both operations. Logic within the code listing below also
provides for the occurrance that the serial number string may
cross the end of the first record and flow into the next record.
In this case the first is rewritten followed by reading of the
next with the remainder of the insert proceeding from the
beginning of the second record.

Please note that the program example is given as a skeleton
only and the serial number entry process, increment process, and
the disk I/0 error exit points are left for the reader/programmer
to fill in with code of his own choosing.

.
’

; PROGRAM SERIAL NUMBER INSERTION EQUATES
; EACH ADDRESS IS A VALUE INSIDE OF THE "PROG.COM"
; FILE THAT IS THE PLACE TO PUT THE SERIAL NUMBER.

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

61/74

SLIDING INTO BDOS

SERA
SERB
SERC
SERD
SERE
SERF
SERG
SERH

’

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0132H
O1E9H
0278H
039AH
06FFH
0732H
0BBCH
0CO8H

;CP/M BDOS SYSTEM CALLS FUNCTION NUMBERS

BOOT
BDOS

RESET

OPEN
CLOS

E

DMAADR

READ
WRIT

’

E

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

©0000H
0005H
13
15
16
26
20
21

;REBOOT LOCATION ENTRY POINT
;BDOS FUNCTION ENTRY POINT

yRESET DISK SYSTEM

;OPEN FILE FUNCTION

; CLOSE FILE FUNCTION

; SET DATA BUFFER ADDRESS

;READ SEQUENTIAL

;WRITE SEQUENTIAL

;DEFINE BASE EXECUTION AREA FOR THIS PROGRAM

START

’

’

.
’

ORG

EQU

0100H

START

;BASE OF EXECUTION AREA

; START UP HERE WITH PROGRAM INITIALIZATION AND

;DEFINE PROCEDURE TO FETCH IN SERIAL NUMBER TO INSERT INTO

; THE FILE

SERASK:

;ENTER APPROPIATE CODE HERE TO PUT A SIX BYTE SERIAL NUMBER
; INTO VARIABLE "SERSTR"

’

.
’

; SERIAL NUMBER INSERT POINT PROCESSING

’

SERCOPY:
MVI
CALL

LXI

C,RESET
BDOS
D, PROGFCB

;RESET DISK SYSTEM UPON INSERT

;SET TO OPEN THE PROG.COM FILE

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

MVI C,O0PEN

CALL BDOS
INR A ;CHECK IF OPEN ERROR
INZ SERCP1 ;OPEN SO GO START WRITE

; PRINT ERROR MESSAGE HERE AS TO INDICATE THAT THE FILE
; "PROG.COM" IS NOT PRESENT ON DRIVE B:.
JMP SERASK ; IF ERROR BACK TO GET A NEW SERIAL
; . .NUMBER OR TO EXIT

SERCP1:

MVI B, 00H ; INDEX COUNTER FOR TABLE VALUES
SERIST:

MoV L,B

MVI H, O0H

DAD H ;DOUBLE TO WORDS

LXI D, INSTAB ; INTO TABLE

DAD D

MoV AM ; GET RECORD NUMBER FOR PLACE

STA PROGFCB+32 ;SET TO READ THIS RECORD

INX H

MoV C,M ;GET BYTE LOCATION OF COUNTER

PUSH B

LXI D, PROGFCB ;USE PROG FCB TO READ

MVI C,READ

CALL BDOS ;GO READ SECTOR

POP B ; INDEX TO LENGTH

MoV L,C

MVI H,0

LXI D,0806H ;BASE OF DEFAULT BUFFER

DAD D

MoV C,M ;GET LENGTH

INX H ;POINT TO NEXT BUFFER BYTE

LXI D,SERSTR ;POINT (DE) TO SERIAL LOCATION
MOVLP:

