
2025/10/30 15:32 1/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

SLIDING INTO BDOS

 SLIDING INTO BDOS

 THE SMOOTH AND EASY WAY

 by: Michael J. Karas
 2468 Hansen Court
 Simi Valley, CA 93065

 What is this thing everybody is talking about called BDOS?
This series will attempt to answer this question in some detail
but first we need a little basis to understand WHY in the first
place. Digital Research CP/M is an operating system for smaller
type micro processor computer systems that is designed to remove
much of the normal computer operation drudgery experienced by the
computer operator. The operating system software embodies a
"system philosophy" that structures and generalizes upon the
operating environment of a piece of electronics hardware. The
environment presented actually allows that piece of quiet,
transistorized machinery to be used at a much higher level. The
full impact of what this operating system provides to a computer
is most probably felt by the typical micro computer hacker that
worked the hard way to get a computer system up and running.
While building, debugging, and integrating the pieces, the
computer was just a whole bunch of parts interfaced together in
an organized manner. However, when the thing is finally a
"computer" how does it get used. The low level process of poking
data into memory from a front panel or even filling, dumping, or
block moving memory data with an EPROM based "monitor program"
hardly makes this computer "useful". The process of putting on
disks and bringing up CP/M lights the torch for computer
usability. In this case the hacker experiences an elated feeling
now "NOW I CAN DO SOMETHING!"

 Buried inside of the total operating system presentation is
the concept of generalization brought up in the previous
paragraph. One of the major requirements in order to make a
computer useful is that there has to be applications software
that performs the jobs intended for the computer. Jobs like
accounting, word processing, spread sheet data analysis, or
inventory control. Unfortunately the process of producing
applications software is very, very expensive. A good package may
take anywhere from one to ten man years of development effort to
make. If the process of making an applications package had to be
custom taylored to a specific hardware environment, then there
would not be affordable software available for use upon a given

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

XYZ computer. Generalization in the operation of a computer
environment solves this problem however. With the understanding
that at a certain level "all microprocessor computer systems are
alike" it is possible, with minimum constraints, to define a set
of logical type operations that make a computer useful.

 This logical set of operations, for the Digital Research
CP/M operating system, is defined within the BDOS portion of the
operating system. Here in about 3 1/2 K bytes of tightly written
assembly language is the "generalization converter" that takes
I/O requests for hardware independant applications programs and
turns them into a lower level set of simplistic hardware oriented
functions that are then processed through the BIOS. This
conversion process is beneficial in the light that CP/M Ver 2.2
can be setup to run on a typical brand XYZ computer for about one
half of the effort needed to convert even one of the simplest
application packages had that application been written in a
hardware dependant manner. Conclusion; software developers can
make better, more sophisticated applications available for lower
cost and computer users find a competitive software market place
where there are many times multiple packages available that
perform similar functions.

 The thrust of this presentation is to show the prospective
applications programmer how to use most of the generalized set
of "BDOS System Calls" within Digital Researches CP/M Ver 2.2.
The presentation scheme will be to describe all of the functions
and use simple examples. The reader is assumed to be modistly
familiar with 8080 Assembly Language Programming as all of the
examples will be given in machine language. Likewise, in this
environment it is assumed by default that the prospective
programmer is planning to code in assembly language. If a CP/M
compatible high level language is used for programming, such as
Digital Research PL/I-80 or Microsoft BASIC-80, then of course
the program interface at the "System Call" level becomes
transparent to the programmer. Run time subroutines make the high
level coded application get converted through yet another step.
(One major reason applications code in a high level language runs
slower than the equivalent function written in assembly
language).

SUMMARY OF CP/M SYSTEM CALLS

 The set of system or "BDOS" I/O entry points available to
the CP/M programmer is complete yet simple. The primary beauty of
the CP/M system is this small world of completeness. Many
programmers familair with other operating systems complain that
the CP/M system is weak, unflexible, and incomplete. However, in
a microprocessor type computer world, the generalization level
defined for the CP/M system allows 85% of all microprocessor type
appliciation jobs to be programmed with relative ease. Also, in

2025/10/30 15:32 3/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

my opinion, 8-bit microprocessor hardware is easily capable of
performing about 90 percent of the typical tasks targeted for
microcomputers. So what is this set of functions? The chart of
Figure 1 summarizes, in function number order, all of the system
operations specific to CP/M Version 2.2 that will be covered in
this presentation. In the subsequent sections that follow the
functions will be grouped into categories so that related
operations may become familiar with reference to one another.

 FIGURE 1. DETAILED SUMMARY OF CP/M 2.2 SYSTEM CALLS

Function Entry Value to Return Value from
 Number BDOS Passed in BDOS Passed in
DEC HEX Function (DE) or (E) regs (HL) or (A) register

 0 00 | System Reset | **** | **** |
 1 01 | Console Input | **** | (A)=character |
 2 02 | Console Output | (E)=character | **** |
 3 03 | Reader Input | **** | (A)=character |
 4 04 | Punch Output | (E)=character | **** |
 5 05 | Printer Output | (E)=character | **** |
 6 06 | Direct Console I/O | (E)=0FFH is input| (A)=character |
 | | (E)=chr is output| **** |
 7 07 | Get IOBYTE | **** | (A)=IOBYTE |
 8 08 | Set IOBYTE | (E)=IOBYTE | **** |
 9 09 | Display Console String | (DE)=string addr | **** |
10 0A | Input Console String | (DE)=string addr | (A)=# chr input |
11 0B | Get Console Status | **** | (A)=000H idle |
 | | | (A)=0FFH ready |
12 0C | Get CP/M Version Number| **** | (HL)=Version # |
13 0D | Reset Disk Subsystem | **** | **** |
14 0E | Select Disk Drive | (E)=disk number | **** |
15 0F | Open a File | (DE)=FCB address | (A)=dir code |
16 10 | Close a File | (DE)=FCB address | (A)=dir code |
17 11 | Search for File | (DE)=FCB address | (A)=dir code |
18 12 | Search for Next | **** | (A)=dir code |
19 13 | Delete File | (DE)=FCB address | (A)=dir code |
20 14 | Read next Record | (DE)=FCB address | (A)=error code |
21 15 | Write next Record | (DE)=FCB address | (A)=error code |
22 16 | Create New File | (DE)=FCB address | (A)=dir code |
23 17 | Rename File | (DE)=FCB address | (A)=dir code |
24 18 | Get Login Vector | **** | (HL)=login vector|
25 19 | Get Logged Disk Number | **** | (A)=logged disk |
26 1A | Set R/W Data Buff Addr | (DE)=buffer addr | **** |
27 1B | Get Allocation Vector | **** | (HL)=alloc vector|
 | | | address |
28 1C | Write Protect Disk | (E)=disk number | **** |
29 1D | Get Read Only Vector | **** | (HL)=R/O vector |
30 1E | Set File Attributes | (DE)=FCB address | (A)=dir code |
31 1F | Get Addr of Disk Parms | **** | (HL)=parm addr |

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

32 20 | Get/Set User Select | (E)=0FFH get | (A)=current user |
33 21 | Read Random Record | (DE)=long FCB adr| (A)=error code |
34 22 | Write Random Record | (DE)=long FCB adr| (A)=error code |
35 23 | Get Size of File | (DE)=long FCB adr| (r0-2=rec cnt) |
36 24 | Set Random Record Num | (DE)=long FCB adr| (r0-2=rec numb) |
37 25 | Reset Drive | (DE)=drive vector| **** |
38 26 | Not used | | |
39 27 | Not used | | |
40 28 | Write Random with | (DE)=long FCB adr| (A)=error code |

 The technical means required to "use" or interface to the
CP/M system for each function contains a certain common structure
that will be discussed here. The base memory page of a CP/M
system memory map includes, at a specific memory address, a JUMP
instruction to the CP/M BDOS entry point. For most CP/M systems
this is address 00005H. To accomplish BDOS I/O the number of the
function is placed into the (C) register. If the parameter
requires input parameters, then they are passed in the (DE)
register pair or the individual (E) register depending upon
whether the parameter is a word or byte value. Result information
returned by some functions is sent back to the users program in
either the (A) register or the (HL) register pair depending upon
if the value is a byte or word. The following simple program
segment demonstrates the scheme used to output the 26 characters
A-Z to the console screen through the use of function number 2.

BDOS EQU 0005H ;SYSTEM ENTRY
CONOUT EQU 2 ;OUTPUT FUNCTION

 ORG 0100H ;TPA BASE
 MVI B,26 ;PRINT 26 COUNTER
 MVI C,'A' ;START WITH 'A'
;
LOOP:
 PUSH B ;SAVE COUNTER & LETTER
 MOV E,C ;LETTER TO (E) FOR OUTPUT
 MVI C,CONOUT ;BDOS FUNC TO (C)
 CALL BDOS ;GO GO OUTPUT
 POP B
 INR C ;SEQUENCE TO NEXT CHAR
 DCR B ;DECREASE CHR COUNTER
 JNZ LOOP ;MORE TO DO IF NOT TO ZERO
 RET ;IMMEDIATE CCP RETURN

SYSTEM CALLS FOR OPERATOR CONSOLE INPUT AND OUTPUT

 Intrinsic to the operation of any computer system,
especially of the CP/M gender, is the operator console. The
device provides the human interface to the machine and as such

2025/10/30 15:32 5/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

the BDOS includes a generalized set of operator communication
functions to perform I/O with the console device. The various
options available will each be presented with a brief example.

INPUT FROM CONSOLE KEYBOARD: Function 1.

 This function waits for and reads in a character from the
console device keyboard. The operator typed character is echoed
automatically back to the console display if the character is an
ASCII printable character (020H to 07EH) or it is a carriage
return, line feed, back space, or tab. Note that the BDOS
automatically expands tabs to columns of eight characters. Upon
outputting the character for the echo, a check is made for
console start/stop, CTL-S, and if so the console input routine
does not return to the users program until another arbitrary key
is depressed.

;CONSOLE INPUT EXAMPLE
;
CONIN EQU 001H ;FUNC # 1
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 MVI C,CONIN ;FUNCTION
 CALL BDOS ;GO GET CHARACTER
 STA INCHAR ;SAVE FOR WHATEVER REASON
 RET ;IMMEDIATE CCP RETURN
;
INCHAR:
 DS 1 ;PLACE TO STORE INPUT CHAR
;
 END

OUTPUT TO CONSOLE DISPLAY: Function 2.

 The ASCII character in the (E) register is sent to the
console display device. The output may be any byte value but many
times the hardware driver BIOS routines automatically strip off
the upper bit of the byte. Upon output the printer echo flag
within BDOS is checked (CTL-P) and if set the character is also
sent to the printer peripheral device. Note that the BDOS
automatically expands output tabs to columns of eight characters.
Upon outputting the character a check is made for input of
console start/stop, CTL-S, and if so the console output routine
does not return to the users program until another arbitrary key
is depressed.

;CONSOLE OUTPUT EXAMPLE
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

CONOUT EQU 002H ;FUNC # 2
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LDA OUTCHAR ;GET CHARACTER TO OUTPUT
 MOV E,A
 MVI C,CONOUT ;FUNCTION
 CALL BDOS ;GO SEND CHARACTER
 RET ;IMMEDIATE CCP RETURN
;
OUTCHAR:
 DB 'X' ;PLACE TO GET OUTPUT CHAR
;
 END

DIRECT USER INTERFACE TO CONSOLE: Function 6.

 Some programming applications require that the BDOS not
monitor the input/output character stream as is done with
functions 1 & 2. To allow for these functions the direct I/O
function is supported. The following example shows how it is used
to input values and echo them until an input control-Z character
is typed.

;DIRECT CONSOLE I/O EXAMPLE
;
DIRCIO EQU 006H ;FUNCTION NUMBER
BDOS EQU 0005H ;SYSTEM ENTRY POINT
CTLZ EQU 'Z'-040H ;ASCII CTL-Z CHARACTER
INPUT EQU 0FFH ;DIRECT INPUT FLAG

 ORG 0100H ;CONSOLE INPUT
;
LOOP:
 MVI E,INPUT ;SET FOR INPUT
 MVI C,DIRCIO ;FUNCTION
 CALL BDOS ;GET INPUT OR STATUS
 ORA A ;IF (A)=0 NO CHAR WAS READY
 JZ LOOP ;CONTINUE TO WAIT FOR INPUT
 CPI CTLZ ;IF INPUT WAS CTL Z THEN END
 RZ ;CCP RETURN ON END
 MOV E,A ;CHARACTER TO (E) FOR OUTPUT
 MVI C,DIRCIO ;SAME FUNCTION NUMBER AGAIN
 CALL BDOS ;GO OUTPUT IT
 JMP LOOP ;NEXT CHARACTER INPUT LOOP
;
 END

2025/10/30 15:32 7/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

PRINTING STRINGS OF CHARACTERS TO THE CONSOLE: Function 9.

 Message string sequences of characters to be sent to the
console are quite common in applications programming. Typical
uses may be for user prompt messages, program sign-on messages
etc. The BDOS provides a convenient mechanism to allow the
programmer to output a whole string of characters rather than
having to loop with single character outputs. The string is
intended to be stored in consecutive memory locations and end
with the ASCII '$' character. The (DE) registers are used to
point to the start of the string. The '$' signals the end of the
string to display and is not sent to the console. The output
bytes may be any 8-bit value but many times the hardware driver
BIOS routines automatically strip off the upper bit of the byte.
Upon output of each character the printer echo flag within BDOS
is checked (CTL-P) and if set the character is also sent to the
printer peripheral device. Note that the BDOS automatically
expands output tabs to columns of eight characters. Upon
outputting each character a check is made for input of console
start/stop, CTL-S, and if so the console string output routine
does not return to the users program until another arbitrary key
is depressed.
;CONSOLE STRING PRINT EXAMPLE
;
CONSTR EQU 009H ;FUNC # 9
BDOS EQU 0005H ;SYSTEM ENTRY
CR EQU 0DH ;ASCII CARRIAGE RETURN
LF EQU 0AH ;ASCII LINE FEED

 ORG 0100H ;START
 LXI D,MESSAGE ;POINT AT STRING TO SEND
 MVI C,CONSTR ;FUNCTION
 CALL BDOS ;GO SEND STRING
 RET ;IMMEDIATE CCP RETURN
;
MESSAGE:
 DB CR,LF,'Hello Operator',CR,LF,'$'
;
 END

READING A STRING OF CHARACTERS IN FROM KEYBOARD: Function 10.

 The CP/M console command processor (CCP) assumed to be vary
familiar to most CP/M system operators allows buffered command
input with editing features. It turns out that this operation is
a much needed function for getting in strings of text from the
operator console. Use of this function allows standardization of
the command input functions so that the operator can easily learn
the editing key functions. It also removes the pain of writing
the same function over and over again by the applications
programmer. The read string command inputs the edited text to a

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

buffer pointerd to by the (DE) register pair. The caller
specifies the maximum length desired and the BDOS returns the
actual length of string entered if carriage return is entered
prior to exceeding the maximum input length. The input length is
returned in both the (A) register and as part of the buffer.
Bytes in the string buffer past the end of the entered text are
uninitialized. The example shown below gives an assembly language
view point of the buffer structure and how to program an input
function.

 The editing functions supported are the following control
and/or special characters:

 rub/del removes and echos the last entered char
 ctl-C initiates system reboot if first char
 ctl-E echos a CR & LF to console without
 putting them into buffer
 ctl-H (or back space key) back spaces one char
 removing last entered character
 ctl-J (or line feed key) terminates line input
 ctl-M (or carriage return) terminates input
 ctl-R retypes currently entered characters
 under current line
 ctl-U deletes all of currently entered data
 and restarts buffer input on new line
 ctl-X deletes all of currently entered data
 and restarts buffer input on same line

;CONSOLE INPUT BUFFER EXAMPLE
;
CONBUF EQU 00AH ;STRING INPUT FUNCTION
BDOS EQU 0005H ;SYSTEM ENTRY POINT
LENGTH EQU 32 ;DESIRED MAXIMUM CHARACTERS

 ORG 0100H ;START POINT
 LXI D,STRING ;POINT AT BUFFER AREA
 MVI C,CONBUF ;FUNCTION NUMBER
 CALL BDOS ;GO GET STRING
 RET ;RETURN TO CCP WITHOUT
 ;...DOING ANYTHING WITH DATA
;
;
;CONSOLE INPUT BUFFER LAYOUT
;
STRING:
 DB LENGTH ;MAXIMUM DESIRED INPUT LENGTH
AMOUNT:
 DS 1 ;BYTE WHERE BDOS RETURNS
 ;..ACTUAL BYTE COUNT
STRBF:
 DS LENGTH ;RESERVED STORAGE FOR UP TO

2025/10/30 15:32 9/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 ;"LENGTH" NUMBER OF CHARACTERS
;
 END

DETERMINING IF THERE IS PENDING KEYBOARD INPUT: Function 11.