MoV A,H ;SEE IF PAST THE END OF BUFFER

CPI 01H

INZ SAMSEC ;STILL IN THE SAME SECTOR

MVI H,0 yRESET TO NEXT SECTOR BASE

PUSH B

PUSH H

PUSH D

LXI H, PROGFCB+32 ; DECREASE RECORD FOR WRITE

DCR M

LXI D, PROGFCB

MVI C,WRITE ;WRITE LAST SECTOR

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 63/74 SLIDING INTO BDOS

CALL BDOS
LXI D, PROGFCB
MVI C,READ ;READ NEXT SECTOR
CALL BDOS
POP D
POP H
POP B
SAMSEC:
PUSH B
LDAX D ;GET A SERIAL NUMBER BYTE
MoV M,A ;AND SLAM INTO BUFFER
POP B
INX H
INX D
DCR C ;DONE ALL BYTES HERE YET
INZ MOVLP
PUSH B
LXI H, PROGFCB+32 ; SET BACK CURRENT RECORD FOR WRITE
DCR M
LXI D, PROGFCB
MVI C,WRITE ;REWRITE THIS SECTOR
CALL BDOS
POP B
INR B ;BUMP TABLE SCAN INDEX
LDA TABLEN ; CHECK FOR DONE
CMP B
JINC SERIST ;GO FOR NEXT TABLE ENTRY

;PUT IN LOGIC HERE TO SPECIFY THE NEXT OF SEQUENTIAL SERIAL NUMBERS
;OR TO GO BACK TO THE TOP OF THE PROGRAM TO GET A NEW SERIAL NUMBER.

’
.
’

; PARAMETER DATA AREA FOR SERAL NUMBER PROGRAM

’
.
’

; "PROG.COM" FILE ACCESS CONTROL BLOCK

PROGFCB:

DB 'B'-040H ;DISK DRIVE B: ALL THE TIME
DB 'PROG coM',0,0,0,0
DS 17 ;ALLOCATION SPACE

.
’

.
’

; SERIAL NUMBER INSERTION POINT REFERENCE TABLE

’

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

INSTAB:
DB ((SERA-0100H-1)/128) ; RECORD NUMBER
DB ((SERA-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERB-0100H-1)/128) ; RECORD NUMBER
DB ((SERB-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERC-0100H-1)/128) ;RECORD NUMBER
DB ((SERC-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERD-0100H-1)/128) ; RECORD NUMBER
DB ((SERD-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERE-0100H-1)/128) ;RECORD NUMBER
DB ((SERE-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERF-0100H-1)/128) ; RECORD NUMBER
DB ((SERF-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERG-0100H-1)/128) ;RECORD NUMBER
DB ((SERG-0100H-1) AND O7FH) ;BYTE OFFSET
DB ((SERH-0100H-1)/128) ;RECORD NUMBER
DB ((SERH-0100H-1) AND O7FH) ;BYTE OFFSET
TABLEN:
DB (($-INSTAB)/2)-1 ;NUMBER OF TABLE ENTRIES
; ;. .MINUS 1 FOR LOOP EASE
SERSTR:
DS 16H ;PLACE TO KEEP BINARY SERIAL NUMBER
END

;...END OF SERTAL NUMBER INSERT PROGRAM

The next and final example is a fully functional program
that uses random record I/0 under CP/M 2.2 to perform a "useful"
function. The program mixes up the records of a file in an
ordered yet bizarre way in order that the file contents may be
encoded to prevent its wuse until such time that it is
unscrambled. The unmixing process 1is also performed by the
program below. The records or "sectors" of the file are mixed and
unmixed in place on the disk in that the disk file is not copied.
Random access file I/0 is used to swap records directly. The
comment block at the beginning of the program listing contains an
explanation of the program "intent" and the record mixing
algorithm chosen. Operation of the program, should the reader
wish to utilize the encoding and decoding functions provided, 1is
also described in the listing.

This example program is presented as a working example of
random file 1I/0 in use. Detailed description of the internal
workings of the program are beyond the scope of this tutorial but
may be inferred by studying the listing and reading the rather

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 65/74

SLIDING INTO BDOS

prolific comment statements. For readers that would like to avoid
the aggravation of typing in the source code for the program
below or for the other programs presented in this BDOS tutorial
series, Part I in Lifelines, November 1982 and Part II 1in
Lifelines, January 1983, a machine readable copy of the source
code files on an eight inch single density diskette may be
obtained from Michael J. Karas, 2468 Hansen Court, Simi Valley,
California 93065. Please send diskettes preformatted, labeled and
in a returnable mailer of some sort. Also include either stamps
or money for return postage (no postage meter tapes, those are
accepted on date of printing only) for your return package.

LISTING FOR SECRET.ASM A RANDOM I/O0 PROGRAM EXAMPLE
;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

; THIS THIRD LEVEL DEMONSTRATION PROGRAM IS DESIGNED TO

; DEMONSTRATE RANDOM FILES BY DEVELOPING A 'NOT NECESSARILY

; PRACTICAL' ALGORITHM FOR ENCODING A PROGRAM FILE ON A DISK.
; THE INTENT IS TO MAKE THE TRANSMISSION OF AN OBJECT FILE

; ARBITRARILY SCRAMBLED ON A 128 BYTE BY 128 BYTE RECORD BASIS
; SUCH THAT IF THE TRANSMITTED FILE, EITHER ON FLOPPY DISKETTE
; OR ON THE PHONE LINE WERE INTERCEPTED BY AN ILLICIT THIRD

; PARTY, THEN THE THIRD PARTY WOULD RECEIVE GARBAGE UNLESS

; HE HAD POSSESSION OF THE DECODING ALGORITHM.

; THIS PROGRAM WILL IMPLEMENT SUCH AN ALGORITHM IN BOTH AN

; ENCODING AND DECODING FORMAT. HERE IS THE ALGORITHM USED.

; (OBVIOUSLY DUE TO THE FACT THAT THIS APPEARS IN THE

; PUBLIC IMAGE AS A MAGAZINE ARTICLE WILL PREVENT THE FOLLOWING
; ALGORITHM TO BE OF 'SECRET' USE).

; THE OPERATOR ENTERS THE COMMAND TO RUN THE PROGRAM AS:
; A>SECRET filename.typ E<cr>

; where filename.typ is the

; file to encode. And "E"

; indicates to encode the file

; or:

; A>SECRET filename.typ D<cr>

; where filename.typ is the

; file to decode. And "D"

g indicates to decode the file

; THE ENCODING PROCESS WRITES THE ENCODED FILE RIGHT IN PLACE

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46

.
’

.
’

WITHIN THE USER SPECIFIED FILE. NO MEANS IS USED TO SPECIFY
IN THE ENCODED FILE THAT IT IS ENCODED.

THE DECODE PROCESS READS AND DECODES THE FILE RIGHT IN PLACE
WITHIN THE USER SPECIFIED FILE NAME.

THE ALGORITHM LEAVES THE FIRST RECORD OF THE FILE INTACT AND
DOES NOT ENCODE THE PART OF A FILE BEYOND 128 RECORDS IN SIZE.
FOR FILES LARGER THAN 128 RECORDS THE FINAL RECORDS BEYOND THE
128'TH ARE LEFT UNTOUCHED. THE BDOS IS CALLED TO DETERMINE THE
SIZE OF THE FILE SO THE NUMBER OF RECORDS IN THE FILE ARE
KNOWN. THIS NUMBER OF RECORDS WILL BE REFERRED TO HERE AS "NR".
IF "NR" IS GREATER THAN 128 THEN "NR" IS SET TO 128. THEN THE
FIRST "NR-1" BYTES OF THE FIRST RECORD ARE READ SEQUENTIALLY
TO MAKE A LIST OF ONE BYTE BINARY NUMBERS WITH A NUMBER OF
ENTRIES EQUAL TO THE NUMBER OF RECORDS IN THE FILE MINUS ONE,
UP TO A MAXIMUM OF 127 NUMBERS.