 Some computer programs are designed to spend large amounts
of time processing inside of the computer or manipulating data
within disk files without stopping to ask the user if he/she
desires to stop the processing sequence. Also it is many times
desirable to have a "terminate" capability for application
programs without waiting for the operator to answer a character
input request. If the normal console input function is used the
user computer is not resumed until a character is already input.
The console input status check function may be used to poll the
user keyboard to determine if a character input is pending. If no
input is ready then the user program is immediately resumed with
an indication of if there was a pending input. If a character is
pending a 0FFH is returned in the (A) register. Otherwise a 000H
value is returned. The following example illustrates the use of
console status to terminate a normally endless loop that prints
the same string over and over.

;CONSOLE STATUS USAGE EXAMPLE
;
CONSTAT EQU 00BH ;FUNC # 11
CONSTR EQU 009H ;PRINT STRING FUNCTION
BDOS EQU 0005H ;SYSTEM ENTRY
CR EQU 0DH ;ASCII CARRIAGE RETURN
LF EQU 0AH ;ASCII LINE FEED

 ORG 0100H ;START
LOOP:
 LXI D,MESSAGE ;POINT AT STRING TO SEND
 MVI C,CONSTR ;FUNCTION
 CALL BDOS ;GO SEND STRING
 MVI C,CONSTAT ;GET ABORT STATUS
 CALL BDOS
 ORA A ;CHECK STATUS
 JZ LOOP ;NO KEY SO CONTINUE LOOP
 RET ;IMMEDIATE CCP RETURN IF ABORT
;
MESSAGE:
 DB CR,LF,'Depress any Key to STOP','$'
;
 END

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

AUXILLIARY PERIPHERAL CHARACTER INPUT AND OUTPUT FUNCTIONS

 The generalized CP/M BDOS provides the capability for three
character by character logical I/O devices to be atteched to the
computer system. This requirement stems from the fact that most
computers are designed to interface to the real world in more
ways than just a console device. The three devices are classified
as:

 a) A lister type device that is generally expected to be a
printer of some sort. This classification is an output only
device.

 b) An input device supporting character input from a source
other than the console. The device is specifcally an input type
unit. CP/M jargon refers to this device as the "READER" for no
particular reason.

 c) A generalized character output only device used as a
specific data destination other than the console or standard list
device. Some computer systems use this device, often times
referred to as the "PUNCH" device as a second printer output.

 The three following examples illustrate the programming
techniques used to talk to each of these three devices.

;LIST DEVICE OUTPUT EXAMPLE
;
LIST EQU 005H ;FUNC # 5
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LDA LSTCHAR ;GET CHARACTER TO OUTPUT
 MOV E,A
 MVI C,LIST ;FUNCTION
 CALL BDOS ;GO SEND CHARACTER
 RET ;IMMEDIATE CCP RETURN
;
LSTCHAR:
 DB 'L' ;PLACE TO GET OUTPUT CHAR
;
 END

;READER DEVICE INPUT EXAMPLE
;
READER EQU 003H ;FUNC # 3
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

2025/10/30 15:32 11/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 MVI C,READER ;FUNCTION
 CALL BDOS ;GO GET CHARACTER
 STA RDRCHR ;SAVE FOR WHATEVER REASON
 RET ;IMMEDIATE CCP RETURN
;
RDRCHR:
 DS 1 ;PLACE TO STORE INPUT CHAR
;
 END

;PUNCH DEVICE OUTPUT EXAMPLE
;
PUNCH EQU 004H ;FUNC # 4
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LDA PNCHCHR ;GET CHARACTER TO OUTPUT
 MOV E,A
 MVI C,PUNCH ;FUNCTION
 CALL BDOS ;GO SEND CHARACTER
 RET ;IMMEDIATE CCP RETURN
;
PNCHCHR:
 DB 'P' ;PLACE TO GET OUTPUT CHAR
;
 END

SYSTEM CONTROL BDOS FUNCTIONS

 This family of system calls supported by the CP/M BDOS are
designed to allow the programmer a degree of flexibility in
manipulating the operation of general CP/M environment. Each
function here will generally be discussed individually due to the
unique nature of each operation.

SYSTEM RESET: Function 0.

 The system reset function is designed to allow restart of
the CP/M system command processor after a user application
completes execution or is aborted. The system reset function is
equivalent to a JMP to address 0000H or a CTL-C which forces a
system WARM Reboot. The reboot operation de-activates all active
drives except drive A: which is re-logged. Operation is extremely
simple as:

RESET EQU 000H ;SYSTEM RESET FUNC

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H
 MVI C,RESET
 JMP BDOS ;CALL ALSO PERMISSABLE
 ;EXCEPT THAT FUNCTION
 ;DOES NOT RETURN TO USER
 ;PROGRAM

GET AND SET IOBYTE: Functions 7 & 8.

 The generalized CP/M operating system environment
communicates via I/O to "logical" type devices. This means that
the console, lister, "reader", and "punch" are just treated as a
generic device classsifications. The CP/M system allows for and
supports, to a degree, the capability for the hardware to contain
multiple physical devices (peripherals and/or real I/O devices)
within each of the generic logical device classifications. The
means to support the assignment of multiple physical devices to a
given classification is done through the IOBYTE, normally stored
at address 00003H of the base page of the CP/M memory. The BIOS
hardware I/O software may thusly be written to easily know which
one of two printers to talk to when the BDOS requires output to
one of two printers. A "default standard" IOBYTE format has been
adopted based upon an 8-bit microprocessor system convention
developed by Intel Corp as follows:

 (lister) (punch) (reader) (console)
 Logical Devices => LST: PUN: RDR: CON:
 IOBYTE bits => 7 6 5 4 3 2 1 0

 Bit pattern
 dec binary
 0 00 TTY: TTY: TTY: TTY:
 1 01 CRT: PTP: PTR: CRT:
 2 10 LPT: UP1: UR1: BAT:
 3 11 UL1: UP2: UR2: UC1:

 The designators in the table specify the "standard types of
physical devices and are defined as follows:

 TTY: A teletype console with keyboard, hard copy display and
 possibly an integral tape reader/punch
 CRT: An interactive cathode ray type terminal with keyboard
 input and display screen
 BAT: A batch processor workstation with a card reader type
 input device and a hard copy display/output device
 UC1: A user defined alternate "console" unit
 LPT: Line printer
 UL1: A user defined list device

2025/10/30 15:32 13/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 PTR: Paper Tape Reader
 UR1: User defined "reader" character input device
 UR2: User defined "reader" character input device
 PTP: Paper Tape Punch
 UP1: User defined "punch" character output device
 UP2: User defined "punch" character output device

 The BDOS support for the I/O device assignment is a standard
mechanism to access the IOBYTE's current value and switch it to
some other value. Suppose a CP/M computer had two printers
connected as LST: and UL1:. If the applications program needs to
switch printing output to another printer, the process could be
handeled as follows:

;GET AND SET IOBYTE EXAMPLE
;
SETIOB EQU 008H ;SET IOBYTE FUNCTION
GETIOB EQU 007H ;GET IOBYTE FUNCTION
BDOS EQU 00005H ;SYSTEM ENTRY POINT
LSTMASK EQU 11$00$00$00B ;IOBYTE MASK FOR LIST
 ;..DEVICE
LPT EQU 10$00$00$00B ;BIT VALUE FOR LPT #1
UL1 EQU 11$00$00$00B ;BIT VALUE FOR LPT #2

 ORG 0100H ;PROGRAM START
 MVI C,GETIOB ;GO GET CURRENT IOBYTE VAL
 CALL BDOS
 ANI (NOT LSTMASK) AND 0FFH ;KEEP ALL OTHER BITS
 ORI UL1 AND LSTMASK ;SET IOBYTE FOR PRINTER #2
 MOV E,A
 MVI C,SETIOB ;FUNCTION TO RESET THE IOBYTE
 CALL BDOS
 RET ;IMMEDIATE CCP RETURN
;
 END

GET CP/M VERSION NUMBER: Function 12.

 Sometimes it is necessary for an applications program to
"know" what version of CP/M the program is running under. Version
2.0 and above support a feature to tell the application program
what the version number is. One reason is to permit version
dependant functions such as random record file I/O to be used if
it is supported by the version of CP/M being used. The system
call to get the version number returns a two byte value split
into two parts as follows:

 if (H)=0 then this is a CP/M System
 (H)=1 then this is an MP/M System
 (L)=version number in hex

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 if (L)=00 then older than CP/M 2.0
 (L)=20 then version CP/M 2.0
 (L)=21 then version CP/M 2.1
 (L)=22 then version CP/M 2.2

 A program to read the CP/M version number is as follows:

;VERSION NUMBER EXAMPLE
;
GETVERS EQU 00CH ;FUNCTION 12
BDOS EQU 00005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROGRAM START
 MVI C,GETVERS ;FETCH VERSION NUMBER
 CALL BDOS
 MOV A,L ;SAVE CP/M VERSION NUMBER
 STA CURVERS
 RET ;BACK TO CCP
;
CURVERS:
 DS 1 ;STORE THE VERSION NUM HERE
 END

RESETTING THE CP/M DISK SYSTEM: Function 13.

 The CP/M operating system contains features to control
access to files upon the disk drives. A directory checksum
scheme, beyond the scope of this presentation, permits the
operating system to determine when a disk has been changed in a
drive thus preventing the a wrong disk from being written upon.
This is neat except that in many cases an appliciations program
may require disk changes as functions are changed or new files
are required. This system control function permits the
application to force read/write status to be set for all drives,
drive A: to be logged, and reset of the default disk record
buffer address to its default value of 080H within the CP/M base
page. The following program sequence shows how to reset the disk
system.

;RESET DISK SYSTEM EXAMPLE
;
RESET EQU 0DH ;FUNCTION 13
BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROGRAM START
 MVI C,RESET ;SET UP FUNCTION
 CALL BDOS ;GO RESET THE DRIVES
 RET ;BACK TO THE CCP
;
 END

2025/10/30 15:32 15/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

GET AND SET OF CURRENT USER CODE: Function 32.

 CP/M Version 2.2 permits the file system on a given drive to
be partitioned into up to 15 individual directory areas so that
usage areas can be setup. For instance, the system operator could
put all assembly language development programs in one user area
while having disk utility programs in another. The BDOS allows
the application programmer to determine the currently logged user
number and to modify it if necessary. The following example sets
the current user number up by one. If the highest user number is
currently logged then the user 0 area is selected.

;GET/SET USER EXAMPLE
;
GSUSR EQU 020H ;FUNCTION 20
GET EQU 0FFH ;GET FLAG
BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;START UP POINT
 MVI E,SET ;MAKE THIS A FETCH NUM RQST
 MVI C,GSUSR
 CALL BDOS ;GET THE CURRENT USER #
 INR A ;BUMP RETURNED USER UP 1
 ANI 00FH ;MASK TO MOD(15)
 MOV E,A ;MOVE FOR SET TO NEW USER
 MVI C,GSUSR
 CALL BDOS
 RET ;CCP GETS US BACK
;
 END

SYSTEM FUNCTIONS THAT CONTROL THE DISKS

 The data storage files for applications programs are stored
upon the disk drives attached to the CP/M computer. The BDOS
supports a number of functions that allow the state and selection
status of the drives to be controlled.

SELECT DISK: Function 14.

 The simplest control function is to select the current disk
with which to refer to as the logged or default disk. The
function is equivalent to the console CCP command:

 A>B:<cr>
 B>

Which changed the currently logged disk to drive B:. A BDOS
program to affect the same thing is given in the example program
of the next section below. Drive numbers correspond to the

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

console displayed drive designators as follows:

 A: = Drive # 0
 B: = Drive # 1

 P: = Drive # 15

Once a drive has been selected it has its directory "activated"
and is maintained in a logged in status until the next warm boot,
cold boot, or disk reset BDOS function.

DETERMINE LOGGED DISK: Function 25.

 An applications program can determine which disk drive is
the currently logged or default drive through use of this
function. The BDOS will return in the (A) register the number of
the currently selected drive according to the table given above.

 The program segment below shows a sequence of BDOS interface
code that first determines if drive B: is selected, and if not
then does a BDOS call to change it.

;SELECT AND POLL LOGGED DISK DRIVE EXAMPLE
;
SELECT EQU 0EH ;FUNCTION 14
ASKDRV EQU 19H ;FUNCTION 25
BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROG START
 MVI C,ASKDRV ;FIND OUT IF B: IS SELECTED
 CALL BDOS
 CPI 'B'-'A'
 RZ ;DONT SELECT IF ALREADY
 ;..LOGGED
 MVI E,'B'-'A' ;SET TO LOG AND SELECT B:
 MVI C,SELECT
 CALL BDOS
 RET ;FINISHED WITH ANOTHER PROG
;
 END

DRIVE STATUS SET AND RESET: Functions 28 & 37.

 Drive status may be individually controlled by these
functions. Operation 28 allows a the currently selected drive to
be write protected (set to read/only). The process is simply:

2025/10/30 15:32 17/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

WPDSK EQU 01CH
BDOS EQU 0005H
 MVI C,WPDSK ;WRITE PROTECT DISK
 CALL BDOS

The write protect status of a specific disk may be removed by
function 37 which deactivates the directories of each drive
specified at call time. Each drive by default then becomes
read/write again but requires reactivation through reselection.
The reset drive vector is a 16-bit value passed to the BDOS with
a "1" bit in each bit position for a drive that equires
resetting. The most significant bit of the 16 bit quanity
corresponds to drive P: and the LSB to drive A:. The code
sequence to reset drive B: would be:

RESDSK EQU 025H
BDOS EQU 0005H
 MVI C,RESDSK ;FUNCTION CODE
 LXI D,0000$0000$0000$0010B ;DRIVE B: BIT SET
 CALL BDOS

GET DRIVE LOGIN AND READ?ONLY VECTORS: Function 24 & 29.

 The BDOS keeps track of all drives that have been selected
since the last boot or disk reset functions. These drives are
considered in a online status in that the system knows
immediately what the space allocation map of the drive is and
whether the drive is in read/only status or not. Function 24
allows the application program to determine what subset of the
current drive complement are in this online logged status. The
vector returned in the (HL) register pair is a bit map like above
where a "1" bit means the drive is active. The most significant
bit of the 16-bit number corresponds to drive P:. The code below
fetches the vector and saves it in a local data area.

;LOGIN VECTOR EXAMPLE
;
LOGIN EQU 018H ;FUNCTION 24
BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H
 MVI C,LOGIN ;FUNCTION
 CALL BDOS
 SHLD LOCLOG ;SAVE VECTOR HERE
 RET ;TO CCP
;
LOCLOG:
 DS 2
 END

 In a similar manner the BDOS allows determination of which

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

drives are in the write protected read/only status. A "1" bit in
the returned vector indicates read/only status for a specific
drive. The code here shows how to fetch it.

;READ/ONLY VECTOR EXAMPLE
;
ROVEC EQU 01DH ;FUNCTION 29
BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H
 MVI C,ROVEC ;FUNCTION
 CALL BDOS
 SHLD LOCROV ;SAVE VECTOR HERE
 RET ;TO CCP
;
LOCROV:
 DS 2
 END

GET ALLOCATION VECTOR AND DISK PARM POINTER: Function 27 & 31.

 Two more miscellaneous disk drive interface functions are
provided that permit several special types of functions to be
performed. The first, function 27 returns an address in the (HL)
registers that points to a bit string in memory that corresponds
to the data block allocation map of the currently selected drive.
The map contains one bits in each position where a block
allocated, starting with the MSB of the forst byte in the string.
The length of the bit string depends upon the total capacity of
the drive in allocatable blocks. Function 31 permits an
application to determine the characteristics of the currently
selected drive. The BDOS returns an address in the (HL) registers
that points to a table of 33 bytes that describe the current
drive. Data in the table includes such data as number of
possible directory entries on the disk, number of allocatable
blocks on the disk, and, indirectly, the size of each disk block.
The program below is a comprehensive example of how these
functions can be used to determine the remaining space left on a
the selected drive. The program stores the available space of the
drive specified in the first byte of the default FCB into memory
location "KPDISK" and then exits to the CCP. The reader can adapt
the code as desired.