THIS LIST IS THEN PROCESSED TO CONVERT ALL OF THE NUMBERS IN THE
LIST TO BE WITHIN THE RANGE OF 1 TO "NR-1". THIS CONVERSION IS
DONE BY FIRST "ANDING" EACH OF THE BYTES IN THE LIST WITH A MASK.
THE MASK HAS A NUMERICAL VALUE EQUAL TO "NR-1" ROUNDED UP TO

THE NEXT BIGGEST [(2 ~ N) - 1] VALUE, IE IF THE FILE HAS 5
RECORDS THE MASK IS 07H. IF THE FILE HAS 59 RECORDS THE MASK

HAS A VALUE OF 3FH. THE LIST IS THEN SCANNED FOR VALUES THAT

ARE GREATER THAN "NR-2". EACH VALUE THAT IS GREATER THAN

“NR-2" IS DIVIDED BY TWO IGNORING THE REMAINDER. FINALLY EACH
LIST VALUE IS INCREMENTED BY ONE TO MAKE A REAL FILE READABLE
RECORD NUMBER.

THE LIST IS THEN USED AS A RECORD SCRAMBLE/UNSCRAMBLE LIST.
FOR SCRAMBLING IT IS SCANNED FROM THE BEGINNING WHILE
UNSCRAMBLING SCANS THE LIST FROM THE END. SCRAMBLING PROCEDES
AS FOLLOWS (THE UNSCRAMBLE PROCESS IS THE REVERSE):

THE SECOND FILE RECORD IS NOW INTERCHANGED IN
POSITION WITH THE RECORD POINTED BY THE FIRST
NUMBER IN THE LIST. THE THIRD FILE RECORD IS
INTERCHANGED WITH THE RECORD POINTED TO BY THE
SECOND LIST VALUE. THIS PROCESS CONTINUES UNTIL
THE END OF THE LIST. DURING THE PROCESS OF
INTERCHANGING THE FILE SECTORS IN THIS RATHER
BIZARRE MANNER, EACH TIME A LIST VALUE IS FOUND
TO HAVE A LEAST SIGNIFICANT BIT THAT IS EQUAL
TO "1" THEN THAT RECORD HAS EACH BYTE XOR'ED
WITH THE RECORD NUMBER.

WRITTEN BY:
MICHAEL J. KARAS
2468 HANSEN COURT
SIMI VALLEY, CA 93065

https://hc-ddr.hucki.net/wiki/

cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

Printed on 2025/10/30 15:25

2025/10/30 15:25 67/74

SLIDING INTO BDOS

; (805) 527-7922

.
’

;SYSTEM LEVEL INTERFACE EQUATES

BDOS EQU 0005H ; SYSTEM INTERFACE VECTOR

MAKE EQU 22 yMAKE NEW FILE FUNCTION
SBADDR EQU 26 ; SET DISK BUFFER ADDR

OPEN EQU 15 ;OPEN FILE FUNCTION

CLOSE EQU 16 ; FILE CLOSE FUNCTION

DELETE EQU 19 ;DELETE FILE FUNCTION

RRAND EQU 33 ;READ RANDOM FUNCTION

WRAND EQU 34 ;WRITE RANDOM FUNCTION

WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL
PRINT EQU 9 ;PRINT STRING TILL $

FSIZE EQU 35 ; COMPUTE FILE SIZE FUNCTION
DEFCB EQU 05CH ;DEFAULT FILE CONTROL BLOCK
DEFBUF EQU 080H ;DEFAULT BUFFER LOCATION
EXEC EQU ©08000H ; EXECUTE SPOT FOR SMALL PROGRAM

BOOT EQU ©00000H ; SYSTEM REBOOT ENTRY POINT

’

;ASCIT CHARACTER DEFINITIONS

CR EQU ODH ; CARRIAGE RETURN

LF EQU OAH ;LINE FEED
ORG 0100H ; START OF A PROGRAM
LXI SP,STACK ;SETUP A STACK FOR EXECUTION
LXI D, SNGMSG ; PRINT SIGNON MESSAGE
MVI C,PRINT
CALL BDOS

.
’

;CHECK IF THERE WAS A COMMAND LINE FILE NAME

’