;
;CP/M BDOS INTERFACE EQUATES
;
BASE EQU 0000H ;BASE OF CP/M SYSTEM
LOGDRIV EQU 0004H+BASE ;LOCATION OF CURRENTLY LOGGED DRIVE
BDOS EQU 0005H+BASE ;THE BDOS I/O VECTOR
SLCTDSK EQU 14 ;SELECT DISK DRIVE
GALVEC EQU 27 ;GET ADDRESS ALLOCATION VECTOR

2025/10/30 15:32 19/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

GDSKP EQU 31 ;GET ADDRESS OF DISK PARAMETER TABLE
;
;
 ORG 0100H
;
;
;PROGRAM TO FETCH REMAINING DISK SPACE IN KBYTES
;
SPCGET:
 LDA LOGDRIV ;GET CURRENTLY LOGGED DRIVE AND SAVE
 ANI 0FH ;STRIP OUT USER NUMBER
 STA SAVDRIV ;SAVE CODE
;
 LDA FCB ;CHECK IF SAME AS SELECT
 DCR A ;ADJUST FCB DRIVE TO MATCH SELECT DRIVE
 MOV E,A ;..SELECT IN BDOS
 MVI C,SLCTDSK ;SELECT DISK FUNCTION
 CALL BDOS
;
 MVI C,GDSKP ;FIND ADDRESS OF DISK PARAMETER HEADER
 CALL BDOS
 LXI B,0002H ;INDEX TO BLOCK SHIFT FACTOR
 DAD B
 MOV B,M ;(B) = BYTE BLOCK SHIFT FACTOR
 INX H
 INX H
 INX H
 MOV E,M ;(DE) = WORD DISK BLOCK COUNT
 INX H
 MOV D,M
 INX D
;
 MOV A,B ;ADJUST SHIFT FOR KBYTE SIZE
 SUI 03H
 LXI H,0001H ;CALCULATE BLOCK SIZE
SPCCAL:
 ORA A ;KNOW KBYTES PER BLOCK?
 JZ SPCKNW
 DAD H ;DOUBLE # SECTORS PER TRACK
 DCR A ;DECREMENT BLOCK SHIFT
 JMP SPCCAL
;
SPCKNW:
 MOV C,L ;(BC)=KBYTES PER BLOCK
 MOV B,H
 LXI H,0 ;INITIALIZE KPDISK
 SHLD KPDISK
 PUSH B ;SAVE KBYTES/BLOCK
 PUSH D ;SAVE NUMBER OF BLOCKS
 MVI C,GALVEC ;NOW POINT TO THE ALLOCATION VECTOR
 CALL BDOS ;(HL)=ALLOCATION VECTOR ADDRESS

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 POP D
 POP B
;
 SHLD ALLSAVE ;SAVE ALLOCATION POINTER
 MVI H,1 ;SET MINIMUM START BIT COUNT
;
UALLOC:
 DCR H ;DEC BIT COUNT
 JNZ STACT ;STILL ACTIVE BYTE
;
 LHLD ALLSAVE ;GET POINTER
 MOV A,M
 INX H
 SHLD ALLSAVE ;SAVE NEW POINTER
 MVI H,08H ;SET BIT COUNTER TO MAX
;
STACT:
 RLC ;GET ALLOCATION BIT TO CARRY
 JC ALLOC ;DONT COUNT ALLOCATED BLOCKS
 PUSH H
 LHLD KPDISK ;GET KBYTES LEFT COUNT
 DAD B ;ADD IN ONE MORE BLOCK COUNT
 SHLD KPDISK
 POP H
;
ALLOC:
 DCX D ;DEC TOTAL BLOCK COUNT
 MOV L,A
 MOV A,D
 ORA E ;ALL BLOCKS SCANNED YET
 MOV A,L ;RESTORE ALLOC BIT PATTERN
 JNZ UALLOC ;MORE TO COUNT
;
 LDA SAVDRIV ;RETURN DISK SELECT TO PREVIOUS
 MOV E,A ;..SELECT IN BDOS
 MVI C,SLCTDSK ;SELECT DISK FUNCTION
 CALL BDOS
 RET ;BACK TO THE CCP
;
;
;PROGRAM DATA STORAGE ALLOCATIONS
;
BLKSIZ:
 DS 2 ;STORAGE FOR ALLOCATION BLOCK SIZE
ALLSAVE:
 DS 2 ;STORAGE FOR ALLOCATION PNT SAVE
SAVDRIV:
 DS 1 ;SAVE CURRENT DISK SELECT DURING RELOG
KPDISK:
 DS 2 ;STORAGE FOR KBYTES PER DRIVE LEFT
;

2025/10/30 15:32 21/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 END

 The next part in this series will present the the CP/M file
system as viewed from the BDOS interface aspect. The FILE CONTROL
BLOCK (FCB) will be presented. In addition the procedures to
prepare files for I/O and then the actual I/O procedures will be
presented. The series will round out to a conclusion with a
comprehensive programming example that presents a sequential file
I/O set of subroutines that permit character by character I/O
with a file to be done.

 SLIDING INTO BDOS (Part II)

 WITH FILES MADE EASY

 by:

 Michael J. Karas
 2468 Hansen Court
 Simi Valley, CA 93065
 (805) 527-7922

 Since I know that all devoted Life Lines readers have
anxiously been waiting for this "second in a series" tutorial on
using files with the CP/M BDOS, I will not go on a long time
telling you why this thing about CP/M BDOS file interface is
so important. Nor will I try to justify why the turorial should
be valuable. You wouldn't be reading here at this time if you had
any inclination to find my work disinteresting. If you are new on
the scene and have some questions about what this is all about I
would like to direct your attention to the November 1982 issue of
Life Lines where the first part of this tutorial series was
presented. There the purpose of the BDOS and the general
interface concepts were presented. The article went on to include
a description of the physical device system calls and other
miscellaneous system control type functions.

THIS TIME IT'S FILES

 This month the tutorial continues with a description of the
sequential file I/O system supported within the BDOS. The con-
cepts of CP/M file storage are to be described along with
appropiate CP/M directory structure definition as it relates to
the access of the files stored upon a CP/M disk. The FILE CONTROL
BLOCK (FCB) will be described in terms of its functions as
related the a file to be accessed upon a disk. I have also
included a comprehensive programming example that allows a

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

sequential file to be accessed character by character.

HOW FILES ARE STORED UPON THE DISK

 The CP/M operating system manages the available space on a
disk by dividing the total available space up into a number of
relatively small data block storage areas called "GROUPS". A
group size is usually described as the minimum allocatable space
that a file can occupy. What this means is that the operating
system, in its disk space management scheme, lumps sets of the
normal 128 byte logical records of a file together into these
things called groups. The number of groups that may be contained
on a disk depends upon the total file storage space of the disk
in logical 128 byte records divided by the number of 128 byte
logical records lumped together into a group. (A note to the less
casual reader is that the number of groups on a disk is limited
by design to 65K groups. Secondly a group is always an integral
power of two number of 128 byte logical records with a minimum
size of 8 records (1K byte). Group size is necessarily limited to
16K bytes due to the extent system described below).

 As a file is stored upon a CP/M disk it consumes disk space
in 128 byte logical records. Each time a group becomes filled
with records the operating system allocates another group to the
file. Hence the term "minimum allocatable size". If, as the file
grows in size, the last allocated group assigned to a file is not
completely filled the remaining space in the group is "burned" in
that it is not usable by other files. The CP/M system keeps track
of the group assignments made to the various files on a disk,
the files names, and the total number of 128 byte logical records
in each file through a stored directory. The first portion of the
disk is reserved for the file directory. A fixed number of
directory entries, determined by the system's BIOS design, are
available, usually a number like 64, 128, or 256, depending upon
the size of the disk.

 Each file has a unique directory entry "set" that describes
the file location upon the disk. A "set" of directory entries is
specified because each entry is designed to "point to" or store
the group allocation numbers for that file. Each directory entry
has a number slots where group numbers can be stored. The system
design allows each directory entry to specify the storage for 16K
bytes of storage space. For files larger than 16K bytes a
seperate directory entry is used for each 16k bytes (or remainder
portion thereof). Each such piece of a file is referred to as an
"EXTENT" of the file. The directory entry "set" for a file
contains a byte in each extent directory entry that stores the
extent number of the file. Extent numbers start with 0 and may
increase to a theoretical limit of 255 or the size of the disk in
16K byte pieces, whichever is smaller.

2025/10/30 15:32 23/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 The chart below describes the functions of all bytes in a
typical directory entry. Each entry is 32 bytes long and they are
packed four to a logical sector with the number of logical
sectors filled up with directory entries limited to the
predetermined number of directory entries divided by four.

 Figure 1. DISK DIRECTORY ENTRY DEFINITION

 byte 00 byte 01 byte 02 byte 03 byte 04 byte 05 byte 06 byte 07
+-------+-------+-------+-------+-------+-------+-------+-------+
|Active | |
|
Entry	Eight Character ASCII File Name Bytes 01 to 08
& User	
Flag	
+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 08 byte 09 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15
+-------+-------+-------+-------+-------+-------+-------+-------+
|Last | | | |Record |
|
File	Three character ASCII	Extent	Two Bytes	Count
Name	File Name extension	Number	Reserved	of this
Char				Extent
+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 16 byte 17 byte 18 byte 19 byte 20 byte 21 byte 22 byte 23
+-------+-------+-------+-------+-------+-------+-------+-------+
| |
| Group Number storage for groups attached to this file |
| One byte used per group number if disk contains less |
| 255 groups. Two bytes if greater than 256. |
+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 24 byte 25 byte 26 byte 27 byte 28 byte 29 byte 30 byte 31
+-------+-------+-------+-------+-------+-------+-------+-------+
| Additional Group Number storage. |
| Group Number storage for groups attached to this file |
| One byte used per group number if disk contains less |
| 255 groups. Two bytes if greater than 256. |
+-------+-------+-------+-------+-------+-------+-------+-------+

 The bytes of the disk directory entry are each described in
the following paragraphs. The first byte stored in an entry is
set to indicate if this slot in the predetermined directory area
is empty or if it describes an active file extent. A value of
0E5H indicates an empty slot. This value was chosen presumably
due to that a freshly formatted diskette contains all 0E5H bytes
in the empty sectors, thus making such disk appear to have no
files contained thereon. If the byte value is non 0E5H, then the

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

slot contains a valid file extent descriptor. The CP/M user
number area to which an active file is associated is stored in
the first directory entry byte. User number values range from 0
to 15.

 The next eight bytes contain the primary name of the file
in ASCII characters. If the name is shorter than 8 characters
then the name is padded to the right with spaces. Following the
name field is a three byte file name extension field in ASCII
characters. The extension field, if shorter than 3 characters is
padded to the right with spaces. For CP/M version 2.2, the upper
bits (bit 7) of the extent name bytes are used to describe
certain attributes about the file. If the upper bit of the first
extent name character is set, then the file is described as a
read-only file. The upper bit of the second extent name
character, if set, indicates that the file name should not be
displayed in directory listings.

 Each directory entry, as a file descriptor extent, has the
next byte set to a number that specifies which 16K byte chunk of
the file that this entry describes. Two bytes after the extent
byte are not used within the directory and are normally set to
zero by default. The number of records stored in the extent,
described by this directory entry, is recorded in the byte 15
position. The maximum value for the record count is 128 (080H)
which if equal to (128 * 128) or 16K bytes, the maximum size of
an extent.

 Byte positions 16 to 31 contain the group numbers upon the
disk that contain the data belonging to the file named in the
directory entry. The number of bytes within the total 16
available that are used for group number storage is dependant
upon the amount of file data described by this extent and by the
group size of the disk. The group numbers are single byte
numbers, up to 16 total, if the number of groups upon the disk is
less than or equal to 255. If the number of groups upon the disk
is more than 255 then byte positions 16 to 31 contain two byte
group numbers, stored in low byte/high byte order. The group
numbers contained within a directory entry do not have to be in
increasing sequential order nor do they have to be consecutive.

 The figure below shows two logical records of the directory
from a single sided double density disk with 2K byte groups. The
total number of groups available is 243 so the group numbers are
single byte numbers. Note that only one half of the 16 byte space
for group numbers is used due to the fact that 8 entries for 2K
byte groups is all that is needed to describe the storage for one
full 16K byte extent.

 Figure 2. EXAMPLE HEX/ASCII DIRECTORY RECORD DISPLAY

2025/10/30 15:32 25/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

00 00414449 52202020 20434F4D 0000000B .ADIR COM....
10 07000000 00000000 00000000 00000000
20 004D4552 47505249 4E4F5652 0000003C .MERGPRINOVR...<
30 16171819 00000000 00000000 00000000
40 00434F50 59202020 20434F4D 0000000E .COPY COM....
50 0C000000 00000000 00000000 00000000
60 00435243 4B202020 20434F4D 0000000A .CRCK COM....
70 0D000000 00000000 00000000 00000000

00 E5555345 52202020 204C4F47 00000030 eUSER LOG...0
10 04050600 00000000 00000000 00000000
20 00444454 20202020 20434F4D 00000026 .DDT COM...&
30 0F101100 00000000 00000000 00000000
40 0044552D 56373520 20434F4D 0000002E .DU-V75 COM....
50 12131400 00000000 00000000 00000000
60 00464F52 4D415420 20434F4D 0000000C .FORMAT COM....
70 15000000 00000000 00000000 00000000

 The above examlpes all show files that are less than 16K
bytes each. Note also the display showing the erased "USER.LOG"
file.

HOW FILES ARE ACCESSED

 The files upon a disk are accessed through a user
description block called a File Control Block (FCB for short).
The file control block, used by virtually all file access BDOS
system calls, has the structure as shown in Figure 3. This chart
is taken from a Digital Research CP/M manual and is included here
for quick educational reference.

 Note that the structure of a file control block is much the
same as that of a directory entry with a few minor changes. The
changes and/or differences are as follows, otherwise the byte
descriptions are the same as for the disk directory entry.

 The first byte of an FCB allows the programmer to specify
which drive should be used for the file access. Drive A: to P:
are specified as 1 to 16 respectively while a value of zero
indicates that the currently logged default drive should be used
for the access.

 An FCB contains four additional bytes that are used as
pointers for file access position. The "cr", current record
number, indicates the sequential record number of this extent
that will be accessed upon the next file read or file write
system call. The user normally sets the "cr" byte to zero to
begin file access at the first logical record of the file. Each
time a read or write is performed the current record number is

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

incremented. When the "cr" byte attains a value of 080H during a
sequential file operation the BDOS automatically realizes that
the current extent of the file has been fully accessed and
performs the necessary disk directory accesses to setup the FCB
to allow file access to the next extent. For reading this simply
means that the next extent descriptor directory entry from the
disk, for this file, is read into memory (ie. the group
allocation numbers from the disk are copied into the d0-dn bytes
of the FCB, the extent number becomes one greater, the record
count from the disk for the new extent is copied into the "rc"
byte and the cr byte is zeroed). During a writing operation the
"cr" byte attaining a value of 080H indicates that the current
extent of the file is full and so the BDOS automatically finds
the appropiate directory entry spot on the disk to write in the
newly assigned group allocation bytes, record count value and
extent number. The BDOS will then create another directory entry
on the disk for the new extent of the file. In this case the d0-
dn bytes of the FCB are zeroed to indicate that storage has not
yet been allocated for this extent.
 Figure 3. FILE CONTROL BLOCK DESCRIPTION

 --
 |dr|f1|f2|/ /|f8|t1|t2|t3|ex|s1|s2|rc|d0|/ /|dn|cr|r0|r1|r2|
 --
 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 where:

 dr drive code (0 - 16)
 0 => use default drive for file access
 1 => select drive A: for file access
 2 => select drive B: for file access
 ...
 16=> select drive P: for file access

 f1...f8 contain the files name in ASCII upper case
 with high bits equal to zero.

 t1,t2,t3 contain the file type in ASCII upper case
 with high bits normally equal zero. tn' denotes
 the high bit of these bit positions.
 t1' = 1 => Read/Only file
 t2' = 1 => SYS file, no DIR list

 ex contains the current extent number,
 normally set to 00 by the user, but is
 in the range 0 - 31 during file I/O.

 s1 reserved for internal system use

 s2 reserved for internal system use, set to

2025/10/30 15:32 27/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 zero on call to OPEN, MAKE, SEARCH system
 calls.

 rc record count for extent "ex," takes on values
 0 to 128.

 d0...dn filled-in by BDOS to indicate file group numbers
 for this extent.

 cr current record to read or write in a sequential
 file operation. Normally set to zero by the user
 upon initial access to a file.

 r0,r1,r2 optional random record number in the range of 0 to
 65535, with overflow to r2. r0/r1 are a 16 bit value
 in low/high byte order.
 The last three bytes of the FCB, r0,r1, & r2 are used for
random record file I/O and will be covered in the third and final
part of this turorial. For simpler sequential I/O the FCB in fact
does not even need to be setup for the 36 bytes of storage. 33
bytes suffice for all sequential file I/O FCB operations.

FILE ACCESS SETUP SYSTEM FUNCTIONS

 The procedure for the programmer to use in accessing a file
generally starts in one of two ways. The first senario starts
with, "Lets see if our file exists on the disk?" There are two
BDOS system calls related to the functions of searching the disk
directory for a file name match against the FCB specified by the
user. These operations allow for the programmer to find out if a
specific file name already exists upon the disk. In addition it
provides a mechanism to scan a directory to determine all file
names that exist in the directory. The second situation comes
into being if the programmer is already aware of the file status
with respect to "presence" on the disk or as the logical sequence
of events following the first senario. These latter functions are
used to work with specific files for opening, closing, creating,
renaming and deleting.

SEARCH FIRST AND SEARCH NEXT: Functions 17 and 18.

 The search functions scan the directory for match of a file
name that compares with the user specified FCB pointed to by the
(DE) register pair. The match is made on the basis of comparing
the f1-f8, t1-t3, and ex bytes of the FCB to the corresponding
bytes of the disk directory entries. Any FCB position that
contains an ASCII question mark "?" (03FH) is specified as a
"match any character" from the disk directory. The function calls
return a value of 0FFH in the (A) register if no more matched

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

directory entries can be found. The search functions cause the
currently valid disk buffer address and the following 128 bytes
to be filled with a copy of the directory record containing the
matched entry, if one is found. The (A) register is returned with
a 0 to 3 value to indicate which one of the four possible 32 byte
chuncks of the directory record contain the matched entry.

 Search first means to find the first occurrance of a matched
entry to the FCB. The search next function scans the directory
from the current search position instead of from the beginning.
Note that it is not normally valid to perform the search next
functon without first performing the search first function. Also
it is not valid to perform other directory or file operations
between the search first and search next functions.

 The program example below shows a technique for reading all
directory entries from the disk drive specified by the first FCB
byte into a memory resident list. The list starts at the LIST
label with the total matched file count stored in the FILECNT
variable. The LISTPOS label stores the next available list load
point during the directory scan operation. The search FCB uses
the CP/M default FCB location at address 05CH and specifies a
total wild card (*.*) match. The "ex" byte is zeroed before the
search first call so that only the zero extents of the files are
returned. The file names are stored in the list in character
strings of 16 bytes each with a preceeding drive designator byte
and padded to the right with 4 zero bytes. Please note that this
program is a segment only and will not directly assemble and run
as a CP/M .COM file without a little added lead in and error exit
coding.

 Listing 1. A DIRECTORY SCANNING PROGRAM

BUFR EQU 80H+BASE ;DEFAULT CP/M BUFFER
BDOS EQU 0005H ;ENTRY POINT FOR BDOS OPERATIONS
;
SRCHF EQU 17 ;SEARCH DIR FOR FIRST OCCUR.
SRCHN EQU 18 ;SEARCH DIR FOR NEXT OCCUR.
STDMA EQU 26 ;SET DMA ADDRESS
;
FCB EQU 5CH+BASE ;DEFAULT FILE CONTROL BLOCK
FCBEXT EQU FCB+12 ;EXTENT BYTE IN FCB
FCBRNO EQU FCB+32 ;RECORD NUMBER IN FCB
;
;
;SETUP SIZE OF ELEMENTS IN THE FILE NAME LIST
;
ITEMSZ EQU 16 ;EACH LIST ITEM IS 16 BYTES
;
;
;SETUP WILD CARD FILE IMAGE LIKE *.*

2025/10/30 15:32 29/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

;
 LXI H,FCB+1 ;PLACE TO PUT WILD CARD IMAGE
 MVI B,11 ;SIZE TO SET
ALFN:
 MVI M,'?' ;PUT IN A JOKER CHAR
 INX H ;BUMP FILL POINTER
 DCR B ;DCR BYTE COUNTER
 JNZ ALFN
;
;
;ZERO INITIAL TOTAL FILE COUNT
;
 LXI H,0000H
 SHLD FILECNT
;
;
;HERE IF NAME PROPERLY POSITIONED IN THE DEFAULT FCB AREA FOR LIST BUILD
;
NAMEPRES:
 MVI C,STDMA ;INITIALIZE DMA ADDRESS TO DEFAULT BUFFER
 LXI D,BUFR
 CALL BDOS
;
 XRA A ;CLEAR APPROPIATE FIELDS OF SEARCH FCB
 STA FCBEXT ;EXTENT BYTE
 STA FCBRNO ;AND RECORD NUMBER
;
 LXI D,FCB ;USE DEFAULT FCB FOR SEARCH
 MVI C,SRCHF ;SEARCH FOR FIRST OCCURRANCE
 CALL BDOS
 CPI 0FFH ;SEE IF FOUND
 JNZ LOADLIST ;IF SOME FOUND THEN GO BUILD LIST
;
;
;PUT INSTRUCTIONS HERE TO HANDLE A SITUATION WHERE NO FILES
;MATCHING THE FCB WILD CARD IMAGE ARE FOUND.
;
 JMP ERROR$EXIT ;TO USER SUPPLIED ROUTINE
;
;
;BUILD UP LIST WITH ALL FOUND ENTRIES
;
LOADLIST:
 LXI H,LIST ;INITIALIZE LIST POINTER PARAMETERS
 SHLD LISTPOS ;START = CURRENT POS OF LIST
;
;
;PUT CURRENTLY FOUND NAME TO LIST
;(A) = OFFSET IN DEFAULT BUFFER OF NAME
;
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

NM2LST:
 ANI 3 ;ZERO BASED TWO BIT INDEX
 ADD A ;TIMES 32 TO MAKE POSITION INDEX
 ADD A
 ADD A
 ADD A
 ADD A
 MOV C,A ;PUT IN BC
 XRA B ;CLEAR HIGH ORDER
 LXI H,BUFR ;TO NAME POSITION IN DEFAULT BUFFER
 DAD B ;(HL) = CURRENT FOUND NAME POINTER
 LDA FCB ;PUT DISK DRIVE NUMBER INTO NAME PLACE
 MOV M,A ;INTO BUFFER
 XCHG
 LHLD LISTPOS ;POINTER TO CURRENT LOAD POINT IN LIST
 XCHG
 MVI B,12 ;MOVE DRIVE DESIGNATOR AND NAME TO LIST
MOVLP:
 MOV A,M ;GET NAME BYTE FROM DEFAULT BUFFER
 STAX D ;PLACE INTO LIST
 INX H ;BUMP POINTERS
 INX D
 DCR B ;CHECK MOVE BYTE COUNT
 JNZ MOVLP
 XCHG ;(DE) WAS LEFT WITH LEXT LOAD POINT ADDRESS
;
 MVI B,ITEMSZ-12 ;REMAINING LIST ITEM SPACES TO ZERO OUT
FILZRO:
 MVI M,00H ;PUT IN A ZERO BYTE
 INX H
 DCR B ;ALL REST FILLED YET
 JNZ FILZRO
;
 SHLD LISTPOS ;KEEP NEXT LOAD POINT IN SAFE PLACE
 LHLD FILECNT ;INCREASE FILE COUNT FOR EACH FILE
 INX H
 SHLD FILECNT
;
;
;SEARCH FOR NEXT OCCURANCE OF SPECIFIED FILE NAME
;
 MVI C,SRCHN ;SEARCH NEXT FUNCTION CODE
 LXI D,FCB ;FILE NAME SPECIFICATION FIELD
 CALL BDOS
 CPI 0FFH ;SEE IF ALL THROUGH DIRECTORY YET
 JNZ NM2LST ;IF NOT GO PUT NAME INTO LIST
;
;
;PROGRAM EXECUTION TO HERE IF THE LIST CONTAINS SOME FILE NAMES
;FROM THE DISKETTE
;

2025/10/30 15:32 31/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

;USER DOES HIS OWN THING FROM HERE
;
;
;DIRECTORY NAME LIST FOR STORAGE OF INPUT NAMES
;
FILECNT:
 DS 2 ;COUNTER FOR NUMBER OF FILES

LISTPOS:
 DS 2 ;STORAGE FOR CURRENT LIST
 ;LOAD POINTER
;
LIST:
 DS 1 ;START POINT FOR FILE NAME LIST
;
;+++...END OF LISTING 1.

OPEN FILE: Function 15.

 An existing file on a disk may not be read until the user
FCB contains the information about where the file is stored upon
the diskette. Function 15 provides a means where the user fills
in the file name and then calls the operating system to get the
d1-dn bytes of the FCB filled in. Once the file is OPEN then it
may be read because subsequent calls to the BDOS to READ will
"know where" the file is located. The OPEN function returns a
value of 0FFH if the file cannot be found, otherwise the (A)
register contains a value of 0 to 3 to indicate that the file was
successfully opened. To open a file the programming procedure is
simply:

;
;OPEN FILE EXAMPLE
;
OPEN EQU 15 ;OPEN FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,FCB ;POINT AT FILE CONTROL BLOCK
 MVI C,OPEN ;FUNCTION
 CALL BDOS
 CPI 0FFH ;CHECK IF NOT FOUND
 JZ ERROR
 RET ;IF OPEN GO TO CCP
;
ERROR:
 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

ERRMS:
 DB 'FILE NOT FOUND','$'
;
;
;FILE ACCESS FILE CONTROL BLOCK
;
FCB:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
 DB 0 ;CURRENT RECORD BYTE
;
 END

CLOSE FILE: Function 16.

 Whenever a file is accessed for writing new space is
allocated for that file on the disk. This implies that the user
FCB contains disk group numbers that are not stored upon the
diskette in the directory entry for the file. Function 16
provides a means where the user completes the file writing
operation and then calls the operating system to set the
directory entry group allocation bytes, the rc byte and the
extent byte from the corresponding bytes of the FCB. A file that
has been opened for reading only need not be closed because there
is no change in the stored disk directory information. The CLOSE
function returns a value of 0FFH if the file cannot be found,
otherwise the (A) register contains a value of 0 to 3 to indicate
that the file was successfully closed. To close a file the
programming procedure is simply:

;
;CLOSE FILE EXAMPLE
;
CLOSE EQU 16 ;CLOSE FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,FCB ;POINT AT FILE CONTROL BLOCK
 MVI C,CLOSE ;FUNCTION
 CALL BDOS
 CPI 0FFH ;CHECK IF NOT FOUND
 JZ ERROR
 RET ;IF CLOSED GO TO CCP
;
ERROR:
 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET
;

2025/10/30 15:32 33/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

ERRMS:
 DB 'FILE NOT FOUND','$'
;
;
;FILE ACCESS FILE CONTROL BLOCK
;
FCB:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
 DB 0 ;CURRENT RECORD BYTE
;
 END

DELETE FILE: Function 19.

 Often time the programmer will create and write files which
will subsequently not be needed. The file or files may be deleted
through use of function 19. The user sets an FCB to the
appropiate file name in the f1-f8, and t1-t3 bytes. The BDOS
function then removes the specified file from the directory of
the appropiate disk. The user specified file name in the FCB may
contain ASCII question marks in which case the delete function
may delete multiple files if the file name matches more than one
file on the disk with the name. The "?" matches any character at
the position of its occurrance in the name. The DELETE function
returns a value of 0FFH if the file(s) cannot be found, otherwise
the (A) register contains a value of 0 to 3 to indicate that the
file was successfully deleted. To delete a file the programming
procedure is simply:

;
;DELETE FILE EXAMPLE
;
DELETE EQU 19 ;CLOSE FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,FCB ;POINT AT FILE CONTROL BLOCK
 MVI C,DELETE ;FUNCTION
 CALL BDOS
 CPI 0FFH ;CHECK IF NOT FOUND
 JZ ERROR
 RET ;IF CLOSED GO TO CCP
;
ERROR:
 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

;
ERRMS:
 DB 'FILE NOT FOUND','$'
;
;
;FILE ACCESS FILE CONTROL BLOCK
;
FCB:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
 DB 0 ;CURRENT RECORD BYTE
;
 END

CREATE FILE: Function 22.

 Whenever a new file is desired it must first be created so
that there is a spot in the directory to later save the file
allocation information (see close function above). The BDOS
assumes that the programmer has specified a file name that does
not exist upon the disk. If there is a chance that a new file is
desired that may duplicate the name of one already upon the disk
the peviously described delete function should be used to erase
the old file before creating the new file. Otherwise the
directory may contain two files by the same name. The CREATE
function returns a value of 0FFH if there is no room in the
directory to store the freshly created directory entry, otherwise
the (A) register contains a value of 0 to 3 to indicate that the
file was successfully created. A newly created file may be
immediately written since the BDOS prepares the user FCB to look
like an empty file. To create a file the programming procedure is
simply:

;
;CREATE FILE EXAMPLE
;
CREATE EQU 22 ;CREATE FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,FCB ;POINT AT FILE CONTROL BLOCK
 MVI C,CREATE ;FUNCTION
 CALL BDOS
 CPI 0FFH ;CHECK IF DIRECTORY FULL
 JZ ERROR
 RET ;IF CLOSED GO TO CCP
;
ERROR:

2025/10/30 15:32 35/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET
;
ERRMS:
 DB 'DIRECTORY FULL','$'
;
;
;FILE ACCESS FILE CONTROL BLOCK
;
FCB:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
 DB 0 ;CURRENT RECORD BYTE
;
 END

RENAME FILE: Function 23.

 Sometimes it is necessary to change the name of a disk file
from that already existing in the disk directory. With function
23 the user specifies the name of an existing file on the disk
with a standard FCB format except that on calling the BDOS the
d1-dn byte area of the FCB are set to the new name desired for
the file. All occurrances of the existing file name (ie. all
extents) are changed to match the new name. The drive select byte
specifies the drive upon which the rename operation should be
done. The first byte of the second 16 bytes of the FCB (d0) is
expected to be zero. The RENAME function returns a value of 0FFH
if the old name file could not be found, otherwise the (A)
register contains a value of 0 to 3 to indicate that the file was
successfully renamed. To rename a file the programming procedure
is simply:

;
;RENAME FILE EXAMPLE
;
RENAME EQU 23 ;RENAME FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,FCB ;POINT AT FILE CONTROL BLOCK
 MVI C,RENAME ;FUNCTION
 CALL BDOS
 CPI 0FFH ;CHECK IF DIRECTORY FULL
 JZ ERROR
 RET ;IF CLOSED GO TO CCP
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

ERROR:
 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET
;
ERRMS:
 DB 'FILE NOT FOUND','$'
;
;
;FILE ACCESS FILE CONTROL BLOCK
;
FCB:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0 ;OLD NAME
 DB 00H ;BYTE ASSUMED TO BE ZERO
 DB 'NEWNAME DAT',0,0,0,0 ;NEW NAME
 DB 0 ;CURRENT RECORD BYTE
;
 END

ACCESSING FILE DATA

 The previous section showed the reader how to find and setup
files for subsequent I/O. Other file/directory handling functions
were also presented. This has all led up to the big moment when
the users program is finally ready to read or write data from/to
a disk file. So here it is at last...

 CP/M disk file data is moved between the disk and memory in
blocks of 128 bytes called logical records or "sectors" in older
fashioned CP/M lingo. Two functions to be presented here are
included in the CP/M BDOS function code to allow sequential
access to blocks of data in a file. The READ function starts at
the beginning of a file and reads data blocks till the end of the
file. The opposing WRITE operation moves data blocks to a new
disk file and writes till the end of the users data when the file
is closed (or the disk is full if the programmer has too much
data). The BDOS includes one other function that allows the user
to specify the area in his program where the 128 byte disk record
buffer is to be located. These three functions will each be
individually described below.

SET DISK BUFFER ADDRESS: Function 26.

 The 128 byte data buffer that is to be used by the BDOS for
file I/O is based at an address commonly referred to as the "DMA
ADDRESS". This address or "buffer pointer" is passed to the BDOS
in the (DE) registers when performing function 26. The program
below simply sets the buffer address to "DATBF", a storage area

2025/10/30 15:32 37/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

after the end of the short program.

;
;SET BUFFER ADDRESS EXAMPLE
;
STDMA EQU 26 ;SET BUFFER ADDRESS FUNCTION CODE
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,DATBF ;POINT AT DATA BUFFER
 MVI C,STDMA ;FUNCTION
 CALL BDOS
 RET ;BACK TO CCP
;
DATBF:
 DS 128 ;SETUP 128 BYTE BUFFER
;
 END

READ AND WRITE DISK RECORDS: Functions 20 and 21.

 The disk read and write functions are very similar in
operation in that both move 128 bytes of data to/from the users
program. The READ assumes entry with (DE) pointing to an active
FCB setup by the open file function. The read sequential function
reads the 128 byte record specified by the "cr" field of the FCB
into the buffer pointer to by the current disk buffer address.
After each READ operation the "cr" field is incremented to the
next record number. If the "cr" field overflows past the end of
the extent without encountering the end of the file then the BDOS
automatically opens the next extent in preparation for the next
read operation. The READ function returns a 00H code in the (A)
register if the READ was performed successfully. If the end of
file is encountered a non zero value is returned in (A).

 The WRITE function assumes, on entry to the BDOS, that the
(DE) registers point at a validly opened of created FCB. The
WRITE will move 128 bytes of data from the buffer specified by
the current disk buffer address to the disk. The written record
is placed at the "cr" record position of the extent. As each
record is written the "cr" field is incremented in preparation
for the next write operation. Similar to the READ, if the "cr"
field overflows past the end of the current extent, the BDOS
automatically closes the current extent and creates a new extent
in preparation for the next write operation. The WRITE command
may be performed on an existing file. If the file currently
contains data at the "cr" record then the WRITE will overlay the
current data with the new 128 byte record. The WRITE function
returns a 00H value in the (A) register if the operation is
successful. A non-zero value is returned if the write function

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

was unsuccessful due to a full disk or directory.

 The small program below is designed to read the first record
of a file 'TEST.DAT', and write it into the small file
'ONEREC.DAT'. The program should be reasonably self documenting.