LDA DEFCB+1 ; IF FIRST BYTE 20 THEN NO NAME
CPI Y
JZ CMDERR ;IF NO FILE NAME PRINT ERROR
LDA DEFCB+17 ; GET OPTION CHARACTER
CPI 'E’ ; CHECK FOR ENCODE
JZ PROCESS ;GO TO PROCESS IF ENCODE
CPI ‘D! ; CHECK IF DECODE
JZ PROCESS ;GO PROCESS OF DECODE
CMDERR:
LXI D, ERRM1 ; PRINT ERROR MESSAGE

MVI C,PRINT

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

CALL BDOS
JMP BOOT ;EXIT IF NO FILE NAME OR OPTION

yHERE IF AN ENTRY FILE NAME AND A VALID OPTION

PROCESS:

STA OPTION ;SAVE OPTION CHAR FOR LATER
; .. .REFERENCE

XRA A ;SETUP FCB FOR OPEN

STA DEFCB+12 ; ZERO EXTENT BYTE

STA DEFCB+32 ; ZERO CURRENT RECORD BYTE

STA DEFCB+35 ; ZERO R2 BYTE

LXI H,0000H

SHLD DEFCB+33 ; ZERO RANDOM RECORD NUMBER

MVI C,O0PEN ;OPEN FILE USER SPECIFIED

LXI D,DEFCB ;USE DEFAULT FCB BUILT BY CCP

CALL BDOS ;GO ATTEMPT OPEN

INR A ; CHECK IF FOUND

INZ FOUND

MVI C,PRINT ; PRINT NOT FOUND ERROR

LXI D, ERRM2

CALL BDOS

JMP BOOT EXIT

.
’
’

; FOUND FILE SO LETS NEXT COMPUTE ITS FILE SIZE

FOUND:

LXI D,DEFCB ; THAT SAME FCB AGAIN
MVI C,FSIZE
CALL BDOS ;GET THE FILES SIZE IN RECORDS
LHLD DEFCB+33 ;GET SIZE OF THE FILE
MoV A,H ; CHECK IF GREATER THAN 128 RECORDS
ORA A
INZ TOBIG
MoV AL
ORA A ;CHECJ IF FILE EMPTY OR ONLY ONE RECORD
JZ TOSMALL
CPI 1
JZ TOSMALL
CPI 129
JC SIZINA ;WE HAVE SIZE IN (A)
TOBIG:
MVI A,128 ;SET SIZE TO 128 DEFAULT
SIZINA:
STA NR ; SAVE NUMBER OF RECORDS

JMP READFST

.
’

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25 69/74 SLIDING INTO BDOS

TOSMALL :
MVI C, PRINT ; PRINT FILE SIZE ERROR MESSAGE
LXI D, ERRM3
CALL BDOS
JMP BOOT

.
’
.
’

;READ FIRST RECORD INTO LIST BUFFER

READFST:

LXI D,LIST ; SET DMA ADDRESS TO LIST BUFFER

MVI C,SBADDR

CALL BDOS

LXI H,0000H ; SET FIRST RECORD

SHLD DEFCB+33

XRA A

STA DEFCB+35 ; CLEAR R2 BYTE

MVI C,RRAND ;READ RANDOM FIRST RECORD

LXI D,DEFCB

CALL BDOS ;NO NEED TO CHECK READ ERROR BECAUSE

; . .WE KNOW THAT THESE RECORDS EXIST

’

yHERE TO PROCESS LIST INTO A SET OF NUMBERS THAT FIT OUT FILE
;RECORD COUNT RANGE.