;
;READ AND WRITE FUNCTION EXAMPLES
;
READ EQU 20 ;READ FUNCTION CODE
WRITE EQU 21 ;WRITE FUNCTION CODE
OPEN EQU 15 ;OPEN FUNCTION CODE
CLOSE EQU 16 ;CLOSE FUNCTION CODE
DELETE EQU 19 ;DELETE FUNCTION CODE
CREATE EQU 22 ;CREATE NEW FILE
STDMA EQU 26 ;SET DISK BUFFER ADDRESS
BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START
 LXI D,DATBF ;POINT AT DATA BUFFER
 MVI C,STDMA ;FUNCTION
 CALL BDOS
;
 LXI D,FCBIN ;POINT AT AND OPEN INPUT FILE
 MVI C,OPEN
 CALL BDOS
 CPI 0FFH ;CHECK FOR OPEN ERROR
 JZ ERROR
;
 LXI D,FCBOUT ;DEFAULT DELETE OF NEW FILE
 MVI C,DELETE ;..IN CASE IT EXISTS ALREADY
 CALL BDOS
 LXI D,FCBOUT ;POINT AT FILE CONTROL BLOCK
 MVI C,CREATE ;FUNCTION TO MAKE NEW FILE
 CALL BDOS
 CPI 0FFH ;CHECK IF DIRECTORY FULL
 JZ ERROR
 XRA A ;CLEAR THE INPUT CR FIELD TO READ
 STA INCR ;..FIRST RECORD
 LXI D,FCBIN ;READ FIRST FILE
 MVI C,READ
 CALL BDOS
 ORA A ;CHECK IF READ WAS O.K.
 JNZ ERROR
 LXI D,FCBOUT ;WRITE TO OUTPUT FILE
 MVI C,WRITE
 CALL BDOS
 ORA A ;CHECK THAT DISK WASNT FULL
 JNZ ERROR
;

2025/10/30 15:32 39/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LXI D,FCBOUT ;CLOSE THE OUTPUT FILE
 MVI C,CLOSE
 CALL BDOS
 CPI 0FFH ;CHECK CLOSE STATUS
 RNZ ;BACK TO CCP IF NO ERROR
;
ERROR:
 MVI C,9 ;PRINT ERROR MESSAGE
 LXI D,ERRMS
 CALL BDOS
 RET
;
ERRMS:
 DB 'PROGRAM FILE ERROR','$'
;
;
;FILE ACCESS FILE CONTROL BLOCKS
;
FCBIN:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'TEST DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
INCR:
 DB 0 ;CURRENT RECORD BYTE
;
FCBOUT:
 DB 00H ;SET TO USE DEFAULT DRIVE
 DB 'ONEREC DAT',0,0,0,0
 DS 16 ;STORAGE FOR D1 TO DN BYTES
 DB 0 ;CURRENT RECORD BYTE
;
DATBF:
 DS 128 ;SETUP 128 BYTE BUFFER
;
 END

SEQUENTIAL FILE I/O PROGRAMMING EXAMPLE

 The assembly language code of Listing 2 presents a
comprehensive set of I/O routines that allow either an input or
output sequential file to be processed on a byte by byte basis.
The routines perform all necessary sector buffering. The reader
is encouraged to fully study the code and gain an understanding
of how it all works. The program uses most of the BDOS functions
presented in this turorial.

 Listing 2. CHARACTER BY CHARACTER DISK I/O ROUTINES

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

;**
;
; DEMONSTRATION SEQUENTIAL CP/M FILE CHARACTER BY
; CHARACTER I/O ROUTINES. NOTE THAT THE MAIN BODY
; OF THIS PROGRAM IS NOT DESIGNED TO RUN AS IS IN
; ANY NORMAL MANNER.
;
; MANY THANKS ARE DUE TO WARD CHRISTENSEN WHO PREPARED THE
; ORIGINAL SET OF SIMILAR I/O ROUTINES BURIED INSIDE OF
; THE CP/M USERS GROUP MODEM PROGRAM THAT HAS BECOME SO
; VERY POPULAR. THANKS AGAIN WARD.
;
;**
;
;
;CP/M BDOS EQUATES
;
RDCON EQU 1
WRCON EQU 2
PRINT EQU 9
OPEN EQU 15 ;OPEN FILE
CLOSE EQU 16 ;CLOSE FILE
SRCHF EQU 17 ;SEARCH FOR FIRST
ERASE EQU 19 ;DELETE FILE
READ EQU 20 ;READ FILE RECORD
WRITE EQU 21 ;WRITE FILE RECORD
MAKE EQU 22 ;CREATE NEW FILE
STDMA EQU 26 ;SET DATA BUFFER POINTER
BDOS EQU 0005H ;SYSTEM I/O ENTRY POINT
FCB EQU 5CH ;SYSTEM FCB
FCBEXT EQU FCB+12 ;FILE EXTENT
FCBSNO EQU FCB+32 ;SECTOR #
FCB2 EQU 6CH ;SECOND FCB
DSKBUF EQU 080H ;DEFAULT DISK BUFFER ADDRESS
SECSIZ EQU 080H ;CP/M SECTOR SIZE
;
WBOOT EQU 00 ;CP/M WARM BOOT ENTRY ADDRESS
;
;
;DEFINE ASCII CHARACTERS USED
;
LF EQU 10 ;LINEFEED
CR EQU 13 ;CARRIAGE RETURN
EOFCHR EQU 01AH ;CP/M END OF FILE CHAR
;
;
;START OF EXECUTABLE CODE
;
 ORG 100H
 LXI SP,STACK ;SETUP A STACK TO USE
;

2025/10/30 15:32 41/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

;
;SEQUENTIAL I/O WRITE OF CP/M FILE ENABLED BY USING THIS SEQUENCE
;OF SUBROUTINE CALLS. THE FILE CONTROL BLOCK IS ASSUMED TO BE
;STORED AT THE DEFAULT LOCATION AT 05CH IN THE BASE PAGE OF
;CP/M MEMORY MAP.
;
SIOWR:
 CALL ERASFIL ;ERASE RECIEVED FILE
 CALL MAKEFIL ;ESTABLISH NEW FILE
 CALL INITWR ;INITIALIZE FILE WRITE PARAMETERS
;
;
;MAKE FOLLOWING CALL TO PLACE A CHARACTER FROM THE (A) REGISTER
;INTO THE CP/M FILE. LOOP DOING THIS TILL YOU HAVE ALL IN FILE THAT
;IS NEEDED.
;
 CALL WRCHAR ;PUT CHAR IN FILE
;
 CALL WREOF ;FLUSH LAST SECTOR TO CP/M FILE
 CALL CLOSFIL ;CLOSE IT UP
;
;
;SEQUENCE OF COMMAND CALLS TO OPEN AND USE A SEQUENTIAL CHARACTER
;FILE FOR READING. THE FILE CONTROL BLOCK IS ASSUMED TO BE LOCATED
;AT THE DEFAUT LOCATION OF 05CH IN THE BASE CP/M PAGE.
;ONCE THE FILE IS INITIALIZED THE CHARACTERS CAN BE READ ONE BY
;ONE UNTIL THE RDCHAR SUBROUTINE RETURNS A SET CARRY FLAG
;INDICATING A END OF PHYSICAL FILE CONDITION. EOF IS SENSED AS
;PHYSICAL END OR 01AH CHARACTER WHICHEVER COMES FIRST
;
SIORD:
 CALL OPENFIL ;OPEN THE CP/M FILE
 CALL INITRD ;GO INIT FOR FILE READ
 CALL RDCHAR ;GET CHAR FROM CP/M FILE
 JC EOF ;CHECK FOR EOF
;
EOF:
; PLACE CODE HERE FOR END OF FILE HANDLING
;
;I/O HANDLING SUBROUTINES
;
;
;
;>--> ERASFIL: ERASE THE INCOMING FILE.
;
;IF IT EXISTS, ASK IF IT MAY BE ERASED.
;
ERASFIL:
 LXI D,FCB ;POINT TO CTL BLOCK
 MVI C,SRCHF ;SEE IF IT..
 CALL BDOS ;..EXISTS

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 INR A ;FOUND?
 RZ ;..NO, RETURN
 CALL ILPRT ;PRINT:
 DB '++CP/M FILE EXISTS, TYPE Y TO ERASE: ',0
 CALL KEYIN ;GET A CHARACTER FROM CONSOLE
 ANI 5FH ;MAKE UPPER CASE
 CPI 'Y' ;WANT ERASED?
 JNZ EXIT ;QUIT IF NOT ERASE
 CALL CRLF ;BACK TO START OF LINE
;
;
;ERASE OLD FILE
;
 LXI D,FCB ;POINT TO FCB
 MVI C,ERASE ;GET BDOS FNC
 CALL BDOS ;DO THE ERASE
 RET ;FROM "ERASFIL"
;
;
;>--> MAKEFIL: MAKES THE FILE TO BE RECEIVED
;
MAKEFIL:
 LXI D,FCB ;POINT TO FCB
 MVI C,MAKE ;GET BDOS FNC
 CALL BDOS ;TO THE MAKE
 INR A ;FF=BAD?
 RNZ ;OPEN OK
;
;
;DIRECTORY FULL - CAN'T MAKE FILE
;
 CALL ERXIT
 DB '++ERROR - CANNOT MAKE FILE',CR,LF
 DB '++DIRECTORY MUST BE FULL',CR,LF,'$'
;
;
;>--> OPENFIL: OPENS THE FILE TO BE SENT
;
OPENFIL:
 LXI D,FCB ;POINT TO FILE
 MVI C,OPEN ;GET FUNCTION
 CALL BDOS ;OPEN IT
 INR A ;OPEN OK?
 RNZ ;FILE OPENED OK
 CALL ERXIT ;..NO, ABORT
 DB '++CANNOT OPEN CP/M FILE','$'
;
;
;>--> CLOSFIL: CLOSES THE RECEIVED FILE
;
CLOSFIL:

2025/10/30 15:32 43/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LXI D,FCB ;POINT TO FILE
 MVI C,CLOSE ;GET FUNCTION
 CALL BDOS ;CLOSE IT
 INR A ;CLOSE OK?
 RNZ ;..YES, RETURN
 CALL ERXIT ;..NO, ABORT
 DB '++CANNOT CLOSE CP/M FILE','$'
;
;
;>--> INITRD: INITIALIZES FILE READ PARAMETERS
;
INITRD:
 MVI A,00H ;SET THE BUF CNT TO EMPTY
 STA CHRINBF
 LXI D,DSKBUF ;SET THE DMA BUFFER POINTER
 PUSH D
 MVI C,STDMA
 CALL BDOS
 POP D
 XCHG ;SET SECTOR POINTER
 SHLD SECPTR
 RET
;
;
;>--> RDCHAR: READS A CHARACTER FROM FILE
;
;RETURN IS WITH DESIRED CHARACTER IN
;THE A REGISTER. IF EOF, THEN
;RETURN IS WITH THE CARRY FLAG SET.
;
RDCHAR:
 LDA CHRINBF ;GET NUMBER OF CHAR IN BUF
 ORA A ;CHECK IF BUFFER EMPTY
 JZ RDBLOCK ;GO GET A SECTOR IF EMPTY
 DCR A ;DECREMENT
 STA CHRINBF
 LHLD SECPTR ;GET BUFFER POINTER
 MOV A,M ;GET CHARACTER FOR CALLER
 INX H ;INCREMENT POINTER
 SHLD SECPTR
 CPI EOFCHR ;CHECK FOR LOGICAL CP/M EOF
 STC
 RZ ;RETURN EXIT FOR LOGICAL EOF
 CMC ;CLEAR CARRY SO EOF NOT INDICATED
 ;ON NORMAL RETURN
 RET ;FROM "RDCHAR"
;
;
;BUFFER IS EMPTY - READ IN ANOTHER SECTOR
;
RDBLOCK:

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 LXI D,FCB
 MVI C,READ
 CALL BDOS
 ORA A ;READ OK?
 JZ RDBFULL ;YES
 DCR A ;EOF?
 JZ REOF ;GOT EOF
;
;
;READ ERROR
;
 CALL ERXIT
 DB '++CP/M FILE READ ERROR','$'
;
REOF:
 STC ;SET CARRY FLAG FOR EOF EXIT
 RET
;
;
;BUFFER IS FULL
;
RDBFULL:
 MVI A,SECSIZ ;INIT BUF CHAR COUNT
 STA CHRINBF
 LXI H,DSKBUF ;INIT BUFFER..
 SHLD SECPTR ;..POINTER
 JMP RDCHAR ;PASS CHAR TO CALLER
;
;
;>--> INITWR: INITIALIZES FILE WRITE PARAMETERS
;
INITWR:
 MVI A,00H ;SET THE BUF CNT TO EMPTY
 STA CHRINBF
 LXI D,DSKBUF ;SET THE DMA BUFFER POINTER
 PUSH D
 MVI C,STDMA
 CALL BDOS
 POP D
 XCHG ;SET SECTOR POINTER
 SHLD SECPTR
 RET
;
;
;>--> WRCHAR: WRITE A CHARACTER TO FILE
;
;ENTRY IS WITH CHARACTER IN A
;ENTRY AT WREOF FILLS REMAINING BYTES
;OF SECTOR WITH 01AH PER CP/M CONVENTION.
;
WRCHAR:

2025/10/30 15:32 45/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LHLD SECPTR ;PUT CHAR IN BUFFER
 MOV M,A
 INX H ;BUMP POINTER
 SHLD SECPTR
 LDA CHRINBF ;INCR CHAR COUNT
 INR A
 STA CHRINBF
 CPI SECSIZ ;CHECK IF SECTOR FULL
 RNZ ;GO BACK IF OK
;
WRBLOCK:
 LXI D,FCB ;IF FULL THEN WRITE
 MVI C,WRITE ;..THE..
 CALL BDOS ;..BLOCK
 ORA A
 JNZ WRERR ;OOPS, ERROR
 MVI A,00H ;RESET THE CHAR CNT
 STA CHRINBF
 LXI H,DSKBUF ;RESET BUFFER..
 SHLD SECPTR ;..POINTER
 RET
;
WRERR:
 CALL ERXIT ;EXIT W/MSG:
 DB '++ERROR WRITING CP/M FILE',CR,LF,'$'
;
WREOF:
 LDA CHRINBF ;FILL REST OF SECTOR WITH 01AH
 LHLD SECPTR
 MVI B,EOFCHR
WREND:
 MOV M,B ;PUT IN THE CP/M EOF CODE
 INX H
 INR A ;INC THE CHAR CNT
 CPI SECSIZ ;BUFFER FULL YET
 JNZ WREND
 JMP WRBLOCK ;GO PUT FILLED BLOCK ON DISK
;
;
;>--> KEYIN: GETS A KEY CODE IN FROM CONSOLE
;
KEYIN:
 PUSH B ;SAVE..
 PUSH D ;..ALL..
 PUSH H ;..REGS
 MVI C,RDCON ;GET CON CHAR FUNCTION CODE
 CALL BDOS ;GET CHARACTER
 MOV A,E
 POP H ;RESTORE..
 POP D ;..ALL..
 POP B ;..REGS

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 RET
;
;
;>--> CTYPE: TYPES VIA CP/M SO TABS ARE EXPANDED
;
CTYPE:
 PUSH B ;SAVE..
 PUSH D ;..ALL..
 PUSH H ;..REGS
 MOV E,A ;CHAR TO E
 MVI C,WRCON ;GET BDOS FNC
 CALL BDOS ;PRIN THE CHR
 POP H ;RESTORE..
 POP D ;..ALL..
 POP B ;..REGS
 RET ;FROM "CTYPE"
;
;
;>--> CRLF: TYPE A CARRAGE RETURN LINE FEED PAIR AT CONSOLE
;
CRLF:
 MVI A,CR
 CALL CTYPE
 MVI A,LF
 CALL CTYPE
 RET
;
;
;>--> ILPRT: INLINE PRINT OF MSG
;
;THE CALL TO ILPRT IS FOLLOWED BY A MESSAGE,
;BINARY 0 AS THE END. BINARY 1 MAY BE USED TO
;PAUSE (MESSAGE 'PRESS RETURN TO CONTINUE')
;
ILPRT:
 XTHL ;SAVE HL, GET HL=MSG
ILPLP:
 MOV A,M ;GET CHAR
 ORA A ;END OF MSG?
 JZ ILPRET ;..YES, RETURN
 CPI 1 ;PAUSE?
 JZ ILPAUSE ;..YES
 CALL CTYPE ;TYPE THE CHARACTER OF MESSAGE
ILPNEXT:
 INX H ;TO NEXT CHAR
 JMP ILPLP ;LOOP
;
;
;PAUSE WHILE TYPING HELP SO INFO DOESN'T
; SCROLL OFF OF VIDEO SCREENS
;

2025/10/30 15:32 47/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

ILPAUSE:
 CALL ILPRT ;PRINT:
 DB CR,LF,'PRESS RETURN TO CONTINUE OR ^C TO EXIT'
 DB CR,LF,0
 CALL KEYIN ;GET ANY CHAR
 CPI 'C'-40H ;REBOOT?
 JZ EXIT ;YES.
 JMP ILPNEXT ;LOOP
;
ILPRET:
 XTHL ;RESTORE HL
 RET ; & RETURN ADDR PAST MESSAGE
;
;
;>--> PRTMSG: PRINTS MSG POINTED TO BY (DE)
;
;A '$' IS THE ENDING DELIMITER FOR THE PRINT.
;NO REGISTERS SAVED.
;
PRTMSG:
 MVI C,PRINT ;GET BDOS FNC
 JMP BDOS ;PRINT MESSAGE, RETURN
;
;
;>--> ERXIT: EXIT PRINTING MSG FOLLOWING CALL
;
ERXIT:
 POP D ;GET MESSAGE
 CALL PRTMSG ;PRINT IT
;
EXIT:
 LXI D,080H ;RESET DEFAULT DMA ADDRESS FOR EXIT
 MVI C,STDMA
 CALL BDOS
 LHLD STACK ;GET ORIGINAL STACK
 SPHL ;RESTORE IT
 JMP WBOOT ;GO DO A WARM BOOT OF CP/M TO BRING
 ;BACK IN CCP
;
;
;FOLLOWING 2 USED BY THE CP/M DISK BUFFERING ROUTINES
;
SECPTR DW DSKBUF ;POINTER TO DISK BUFFER POS
CHRINBF DB 0 ;# OF CHARACTERS IN BUFFER
;
;
;SETUP A STACK AREA
;
 DS 38 ;STACK AREA
STACK DS 2 ;STACK POINTER
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

; --------------
;
 END
;
;+++...END OF LISTING 2

 The reader is invited to be with us again next month when
the tutorial continues into its third and final part. The
functions of random record file I/O will be presented with
complete programming examples to show how random I/O works.
Several special file I/O tricks will be shown that permit unique
problems to be solved under the CP/M operating system. One of
these will be a program that does "update" on an exisiting file
without the use of the random record I/O capabilities. So long
till January and I hope that all Life Lines readers have a joyous
holiday season.