’

LDA NR ; FETCH NUMBER OF RECORDS
DCR A ;SET NR-1
MVI B,0FFH ; INITIAL MASK VALUE
MVI C,07H ;NUMBER OF TIMES TO ROTATE FOR MASK
MKLP:
RAL ;CHECK FOR ZERO BIT IN NR-1
JC HMSK ;EXIT WE HAVE OUR MASK ONE BIT FROM (A)
PUSH PSW
MOV A,B ;PUT A ZERO BIT INTO MASK
ORA A ; CLEAR CARRY
RAR ;PUT ZERO IN
MoV B,A
POP PSW
DCR C ;DEBUMP SHIFT COUNT
INZ MKLP
HMSK: yHERE IF (B) HAS LIST MASK VALUE
LDA NR ;GET NUMBER OF VALUES IN LIST
DCR A
MOV C,A ;PUT LOOP COUNTER INTO (C)
MoV D,A ;SAVE NR-1 IN (D)
LXI H,LIST ;POINT AT LIST
LSTPROC:

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

MoV AM ;GET A LIST BYTE
ANA B yMASK IT
CMP D ; IS RESULT GREATER THAN NR-2
JC VALOK ; VALUE IS OK
ORA A ;DIVIDE BY TWO IF TOO BIG
RAR
VALOK:
INR A ;SET VALUES TP FOR REAL RECORD NUMBERS
MoV M,A ; PUT CONVERTED NUMBER INTO LIST AGAIN
INX H ;BUMP LIST POINTER
DCR C ;DEC LOOP COUNTER
INZ LSTPROC ;DO ALL BYTES OF LIST

; ENCODE/DECODE THE FILE HERE

ENCODE:

LXI H,LIST ;KEEP A POINTER TO THE LIST
LDA OPTION ; IF OPTION IS 'E' WE GO FORWARD
CPI 'E’
MVI A1l ;DEFAULT FORWARD CURRENT RECORD
JZ FORWA ; GO FORWARD
LDA NR ; INDEX TO END OF LIST FOR DECODE
DCR A ; SET START RECORD FOR DECODE
MoV E,A
DCR E ; ZERO BASE INDEX
MVI D,0
DAD D
FORWA :
SHLD LISTP ;SAVE LIST POINTER
STA CURR ; SET CURRENT RECORD NUMBER TO START
LDA NR
DCR A
STA CNTR ; SET NUMBER OF SWAPS
ENCLP:
LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS
MVI C,SBADDR
CALL BDOS
LDA CURR ;READ CURRENT RECORD
MoV L,A
MVI H,00
SHLD DEFCB+33 ; SET RECORD NUMBER
LXI D,DEFCB
MVI C,RRAND ;READ THAT RECORD
CALL BDOS
ORA A ; CHECK ERROR

INZ DSKERR

LXI D,BUF2 ; SET BUFFER 2 AS DMA ADDRESS

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

71/74 SLIDING INTO BDOS

MVI
CALL
LHLD
MoV
MVI
SHLD
LXI
MVI
CALL
ORA
INZ

LHLD
MoV
MoV
RAR
INC
LDA
LXI
CPI
JZ
LXI
INB2:
MVI
XORLP:
MoV
XRA
MoV
INX
DCR
INZ

SWRT:
LXI
MVI
CALL
LHLD
MoV
MVI
SHLD
LXI
MVI
CALL
ORA
INZ

LXI
MVI
CALL
LDA
MoV

C,SBADDR
BDOS
LISTP

L,M

H,00
DEFCB+33

D,DEFCB

C,RRAND
BDOS

A

DSKERR

LISTP
B,M
AM

SWRT
OPTION
H,BUF2
E
INB2
H,BUF1

C,128
M

A

O IT=wW>

XORLP

D,BUF1

C,SBADDR
BDOS
LISTP

L,M

H,00
DEFCB+33

D,DEFCB

C,WRAND
BDOS

A

DSKERR

D,BUF2

C,SBADDR
BDOS

CURR

L,A

; GET SWAP POSITION

; SET SWAP RECORD NUMBER

;READ SWAP RECORD

; CHECK ERROR

; IS SWAP RECORD AN ODD NUMB
; SABE XOR PATTERN IN (B)

;GO DO SWAP WRITE DIRECTLY IF EVEN
;WHICH BUFFER TO XOR
;DEFAULT FOR 'E'