 SLIDING INTO BDOS (Part III)

 UNDERSTANDING RANDOM FILES

 by:

 Michael J. Karas
 2468 Hansen Court
 Simi Valley, CA 93065
 (805) 527-7922

 The time has arrived to complete the third and final part of
this series on the operation of the CP/M BDOS as viewed from the
assembly language programmers perspective. Presently we will
build upon the extensive treatment of sequential files presented
in Part II of the series to provide a basis for understanding the
CP/M 2.2 random file I/O capability. Please note that functions
of the BDOS presented here are specific to CP/M Versions 2.2 and
3.0. Older CP/M systems using Version 1.4 do not directly support
random access file I/O and as such are not compatible with the
programming examples presented below.

2025/10/30 15:32 49/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

WHY RANDOM FILE I/O ANYWAY

 In the beginning of the CP/M era, sometime around the
release of Version 1.3 by Digital Research, small inexpensive
single-user micro processor systems were typically used for
simple-minded data processing applications. Most computing
operations were linear with respect to the data handling by the
CPU. Data entered from paper tape, cassette, card readers, or
human entry from a keyboard tended to be limited to a sequential
processing from start to finish. The usage of such data by the
computer in data analysis, program compilation, or logging
applications was also largely sequential. Finally the data output
operations based upon the needs of hard copy, backup, and
transmission from micro to micro were relegated to sequential
processing applications.

 Anticipated applications of micro type computer hardware by
operating system designers, at that time, seemed to dictate that
the disk file structures of the operating systems should be
sequential in nature. This was true for the earliest releases of
CP/M and Intel's ISIS II operating system. Other simple floppy
disk operating systems like PERTEC's FDOS and MITS' Disk Extended
Basic operating systems were also strictly sequential in the
treatment of the disk file allocation and storage. However, these
two systems permitted random record I/O within the bounds of an
already existng file provided the space to store the records was
previously pre-allocated as contiguous disk space in the file
structure. The process of random I/O was then easy as a relative
offset between the beginning record number for the file and the
offset desired within the file.

 As the micro processor applications market opened up in the
late 1970's it seemed that new uses for computers were being
found weekly. It has gotton to the point that micro processor
computer users have a large array of very sophisticated software
packages to choose from and utilize in their business and hobby
activities. The main thing that can be pointed out about many of
these packages is that the processes they perform are hardly
linear with respect to the handling of data. Interactive programs
like word processors, data base managers, spelling checkers, and
spread sheet analysis programs may very well need to be able to
store or access data to/from a disk file in a manner that cannot
be handled in the old sequential manner. The sequential
philosophy generally limited file update to appending to the end
of the file and read access to a particular record had to read N-
1 records from the beginning of the file prior to being able to
read record N.

 Random access file I/O within an operating system
anticipates the requirements of non-sequential I/O by permitting
access to various records directly. Any record that was

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

previously written may be read upon demand. Likewise the
user/programmer may write any record desired. The Digital
Research CP/M operating system supports this type of I/O in a
powerful yet elegantly simple manner through a set of four BDOS
system functions. These calls allow random access disk files to
be implemented within the standard CP/M compatible file
structure.

RANDOM FILE STRUCTURE UNDER CP/M 2.2

 The structure of random files under the CP/M operating
system is much the same as that for sequential files. Part II of
this series (Lifelines, January 1982) described and illustrated
the sequential structure in detail. The reader will recall that
CP/M treats disk data in fixed records of 128 bytes. These
records are collected together into "groups" that are stored on
the disk as an allocated group. The disk space reserved for a
given file, in its directory entry, is always marked, identified,
and allocated in the even multiples of the "allocation group
size".

 I previously mentioned two older operating systems that
supported random file I/O within the confines of a pre-allocated
file. This system requires that all of the space for an "N"
record file be reserved as contiguous disk space even if the file
only contains two records (#0 and #N). Making a random access
file bigger than the pre allocated size was virtually impossible.
The CP/M Ver 2.2 random file access system has overcome the
problems described above. A random file under CP/M contains only
the number of allocated groups required to hold the stored
records. The holes between the defined records do not consume
unused disk space.

 If a file under CP/M is created with only random record 0 of
the file written then that file contains 128 bytes of real data
and consumes one allocation group of disk space. The allocation
group consumed also may contain other adjacent random records to
fill out the size of the group. For instance, on single density
8" disks with a 1024 byte allocation group size, a one record
(#0) file would be able to be written with additional record
numbers 1 to 7 within the same allocation group. Likewise if a
single record file was created with only record number 9 written,
that file would consume only one allocation group of disk space.
Additional record numbers 8, and 10 to 15 could then be written
without requiring additional disk space.

RANDOM FILE I/O SYSTEM CALLS

 Let us next investigate the five BDOS system calls that CP/M

2025/10/30 15:32 51/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

supports for random I/O within files. The chart of Figure 1 on
the following page details the look of a random access file
control block. Note that the file control block contains three
bytes at the end that are used to store the random record number
that will currently be accessed. The random access system calls
all utilize this field to determine the portion of the file to
access at read/write time.

 A CP/M random file may contain up to 64K records of 128
bytes numbered from 0 to 65535. Two bytes of the file control
block hold this record number, r0 as the low byte and r1 as the
high byte. This provides accessability to records up to a maximum
file size of 8 megabytes. The r2 byte of the file control block
is not used except as the overflow or carry out of the r1 byte.
If byte r2 ever contains a value that is non-zero the record
number is beyond the end of the 8 megabyte limit for the file.

 To access a random file, it must first be opened in the
normal manner with the "open" BDOS function call. In the case of
creating a new random file the make file BDOS call is sufficient
in that the the results of the make operation are equivalent to
the open function on a zero length file.

READ RANDOM RECORD: Function 33.

 This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to read. The BDOS then fetches the
addressed record from the file and places it in the callers
record buffer pointed to by the last set buffer address function
 Figure 1. FILE CONTROL BLOCK DESCRIPTION

 --
 |dr|f1|f2|/ /|f8|t1|t2|t3|ex|s1|s2|rc|d0|/ /|dn|cr|r0|r1|r2|
 --
 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 where:

 dr drive code (0 - 16)
 0 => use default drive for file access
 1 => select drive A: for file access
 2 => select drive B: for file access
 ...
 16=> select drive P: for file access

 f1...f8 contain the files name in ASCII upper case
 with high bits equal to zero.

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 t1,t2,t3 contain the file type in ASCII upper case
 with high bits normally equal zero. tn' denotes
 the high bit of these bit positions.
 t1' = 1 => Read/Only file
 t2' = 1 => SYS file, no DIR list

 ex contains the current extent number,
 normally set to 00 by the user, but is
 in the range 0 - 31 during file I/O.

 s1 reserved for internal system use

 s2 reserved for internal system use, set to
 zero on call to OPEN, MAKE, SEARCH system
 calls.

 rc record count for extent "ex," takes on values
 0 to 128.

 d0...dn filled in by BDOS to indicate file group numbers
 for this extent.

 cr current record to read or write in a sequential
 file operation. Normally set to zero by the user
 upon initial access to a file.

 r0,r1,r2 optional random record number in the range of 0 to
 65535, with overflow to r2. r0/r1 are a 16 bit value
 in low/high byte order.
call. The r0-r2 fields of the file control block are not changed
as a result of the random read function such that a subsequent
random read operation would read the same record. The random read
function may return a number of error codes as described below:

 Error Code 00 - The random read function worked without
 error and the user buffer contains the desired data.

 Error Code 01 - The random read operation addresses a record
 that is contained in a disk allocation group not
 allocated to the file. This means that the group field
 number slot of the appropriate extent of the file that
 should contain the record is equal to 0.

 Error Code 03 - The random read operation just requested
 required that a different extent descriptor directory
 entry had to be open for the impending operation,
 however prior to opening the new extent the current
 extent could not be closed due to disk read/only status
 or a disk change.

 Error Code 04 - The random read operation just requested

2025/10/30 15:32 53/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 required access to an extent of the file that does not
 exist on the disk.

 Error Code 06 - The random read operation just requested
 required access to a record number beyond the bounds of
 the disk drive, ie the disk drive is less than 8
 megabytes and the record requested is within an
 allocation group beyond the end of the disk.

WRITE RANDOM RECORD: Function 34.

 This system call is made with the (DE) register pair
pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to write. The BDOS then moves the data in
the callers record buffer pointed to by the last set buffer
address function call to the addressed record in the file. The
r0-r2 fields of the file control block are not changed as a
result of the random write function such that a subsequent random
write operation would write the same record. The random write
function may return a number of error codes as described below:

 Error Code 00 - The random write function worked without
 error and the user buffer contains the desired data.

 Error Code 03 - The random write operation just requested
 required that a different extent descriptor directory
 entry had to be open for the impending operation,
 however prior to opening the new extent the current
 extent could not be closed due to disk read/only status
 or a disk change.

 Error Code 05 - The random write operation just requested
 required access to an extent of the file that does not
 exist on the disk. In the process of creating the new
 extent the disk directory was found to be full.

 Error Code 06 - The random write operation just requested
 required access to a record number beyond the bounds of
 the disk drive, ie the disk drive is less than 8
 megabytes and the record requested is within an
 allocation group beyond the end of the disk.

WRITE RANDOM RECORD WITH ZERO FILL: Function 40.

 This system call is made with the (DE) register pair

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

pointing to a 36 byte file control block. Bytes r0-r2 are set up
with the random record to write. The BDOS then moves the data in
the callers record buffer, pointed to by the last set buffer
address function call, to the addressed record in the file. The
r0-r2 fields of the file control block are not changed as a
result of the random write function such that a subsequent random
file operation would access the same record. If the random write
operation caused a new allocation group to be allocated to the
file the other records of the same block are filled with zeros.
The random write with zero fill function may return a number of
error codes identical to those described for function number 34
above.

COMPUTE FILE SIZE: Function 35.

 This system call determines the number of 128 byte records
in a file and sets the number of records into the r0 and r1 bytes
of the 36 byte file control block addressed by the (DE) register
pair. The returned size is a virtual size in that if the file was
created by random write operations and the file contains "holes"
the file size function does not take the holes into account.
Another way of looking at this is to think of this function as
returning a record number that is one greater than the maximum
record number currently in the file. If the file had no "holes"
or it had been written in the conventional sequential fashion,
then the file size reported by this function is the real file
size. This function provides a convenient function of positioning
a file at its end so that subsequent sequential or random update
could be performed.

SET RANDOM RECORD: Function 36:

 The (DE) register pair is set to point to a 36 byte file
control block that has previously been used to reference a file
in the sequential mode. Upon reference with this system call the
r0 to r2 fields are filled in with the random record number that
corresponds to the current file position, ie the BDOS simply
computes the real current record number as follows:

 The current extent number is multiplied by 128, the number
 of records per extent, and to this product is added the
 numerical value of the CR field, current record in this
 extent. The final result is placed into the r0-r2 fields of
 the FCB.

LOOKING AT SOME EXAMPLES

2025/10/30 15:32 55/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 The following simple assembly language program is designed
to write record numbers 0 and 143 into a file on the disk. The
write random function is used to write the first record with all
A's and the second record, # 143, with all B's.

;
;
;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2
;
; THIS FIRST LEVEL DEMONSTRATION IS DESIGNED TO
; SHOW HOW TO INITIALLY SET UP A FILE TO BE A RANDOM FILE
; AND TO WRITE TWO RECORDS INTO THE FILE SUCH THAT THE
; FIRST RECORD (RECORD NUMBER 0) AND THE SEVENTEENTH
; RECORD OF THE SECOND EXTENT (RECORD NUMBER 143) BOTH
; CONTAIN DATA. THE PURPOSE IS TO DEMONSTRATE THE
; RESULTING DISK DIRECTORY ENTRIES THAT RESULT FROM
; AN INCOMPLETE FILE. THIS DEMO PROGRAM DOES NO RANDOM
; WRITE ERROR CHECKING.
;
;
;SYSTEM LEVEL INTERFACE EQUATES
;
BDOS EQU 0005H ;SYSTEM INTERFACE VECTOR
MAKE EQU 22 ;MAKE NEW FILE FUNCTION
SBADDR EQU 26 ;SET DISK BUFFER ADDR
OPEN EQU 15 ;OPEN FILE FUNCTION
CLOSE EQU 16 ;FILE CLOSE FUNCTION
DELETE EQU 19 ;DELETE FILE FUNCTION
RRAND EQU 33 ;READ RANDOM FUNCTION
WRAND EQU 34 ;WRITE RANDOM FUNCTION
WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL
;
;
 ORG 0100H ;START OF A PROGRAM
;
 XRA A ;ZERO BYTES OF THE FCB
 STA EXT ;EXTENT FIELD
 STA CR ;CURRENT RECORD COUNT
 STA RR+2 ;AND THE R2 FIELD
 LXI H,0000H ;ALSO ZERO RANDOM RECORD FIELED
 SHLD RR
;
 LXI D,BUFFER ;SET DISK BUFFER ADDRESS
 MVI C,SBADDR
 CALL BDOS
;
 LXI D,RANDFCB ;POINT AT OUR FCB
 MVI C,DELETE ;ERASE TEST FILE IF IT ALREADY EXISTS
 CALL BDOS
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 LXI D,RANDFCB ;MAKE A NEW FILE FOR TEST
 MVI C,MAKE
 CALL BDOS
;
 MVI A,'A' ;FILL FIRST RECORD WITH A'S
 CALL FILL ;GO FILL
 LXI H,0000H ;SET RECORD NUMBER TO WRITE A'S INTO
 SHLD RR
 LXI D,RANDFCB ;WRITE RECORD OF A'S
 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION
 CALL BDOS
;
 MVI A,'B' ;FILL NEXT RECORD WITH B'S
 CALL FILL ;GO FILL
 LXI H,143 ;SET RECORD NUMBER TO WRITE B'S INTO
 SHLD RR
 LXI D,RANDFCB ;WRITE RECORD OF B'S
 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION
 CALL BDOS
;
 LXI D,RANDFCB ;CLOSE JUST WRITTEN FILE
 MVI C,CLOSE
 CALL BDOS
;
;
 RET ;BACK TO CCP BY IMMEDIATE RETURN
;
;
;SUBROUTINE TO FILL BUFFER WITH A PATTERN
;
; ENTRY WITH (A) CONTAINING BYTE TO FILL BUFFER WITH
;
FILL:
 LXI H,BUFFER ;POINT AT BUFFER FOR FILL
 MVI B,128 ;FILL BYTE COUNTER
FILLP:
 MOV M,A ;PUT A BYTE INTO BUFFER
 INX H ;BUMP POINTER
 DCR B ;DECREMRNT BYTE COUNT
 JNZ FILLP ;CONTINUE TILL BUFFER FULL
 RET
;
;
;RANDOM FILE TEST DATA AREA
;
RANDFCB:
 DB 00 ;USE CURRENT LOGGED DRIVE FOR TEST
 DB 'RANDFILE' ;NAME OF FILE TO PLAY WITH
 DB 'TST' ;..AND THE EXTENSION NAME
EXT:
 DB 00,00,00,00 ;EXTENT, S1, S2, AND FCBSZ BYTES

2025/10/30 15:32 57/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 DS 16 ;STORAGE FOR THE ALLOCATION NUMBERS
CR:
 DS 1 ;CURRENT RECORD BYTE
RR:
 DS 2 ;RANDOM RECORD NUMBER (R0,R1)
 DS 1 ;RANDOM RECORD OVERFLOW BYTE (R2)
;
;
;RANDOM DISK I/O DATA BUFFER
;
BUFFER:
 DS 128 ;ONE RECORD BUFFER
;
 END

 The above program was assembled and caused to run on an
empty single density disk in the default disk drive. The
following display shows how the directory upon the disk looked
after running the program. Notice that the file only consumes two
allocated groups. Due to the fact that this was a single density
disk with 1024 byte allocation groups of 8 records each, then if
record number 8 was subsequently written the directory entries
would change to include an allocation block number in the second
group number slot of the first extent of the file.

G=00:00, T=2, S=1, PS=1

00 0052414E 4446494C 45545354 00000001 *.RANDFILETST....*
10 02000000 00000000 00000000 00000000 *................*
20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*
30 00030000 00000000 00000000 00000000 *................*
40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

 The following two sector displays off the single density
disk show the A's and B's written by the program above. All other
sectors in the group numbers 02 and 03 were empty, ie contained
whatever data that used to be there. This brings up the subject
of the write random with zero fill function. A small segment of

G=02:00, T=2, S=17, PS=20

00 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
10 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
20 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
30 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

40 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
50 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
60 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*
70 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

G=03:07, T=3, S=6, PS=5

00 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
10 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
20 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
30 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
40 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
50 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
60 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*
70 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

the first demonstration program was changed to cause the second
write operation to be done with zero fill. The changed portion of
the program is shown below:

 LXI D,RANDFCB ;WRITE RECORD OF A'S
 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION
 CALL BDOS
;
 MVI A,'B' ;FILL NEXT RECORD WITH B'S
 CALL FILL ;GO FILL
 LXI H,143 ;SET RECORD NUMBER TO WRITE B'S INTO
 SHLD RR
 LXI D,RANDFCB ;WRITE RECORD OF B'S
 MVI C,WRANDF ;WRITE RANDOM ZERO FILL FUNCTION
 CALL BDOS
;
 LXI D,RANDFCB ;CLOSE JUST WRITTEN FILE

 Note from the directory display below that there is no
change in the appearance of the entries from the first example.
This time the only thing that changed was the data in allocation
group 3. Due to the second write this allocation group contains a
sector of B's at GROUP=03:07 with the other seven sectors of the
group now containing zeroes from the zero fill operation. The
function of zero fill is to leave a clean slate on records
numbers subsequently read from the same allocation block. The
BDOS is capable of reporting unwritten record information for
records that correspond to group number slots in the directory
entries that contain a '00' byte indicating unallocated. However
once a group is allocated for one record the BDOS cannot
determine if other sectors of that group have been written or

2025/10/30 15:32 59/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

not. Thus ero function may be issued when creating a random
access file for the first time. The programmer may then use a
record of 128 zeroes to indicate that the record is not used as
opposed to accidentally mistaking the garbage data from un-
initialized sectors written without zero fill as real data.

G=00:00, T=2, S=1, PS=1

00 0052414E 4446494C 45545354 00000001 *.RANDFILETST....*
10 02000000 00000000 00000000 00000000 *................*
20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*
30 00030000 00000000 00000000 00000000 *................*
40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*
70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

 The next example program is included here to show a clever
means of implementing arbitrary record selection I/O within a
file without resorting to random file I/O. The intent is not to
indicate that the following scheme is the preferred method. The
program below was developed with the CP/M Ver 1.4 operating
system in mind. However the algorithm works fine with CP/M 2.2 as
well. The technique used to play with random records by using
sequential read and write operations is to manipulate the "cr"
field of a standard 33 byte file control block. The "cr" byte is
the only meand that the BDOS uses to indicate the next record to
access. The programmer may change this byte value to force the
BDOS to go to any record within the current extent.

 If the first extent of a file is opened, the group
allocation values for that extent lie in the file control block.
If the technique of performing "your own" random I/O is done, the
code must access record numbers not to excede 07fh without first
closing the current extent and opening the next. This can be done
with either the conventional open and close operations or the
programmer, when done working with the current extent may open
next automatically by performing a dummy read of record 080H of
the current extent. The programming example below uses the "roll
your own" technique but does not anticipate a file size greater
than 16K (one extent size).

 The program below is a skeleton structure of a .COM file
serialization procedure. The idea is to insert a six byte serial
number string into the target file PROG.COM on drive B:. The
serial number is inserted into the file at the places specified
by the labels in the table at the start of the listing. These
values are stripped out of the symbol table that is generated at
the assembly of the PROG.ASM file. If the assembler does not

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

generate a symbol table then the label values may be pulled off
the .PRN listing output. The insert points are places within the
"to be serialized" program where the programmer has determined
that he would like to place the serial number string. Within the
file itself, the labels point to the place where the string is to
be inserted with respect to run time load address. The real file
offset is 0100H bytes less. In addition, the scheme does not
insert all six bytes of the program serial number at each
location. The byte at each label address minus one contains a
value between 1 and 6 of thenumber of serial number bytes that
should actually be inserted at seralization time.

 The list of label values in the program below is used to
build, at assembly time, a table of record numbers where the
specific serial number strings are to be inserted. This table is
then used to fill in the "cr" byte of the file control block as
each serial number is to be inserted. The table also contains the
byte offset within the record where the insert point is to start.
As each serial number is to be inserted the appropriate record is
read, the number is inserted (with length specified by the value
from the file record just accessed), and the record is written
back to the disk. Sequentail read and write operations are used
for both operations. Logic within the code listing below also
provides for the occurrance that the serial number string may
cross the end of the first record and flow into the next record.
In this case the first is rewritten followed by reading of the
next with the remainder of the insert proceeding from the
beginning of the second record.

 Please note that the program example is given as a skeleton
only and the serial number entry process, increment process, and
the disk I/O error exit points are left for the reader/programmer
to fill in with code of his own choosing.

;
;
;PROGRAM SERIAL NUMBER INSERTION EQUATES
; EACH ADDRESS IS A VALUE INSIDE OF THE "PROG.COM"
; FILE THAT IS THE PLACE TO PUT THE SERIAL NUMBER.
;
SERA EQU 0132H
SERB EQU 01E9H
SERC EQU 0278H
SERD EQU 039AH
SERE EQU 06FFH
SERF EQU 0732H
SERG EQU 0BBCH
SERH EQU 0C08H
;
;

2025/10/30 15:32 61/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

;CP/M BDOS SYSTEM CALLS FUNCTION NUMBERS
;
BOOT EQU 0000H ;REBOOT LOCATION ENTRY POINT
BDOS EQU 0005H ;BDOS FUNCTION ENTRY POINT
RESET EQU 13 ;RESET DISK SYSTEM
OPEN EQU 15 ;OPEN FILE FUNCTION
CLOSE EQU 16 ;CLOSE FILE FUNCTION
DMAADR EQU 26 ;SET DATA BUFFER ADDRESS
READ EQU 20 ;READ SEQUENTIAL
WRITE EQU 21 ;WRITE SEQUENTIAL
;
;
;DEFINE BASE EXECUTION AREA FOR THIS PROGRAM
;
START EQU 0100H
;
;
 ORG START ;BASE OF EXECUTION AREA
;
;
;START UP HERE WITH PROGRAM INITIALIZATION AND
;DEFINE PROCEDURE TO FETCH IN SERIAL NUMBER TO INSERT INTO
;THE FILE
;
SERASK:

;
;ENTER APPROPIATE CODE HERE TO PUT A SIX BYTE SERIAL NUMBER
;INTO VARIABLE "SERSTR"
;

;
;
;SERIAL NUMBER INSERT POINT PROCESSING
;
;
SERCOPY:
 MVI C,RESET ;RESET DISK SYSTEM UPON INSERT
 CALL BDOS
 LXI D,PROGFCB ;SET TO OPEN THE PROG.COM FILE
 MVI C,OPEN
 CALL BDOS
 INR A ;CHECK IF OPEN ERROR
 JNZ SERCP1 ;OPEN SO GO START WRITE

;
;PRINT ERROR MESSAGE HERE AS TO INDICATE THAT THE FILE
;"PROG.COM" IS NOT PRESENT ON DRIVE B:.
;
 JMP SERASK ;IF ERROR BACK TO GET A NEW SERIAL

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 ;..NUMBER OR TO EXIT

SERCP1:
 MVI B,00H ;INDEX COUNTER FOR TABLE VALUES
SERIST:
 MOV L,B
 MVI H,00H
 DAD H ;DOUBLE TO WORDS
 LXI D,INSTAB ;INTO TABLE
 DAD D
 MOV A,M ;GET RECORD NUMBER FOR PLACE
 STA PROGFCB+32 ;SET TO READ THIS RECORD
 INX H
 MOV C,M ;GET BYTE LOCATION OF COUNTER
 PUSH B
 LXI D,PROGFCB ;USE PROG FCB TO READ
 MVI C,READ
 CALL BDOS ;GO READ SECTOR
 POP B ;INDEX TO LENGTH
 MOV L,C
 MVI H,0
 LXI D,080H ;BASE OF DEFAULT BUFFER
 DAD D
 MOV C,M ;GET LENGTH
 INX H ;POINT TO NEXT BUFFER BYTE
 LXI D,SERSTR ;POINT (DE) TO SERIAL LOCATION
;
MOVLP:
 MOV A,H ;SEE IF PAST THE END OF BUFFER
 CPI 01H
 JNZ SAMSEC ;STILL IN THE SAME SECTOR
;
 MVI H,0 ;RESET TO NEXT SECTOR BASE
 PUSH B
 PUSH H
 PUSH D
 LXI H,PROGFCB+32 ;DECREASE RECORD FOR WRITE
 DCR M
 LXI D,PROGFCB
 MVI C,WRITE ;WRITE LAST SECTOR
 CALL BDOS
 LXI D,PROGFCB
 MVI C,READ ;READ NEXT SECTOR
 CALL BDOS
 POP D
 POP H
 POP B
;
SAMSEC:
 PUSH B
 LDAX D ;GET A SERIAL NUMBER BYTE

2025/10/30 15:32 63/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 MOV M,A ;AND SLAM INTO BUFFER
 POP B
 INX H
 INX D
 DCR C ;DONE ALL BYTES HERE YET
 JNZ MOVLP
;
 PUSH B
 LXI H,PROGFCB+32 ;SET BACK CURRENT RECORD FOR WRITE
 DCR M
 LXI D,PROGFCB
 MVI C,WRITE ;REWRITE THIS SECTOR
 CALL BDOS
 POP B
 INR B ;BUMP TABLE SCAN INDEX
 LDA TABLEN ;CHECK FOR DONE
 CMP B
 JNC SERIST ;GO FOR NEXT TABLE ENTRY

;
;PUT IN LOGIC HERE TO SPECIFY THE NEXT OF SEQUENTIAL SERIAL NUMBERS
;OR TO GO BACK TO THE TOP OF THE PROGRAM TO GET A NEW SERIAL NUMBER.
;

;
;
;PARAMETER DATA AREA FOR SERAL NUMBER PROGRAM
;
;
;"PROG.COM" FILE ACCESS CONTROL BLOCK
;
PROGFCB:
 DB 'B'-040H ;DISK DRIVE B: ALL THE TIME
 DB 'PROG COM',0,0,0,0
 DS 17 ;ALLOCATION SPACE
;
;
;
;SERIAL NUMBER INSERTION POINT REFERENCE TABLE
;
INSTAB:
 DB ((SERA-0100H-1)/128) ;RECORD NUMBER
 DB ((SERA-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERB-0100H-1)/128) ;RECORD NUMBER
 DB ((SERB-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERC-0100H-1)/128) ;RECORD NUMBER
 DB ((SERC-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERD-0100H-1)/128) ;RECORD NUMBER
 DB ((SERD-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERE-0100H-1)/128) ;RECORD NUMBER
 DB ((SERE-0100H-1) AND 07FH) ;BYTE OFFSET

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 DB ((SERF-0100H-1)/128) ;RECORD NUMBER
 DB ((SERF-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERG-0100H-1)/128) ;RECORD NUMBER
 DB ((SERG-0100H-1) AND 07FH) ;BYTE OFFSET
 DB ((SERH-0100H-1)/128) ;RECORD NUMBER
 DB ((SERH-0100H-1) AND 07FH) ;BYTE OFFSET
;
TABLEN:
 DB (($-INSTAB)/2)-1 ;NUMBER OF TABLE ENTRIES
; ;..MINUS 1 FOR LOOP EASE
SERSTR:
 DS 10H ;PLACE TO KEEP BINARY SERIAL NUMBER
;
;
 END
;
;
;...END OF SERIAL NUMBER INSERT PROGRAM

 The next and final example is a fully functional program
that uses random record I/O under CP/M 2.2 to perform a "useful"
function. The program mixes up the records of a file in an
ordered yet bizarre way in order that the file contents may be
encoded to prevent its use until such time that it is
unscrambled. The unmixing process is also performed by the
program below. The records or "sectors" of the file are mixed and
unmixed in place on the disk in that the disk file is not copied.
Random access file I/O is used to swap records directly. The
comment block at the beginning of the program listing contains an
explanation of the program "intent" and the record mixing
algorithm chosen. Operation of the program, should the reader
wish to utilize the encoding and decoding functions provided, is
also described in the listing.

 This example program is presented as a working example of
random file I/O in use. Detailed description of the internal
workings of the program are beyond the scope of this tutorial but
may be inferred by studying the listing and reading the rather
prolific comment statements. For readers that would like to avoid
the aggravation of typing in the source code for the program
below or for the other programs presented in this BDOS tutorial
series, Part I in Lifelines, November 1982 and Part II in
Lifelines, January 1983, a machine readable copy of the source
code files on an eight inch single density diskette may be
obtained from Michael J. Karas, 2468 Hansen Court, Simi Valley,
California 93065. Please send diskettes preformatted, labeled and
in a returnable mailer of some sort. Also include either stamps
or money for return postage (no postage meter tapes, those are
accepted on date of printing only) for your return package.

2025/10/30 15:32 65/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LISTING FOR SECRET.ASM A RANDOM I/O PROGRAM EXAMPLE

;
;
;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2
;
; THIS THIRD LEVEL DEMONSTRATION PROGRAM IS DESIGNED TO
; DEMONSTRATE RANDOM FILES BY DEVELOPING A 'NOT NECESSARILY
; PRACTICAL' ALGORITHM FOR ENCODING A PROGRAM FILE ON A DISK.
; THE INTENT IS TO MAKE THE TRANSMISSION OF AN OBJECT FILE
; ARBITRARILY SCRAMBLED ON A 128 BYTE BY 128 BYTE RECORD BASIS
; SUCH THAT IF THE TRANSMITTED FILE, EITHER ON FLOPPY DISKETTE
; OR ON THE PHONE LINE WERE INTERCEPTED BY AN ILLICIT THIRD
; PARTY, THEN THE THIRD PARTY WOULD RECEIVE GARBAGE UNLESS
; HE HAD POSSESSION OF THE DECODING ALGORITHM.
;
; THIS PROGRAM WILL IMPLEMENT SUCH AN ALGORITHM IN BOTH AN
; ENCODING AND DECODING FORMAT. HERE IS THE ALGORITHM USED.
; (OBVIOUSLY DUE TO THE FACT THAT THIS APPEARS IN THE
; PUBLIC IMAGE AS A MAGAZINE ARTICLE WILL PREVENT THE FOLLOWING
; ALGORITHM TO BE OF 'SECRET' USE).
;
; THE OPERATOR ENTERS THE COMMAND TO RUN THE PROGRAM AS:
;
; A>SECRET filename.typ E<cr>
;
; where filename.typ is the
; file to encode. And "E"
; indicates to encode the file
;
; or:
;
; A>SECRET filename.typ D<cr>
;
; where filename.typ is the
; file to decode. And "D"
; indicates to decode the file
;
; THE ENCODING PROCESS WRITES THE ENCODED FILE RIGHT IN PLACE
; WITHIN THE USER SPECIFIED FILE. NO MEANS IS USED TO SPECIFY
; IN THE ENCODED FILE THAT IT IS ENCODED.
;
; THE DECODE PROCESS READS AND DECODES THE FILE RIGHT IN PLACE
; WITHIN THE USER SPECIFIED FILE NAME.
;
; THE ALGORITHM LEAVES THE FIRST RECORD OF THE FILE INTACT AND
; DOES NOT ENCODE THE PART OF A FILE BEYOND 128 RECORDS IN SIZE.
; FOR FILES LARGER THAN 128 RECORDS THE FINAL RECORDS BEYOND THE
; 128'TH ARE LEFT UNTOUCHED. THE BDOS IS CALLED TO DETERMINE THE
; SIZE OF THE FILE SO THE NUMBER OF RECORDS IN THE FILE ARE
; KNOWN. THIS NUMBER OF RECORDS WILL BE REFERRED TO HERE AS "NR".