;USE BUFFER 2
; IF DECODE USE BUFFER 1

;BUTE COUNT OF XOR
;GET A BYTE TO XOR
; PUT BYTE BACK

;BUMP BUFFER POINTER FOR XORING
;DEC BYTE COUNT

; SET BUFFER ONE AS DMA ADDRESS

; GET SWAP POSITION

; SET SWAP RECORD NUMBER
;WRITE SWAP RECORD

; CHECK ERROR

; SET BUFFER 2 AS DMA ADDRESS

;WRITE CURRENT RECORD

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

MVI H,00

SHLD DEFCB+33 ; SET RECORD NUMBER
LXI D,DEFCB

MVI C,WRAND ;WRITE THAT RECORD
CALL BDOS

ORA A ; CHECK ERROR

INZ DSKERR

LDA CURR ; FETCH LOOP PARMS
MoV B,A
LHLD LISTP

LDA OPTION ; CHECK OPTION
CPI =
JZ INCF ; IF ENCODE INCR FORWARD
DECB:
DCX H ; DECREMENT DOWN THROUGH LOOP
DCR B
JMP PSVE ; SAVE PARMS
INCF:
INX H
INR B
PSVE:
SHLD LISTP ; SAVE NEW LIST POSITION
MoV A,B
STA CURR
LDA CNTR ; FETCH LOOP COUNTER
DCR A
STA CNTR
INZ ENCLP ;GO TO LOOP TO PROCESS MORE IF

;NOT DONE YET

.
’

;HERE WE ARE DONE WRITING SO LETS CLOSE UP AND GO HOME

’

LXI D,DEFCB
MVI C,CLOSE

CALL BDOS

INR A ; CHECK ERROR CODE

JZ DSKERR

MVI C,PRINT ; PRINT DONE MESSAGE
LXI D, DONMSG

CALL BDOS

JMP BOOT ; EXIT

.
’

; EXIT POINT WITH ERROR MESSAGE IF THE DISK WRITE OPERATION
;RESULTED IN AN ERROR

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

2025/10/30 15:25

73/74

SLIDING INTO BDOS

DSKERR:

LXI D, ERRM4
MVI C, PRINT
CALL BDOS
JMP BOOT

.
’

; PRINT GARBAGE FILE ERROR

; EXIT FOR THE POOR GUY

; PROGRAM OPERATIONAL MESSAGES

SNGMSG:
DB
DB
DB

DONMSG:
DB

ERRM1:
DB

ERRM2 :
DB

ERRM3:
DB

ERRM4 :
DB
DB

.
’

CR,LF, 'File Processing Complete','$

CR,LF, "MICRO RESOURCES Disk File Scramble and'
CR,LF, 'Unscramble Utility Designed to Demonstrate'
CR,LF,'CP/M Ver 2.2 Random Record I/0.

(1/24/82)"','$"

CR,LF,'No File Name Specified or Improper Option','$'

CR,LF, 'Specified File Not Found',6 '$’

CR,LF, 'Cannot Process Files with 0 or 1 Record(s)','$"'

CR,LF,'File I/0 Error, This Error Should NOT Normally'
CR,LF, 'Happen, But the File is now Garbaged...','$'

; PROGRAM DATA STORAGE SECTION

OPTION:

DS 1
NR:

DS 1
CNTR:

DS 1
CURR:

DS 1
LISTP:

DS 2
LIST:

DS 128

;PLACE TO STORE COMMAND LINE OPTION CHAR

;NUMBER OF RECORDS TO SWAP

; ENCODE/DECODE LOOP COUNTER

; CURRENT SWAP SECTOR

;LIST SCAN POINTER

; LIST BUFFER

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2018/01/24 13:46 cpmsliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

BUF1:
DS 128 ;DATA BUFFER 1
BUF2:
DS 128 ;DATA BUFFER 2
DS 36

STACK EQU $;USER STACK AREA

END

;+++...END OF FILE

From: y .
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR E—' E
J

Permanent link: L .
https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609 %
Last update: 2018/01/24 13:46 E-:;é-

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:25

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801609

	SLIDING INTO BDOS
	PART I
	PART II
	PART III