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

; IF "NR" IS GREATER THAN 128 THEN "NR" IS SET TO 128. THEN THE
; FIRST "NR-1" BYTES OF THE FIRST RECORD ARE READ SEQUENTIALLY
; TO MAKE A LIST OF ONE BYTE BINARY NUMBERS WITH A NUMBER OF
; ENTRIES EQUAL TO THE NUMBER OF RECORDS IN THE FILE MINUS ONE,
; UP TO A MAXIMUM OF 127 NUMBERS.
;
; THIS LIST IS THEN PROCESSED TO CONVERT ALL OF THE NUMBERS IN THE
; LIST TO BE WITHIN THE RANGE OF 1 TO "NR-1". THIS CONVERSION IS
; DONE BY FIRST "ANDING" EACH OF THE BYTES IN THE LIST WITH A MASK.
; THE MASK HAS A NUMERICAL VALUE EQUAL TO "NR-1" ROUNDED UP TO
; THE NEXT BIGGEST [(2 ^ N) - 1] VALUE, IE IF THE FILE HAS 5
; RECORDS THE MASK IS 07H. IF THE FILE HAS 59 RECORDS THE MASK
; HAS A VALUE OF 3FH. THE LIST IS THEN SCANNED FOR VALUES THAT
; ARE GREATER THAN "NR-2". EACH VALUE THAT IS GREATER THAN
; "NR-2" IS DIVIDED BY TWO IGNORING THE REMAINDER. FINALLY EACH
; LIST VALUE IS INCREMENTED BY ONE TO MAKE A REAL FILE READABLE
; RECORD NUMBER.
;
; THE LIST IS THEN USED AS A RECORD SCRAMBLE/UNSCRAMBLE LIST.
; FOR SCRAMBLING IT IS SCANNED FROM THE BEGINNING WHILE
; UNSCRAMBLING SCANS THE LIST FROM THE END. SCRAMBLING PROCEDES
; AS FOLLOWS (THE UNSCRAMBLE PROCESS IS THE REVERSE):
;
; THE SECOND FILE RECORD IS NOW INTERCHANGED IN
; POSITION WITH THE RECORD POINTED BY THE FIRST
; NUMBER IN THE LIST. THE THIRD FILE RECORD IS
; INTERCHANGED WITH THE RECORD POINTED TO BY THE
; SECOND LIST VALUE. THIS PROCESS CONTINUES UNTIL
; THE END OF THE LIST. DURING THE PROCESS OF
; INTERCHANGING THE FILE SECTORS IN THIS RATHER
; BIZARRE MANNER, EACH TIME A LIST VALUE IS FOUND
; TO HAVE A LEAST SIGNIFICANT BIT THAT IS EQUAL
; TO "1" THEN THAT RECORD HAS EACH BYTE XOR'ED
; WITH THE RECORD NUMBER.
;
; WRITTEN BY:
; MICHAEL J. KARAS
; 2468 HANSEN COURT
; SIMI VALLEY, CA 93065
; (805) 527-7922
;
;
;
;SYSTEM LEVEL INTERFACE EQUATES
;
BDOS EQU 0005H ;SYSTEM INTERFACE VECTOR
MAKE EQU 22 ;MAKE NEW FILE FUNCTION
SBADDR EQU 26 ;SET DISK BUFFER ADDR
OPEN EQU 15 ;OPEN FILE FUNCTION
CLOSE EQU 16 ;FILE CLOSE FUNCTION
DELETE EQU 19 ;DELETE FILE FUNCTION

2025/10/30 15:32 67/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

RRAND EQU 33 ;READ RANDOM FUNCTION
WRAND EQU 34 ;WRITE RANDOM FUNCTION
WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL
PRINT EQU 9 ;PRINT STRING TILL $
FSIZE EQU 35 ;COMPUTE FILE SIZE FUNCTION
DEFCB EQU 05CH ;DEFAULT FILE CONTROL BLOCK
DEFBUF EQU 080H ;DEFAULT BUFFER LOCATION
;
EXEC EQU 08000H ;EXECUTE SPOT FOR SMALL PROGRAM
BOOT EQU 00000H ;SYSTEM REBOOT ENTRY POINT
;
;
;ASCII CHARACTER DEFINITIONS
;
CR EQU 0DH ;CARRIAGE RETURN
LF EQU 0AH ;LINE FEED
;
;
 ORG 0100H ;START OF A PROGRAM
 LXI SP,STACK ;SETUP A STACK FOR EXECUTION
 LXI D,SNGMSG ;PRINT SIGNON MESSAGE
 MVI C,PRINT
 CALL BDOS
;
;
;CHECK IF THERE WAS A COMMAND LINE FILE NAME
;
 LDA DEFCB+1 ;IF FIRST BYTE 20 THEN NO NAME
 CPI ' '
 JZ CMDERR ;IF NO FILE NAME PRINT ERROR
 LDA DEFCB+17 ;GET OPTION CHARACTER
 CPI 'E' ;CHECK FOR ENCODE
 JZ PROCESS ;GO TO PROCESS IF ENCODE
 CPI 'D' ;CHECK IF DECODE
 JZ PROCESS ;GO PROCESS OF DECODE
;
CMDERR:
 LXI D,ERRM1 ;PRINT ERROR MESSAGE
 MVI C,PRINT
 CALL BDOS
 JMP BOOT ;EXIT IF NO FILE NAME OR OPTION
;
;
;HERE IF AN ENTRY FILE NAME AND A VALID OPTION
;
PROCESS:
 STA OPTION ;SAVE OPTION CHAR FOR LATER
 ;...REFERENCE
 XRA A ;SETUP FCB FOR OPEN
 STA DEFCB+12 ;ZERO EXTENT BYTE
 STA DEFCB+32 ;ZERO CURRENT RECORD BYTE

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 STA DEFCB+35 ;ZERO R2 BYTE
 LXI H,0000H
 SHLD DEFCB+33 ;ZERO RANDOM RECORD NUMBER
;
 MVI C,OPEN ;OPEN FILE USER SPECIFIED
 LXI D,DEFCB ;USE DEFAULT FCB BUILT BY CCP
 CALL BDOS ;GO ATTEMPT OPEN
 INR A ;CHECK IF FOUND
 JNZ FOUND
;
 MVI C,PRINT ;PRINT NOT FOUND ERROR
 LXI D,ERRM2
 CALL BDOS
 JMP BOOT ;EXIT
;
;
;FOUND FILE SO LETS NEXT COMPUTE ITS FILE SIZE
;
FOUND:
 LXI D,DEFCB ;THAT SAME FCB AGAIN
 MVI C,FSIZE
 CALL BDOS ;GET THE FILES SIZE IN RECORDS
 LHLD DEFCB+33 ;GET SIZE OF THE FILE
 MOV A,H ;CHECK IF GREATER THAN 128 RECORDS
 ORA A
 JNZ TOBIG
 MOV A,L
 ORA A ;CHECJ IF FILE EMPTY OR ONLY ONE RECORD
 JZ TOSMALL
 CPI 1
 JZ TOSMALL
 CPI 129
 JC SIZINA ;WE HAVE SIZE IN (A)
TOBIG:
 MVI A,128 ;SET SIZE TO 128 DEFAULT
SIZINA:
 STA NR ;SAVE NUMBER OF RECORDS
 JMP READFST
;
TOSMALL:
 MVI C,PRINT ;PRINT FILE SIZE ERROR MESSAGE
 LXI D,ERRM3
 CALL BDOS
 JMP BOOT
;
;
;READ FIRST RECORD INTO LIST BUFFER
;
READFST:
 LXI D,LIST ;SET DMA ADDRESS TO LIST BUFFER
 MVI C,SBADDR

2025/10/30 15:32 69/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 CALL BDOS
 LXI H,0000H ;SET FIRST RECORD
 SHLD DEFCB+33
 XRA A
 STA DEFCB+35 ;CLEAR R2 BYTE
 MVI C,RRAND ;READ RANDOM FIRST RECORD
 LXI D,DEFCB
 CALL BDOS ;NO NEED TO CHECK READ ERROR BECAUSE
 ;..WE KNOW THAT THESE RECORDS EXIST
;
;
;HERE TO PROCESS LIST INTO A SET OF NUMBERS THAT FIT OUT FILE
;RECORD COUNT RANGE.
;
 LDA NR ;FETCH NUMBER OF RECORDS
 DCR A ;SET NR-1
;
 MVI B,0FFH ;INITIAL MASK VALUE
 MVI C,07H ;NUMBER OF TIMES TO ROTATE FOR MASK
;
MKLP:
 RAL ;CHECK FOR ZERO BIT IN NR-1
 JC HMSK ;EXIT WE HAVE OUR MASK ONE BIT FROM (A)
 PUSH PSW
 MOV A,B ;PUT A ZERO BIT INTO MASK
 ORA A ;CLEAR CARRY
 RAR ;PUT ZERO IN
 MOV B,A
 POP PSW
 DCR C ;DEBUMP SHIFT COUNT
 JNZ MKLP
;
HMSK: ;HERE IF (B) HAS LIST MASK VALUE
 LDA NR ;GET NUMBER OF VALUES IN LIST
 DCR A
 MOV C,A ;PUT LOOP COUNTER INTO (C)
 MOV D,A ;SAVE NR-1 IN (D)
 LXI H,LIST ;POINT AT LIST
LSTPROC:
 MOV A,M ;GET A LIST BYTE
 ANA B ;MASK IT
 CMP D ;IS RESULT GREATER THAN NR-2
 JC VALOK ;VALUE IS OK
 ORA A ;DIVIDE BY TWO IF TOO BIG
 RAR
VALOK:
 INR A ;SET VALUES TP FOR REAL RECORD NUMBERS
 MOV M,A ;PUT CONVERTED NUMBER INTO LIST AGAIN
 INX H ;BUMP LIST POINTER
 DCR C ;DEC LOOP COUNTER
 JNZ LSTPROC ;DO ALL BYTES OF LIST

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

;
;
;ENCODE/DECODE THE FILE HERE
;
ENCODE:
 LXI H,LIST ;KEEP A POINTER TO THE LIST
 LDA OPTION ;IF OPTION IS 'E' WE GO FORWARD
 CPI 'E'
 MVI A,1 ;DEFAULT FORWARD CURRENT RECORD
 JZ FORWA ;GO FORWARD
 LDA NR ;INDEX TO END OF LIST FOR DECODE
 DCR A ;SET START RECORD FOR DECODE
 MOV E,A
 DCR E ;ZERO BASE INDEX
 MVI D,0
 DAD D
;
FORWA:
 SHLD LISTP ;SAVE LIST POINTER
 STA CURR ;SET CURRENT RECORD NUMBER TO START
 LDA NR
 DCR A
 STA CNTR ;SET NUMBER OF SWAPS
;
ENCLP:
 LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS
 MVI C,SBADDR
 CALL BDOS
 LDA CURR ;READ CURRENT RECORD
 MOV L,A
 MVI H,00
 SHLD DEFCB+33 ;SET RECORD NUMBER
 LXI D,DEFCB
 MVI C,RRAND ;READ THAT RECORD
 CALL BDOS
 ORA A ;CHECK ERROR
 JNZ DSKERR
;
 LXI D,BUF2 ;SET BUFFER 2 AS DMA ADDRESS
 MVI C,SBADDR
 CALL BDOS
 LHLD LISTP ;GET SWAP POSITION
 MOV L,M
 MVI H,00
 SHLD DEFCB+33 ;SET SWAP RECORD NUMBER
 LXI D,DEFCB
 MVI C,RRAND ;READ SWAP RECORD
 CALL BDOS
 ORA A ;CHECK ERROR
 JNZ DSKERR
;

2025/10/30 15:32 71/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 LHLD LISTP ;IS SWAP RECORD AN ODD NUMB
 MOV B,M ;SABE XOR PATTERN IN (B)
 MOV A,M
 RAR
 JNC SWRT ;GO DO SWAP WRITE DIRECTLY IF EVEN
 LDA OPTION ;WHICH BUFFER TO XOR
 LXI H,BUF2 ;DEFAULT FOR 'E'
 CPI 'E'
 JZ INB2 ;USE BUFFER 2
 LXI H,BUF1 ;IF DECODE USE BUFFER 1
INB2:
 MVI C,128 ;BUTE COUNT OF XOR
XORLP:
 MOV A,M ;GET A BYTE TO XOR
 XRA B
 MOV M,A ;PUT BYTE BACK
 INX H ;BUMP BUFFER POINTER FOR XORING
 DCR C ;DEC BYTE COUNT
 JNZ XORLP
;
SWRT:
 LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS
 MVI C,SBADDR
 CALL BDOS
 LHLD LISTP ;GET SWAP POSITION
 MOV L,M
 MVI H,00
 SHLD DEFCB+33 ;SET SWAP RECORD NUMBER
 LXI D,DEFCB
 MVI C,WRAND ;WRITE SWAP RECORD
 CALL BDOS
 ORA A ;CHECK ERROR
 JNZ DSKERR
;
 LXI D,BUF2 ;SET BUFFER 2 AS DMA ADDRESS
 MVI C,SBADDR
 CALL BDOS
 LDA CURR ;WRITE CURRENT RECORD
 MOV L,A
 MVI H,00
 SHLD DEFCB+33 ;SET RECORD NUMBER
 LXI D,DEFCB
 MVI C,WRAND ;WRITE THAT RECORD
 CALL BDOS
 ORA A ;CHECK ERROR
 JNZ DSKERR
;
 LDA CURR ;FETCH LOOP PARMS
 MOV B,A
 LHLD LISTP
;

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

 LDA OPTION ;CHECK OPTION
 CPI 'E'
 JZ INCF ;IF ENCODE INCR FORWARD
;
DECB:
 DCX H ;DECREMENT DOWN THROUGH LOOP
 DCR B
 JMP PSVE ;SAVE PARMS
INCF:
 INX H
 INR B
PSVE:
 SHLD LISTP ;SAVE NEW LIST POSITION
 MOV A,B
 STA CURR
;
 LDA CNTR ;FETCH LOOP COUNTER
 DCR A
 STA CNTR
 JNZ ENCLP ;GO TO LOOP TO PROCESS MORE IF
 ;NOT DONE YET
;
;
;HERE WE ARE DONE WRITING SO LETS CLOSE UP AND GO HOME
;
 LXI D,DEFCB
 MVI C,CLOSE
 CALL BDOS
 INR A ;CHECK ERROR CODE
 JZ DSKERR
;
 MVI C,PRINT ;PRINT DONE MESSAGE
 LXI D,DONMSG
 CALL BDOS
 JMP BOOT ;EXIT
;
;
;EXIT POINT WITH ERROR MESSAGE IF THE DISK WRITE OPERATION
;RESULTED IN AN ERROR
;
DSKERR:
 LXI D,ERRM4 ;PRINT GARBAGE FILE ERROR
 MVI C,PRINT
 CALL BDOS
 JMP BOOT ;EXIT FOR THE POOR GUY
;
;
;PROGRAM OPERATIONAL MESSAGES
;
SNGMSG:
 DB CR,LF,'MICRO RESOURCES Disk File Scramble and'

2025/10/30 15:32 73/74 SLIDING INTO BDOS

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 DB CR,LF,'Unscramble Utility Designed to Demonstrate'
 DB CR,LF,'CP/M Ver 2.2 Random Record I/O. (1/24/82)','$'
;
DONMSG:
 DB CR,LF,'File Processing Complete','$'
;
ERRM1:
 DB CR,LF,'No File Name Specified or Improper Option','$'
;
ERRM2:
 DB CR,LF,'Specified File Not Found','$'
;
ERRM3:
 DB CR,LF,'Cannot Process Files with 0 or 1 Record(s)','$'
;
ERRM4:
 DB CR,LF,'File I/O Error, This Error Should NOT Normally'
 DB CR,LF,'Happen, But the File is now Garbaged...','$'
;
;
;PROGRAM DATA STORAGE SECTION
;
OPTION:
 DS 1 ;PLACE TO STORE COMMAND LINE OPTION CHAR
;
NR:
 DS 1 ;NUMBER OF RECORDS TO SWAP
;
CNTR:
 DS 1 ;ENCODE/DECODE LOOP COUNTER
;
CURR:
 DS 1 ;CURRENT SWAP SECTOR
;
LISTP:
 DS 2 ;LIST SCAN POINTER
;
LIST:
 DS 128 ;LIST BUFFER
;
BUF1:
 DS 128 ;DATA BUFFER 1
;
BUF2:
 DS 128 ;DATA BUFFER 2
;
 DS 36
STACK EQU $;USER STACK AREA
;
;
 END

Last update: 2018/01/24 13:44 cpm:sliding_into_bdos https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

https://hc-ddr.hucki.net/wiki/ Printed on 2025/10/30 15:32

;
;
;+++...END OF FILE

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

Last update: 2018/01/24 13:44

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/sliding_into_bdos?rev=1516801498

	SLIDING INTO BDOS

