2026/02/17 22:25 1/11 RSM fir CP/M 2.2

Fetter Text

RSM

In der c't 1/87 und 2/87 gab es interessante Artikel Uber resident system module fur CP/M 2.2,
vergleichbar mit den RSX fur CP/M 3. Es handelt sich hier um nachladbare kleine Programme, die
etwa BDOS oder BIOS erweitern, wie zusatzliche Geratetreiber 0.a.

CP/M 2 lernt dazu. Modulare Systemerweiterungen auch fur das 'alte' CP/M von Eckhard Lieber und
Thomas von Massenbach Teil 1 c't 1987, Heft 1, S. 124-135; Teil 2 c't 1987, Heft 2, S. 78-85

Hier kommt das PRL-Format (http://www.seasip.demon.co.uk/Cpm/prl.html) zum Einsatz.
Beide Autoren und auch die c't haben der Veroffentlichung der Artikel im Internet zugestimmt.
Teil 1 c't 1987, Heft 1, S. 124-135

Bestimmt haben Sie bei der Arbeit mit CP/M 2 schon haufiger die eine oder andere nltzliche
Systemfunktion vermift, besonders, wenn Sie einmal ausfuhrlich mit dem moderneren CP/M Plus
'spielen' durften. Nun ist der einfachste Weg zu mehr Komfort, der Umstieg auf CP/M Plus, nicht
immer gangbar - nicht jeder CP/M-2- Rechner ist gleichermaRen CP/M-Plus-geeignet. Man kann aber
auch dem guten alten CP/M 2 zusatzliche Fahigkeiten verleihen.

Die fruhen Versionen des Betriebssystems CP/M bieten, bedingt durch ihr hohes Alter und die zur Zeit
ihrer Entwicklung unabdingbaren Speicherplatz- Sparmallnahmen, nur die notwendigsten
Systemfunktionen. Doch trotz der im Vergleich mit modernen Betriebssystemen spartanischen
Ausstattung ist CP/M 2.2 noch immer weit verbreitet - um flr andere 'Disk Operating Systems' (DOS)
ein ahnlich groBes Software-Angebot auf die Beine zu stellen, bedurfte es des guten Namens gewisser
Hardware-Hersteller - und schlieBlich gab es auch bei CP/M Weiterentwicklungen. Eine davon
mundete in die letzte CP/M-Version fur die 8- Bit-Prozessoren 8080/280, die Version 3.0 (CP/M Plus).
Daneben wurden in Anwenderkreisen diverse Konzepte fur Systemerweiterungen 'ausgekocht’, um
den von Haus aus recht mageren Komfort von CP/M 1.4 und 2.x zu verbessern. Allerdings weisen
nahezu alle diese Konzepte drei gravierende Mangel auf:

e Die meisten Erweiterungen fihren umfangreiche Modifikationen der Systemsoftware durch. Aus
diesem Grund lassen sie sich nicht beliebig mit anderen Erweiterungen kombinieren, da sie sich
gegenseitig behindern oder das ganze System zum Zusammenbruch bringen kénnen.

e Die Erweiterungen belegen, wie zum Beispiel MicroShell, nicht unerheblich viel Speicherplatz
mit Funktionen, die nur selten benoétigt werden.

¢ Eigene Erweiterungen lassen sich nicht einbinden, da keine einheitliche Schnittstellen
konvention gegeben ist.

Pflichten

Diese Mangel schranken die Einsatzmaglichkeiten herkdmmlicher CP/M- Erweiterungen erheblich ein,
so daB ihnen trotz prinzipieller Vorzige eine groRere Verbreitung versagt geblieben ist. Aulerdem
betreffen die gewiinschten Anderungen oft lediglich die elementaren Ein-/Ausgabefunktionen

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/


http://www.seasip.demon.co.uk/Cpm/prl.html

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

(beispielsweise Zeichenumkodierung fur spezielle Drucker) und lassen sich deshalb genauso gut im
BIOS einbauen. In vielen Féllen ist das jedoch nicht mdglich, zumal BIOS- Anderungen immer mit
relativ groBem Aufwand und dem Risiko verbunden sind, dal8 das System hinterher nicht mehr richtig
lauft.

Vor diesem Hintergrund reifte der EntschluB, ein neues Konzept fur Systemerweiterungen zu
realisieren, das im folgenden beschrieben werden soll. Als erstes wurde ein 'Pflichtenheft' erstellt:

1. Die Systemerweiterungen sollen das Kernbetriebssystem (CCP, BDOS und BIOS) unberuhrt lassen.
2. Sie sollen vom Anwender je nach Bedarf beliebig zusammengestellt werden kdnnen.

3. Die Unabhangigkeit von der BIOS-Implementation und der SpeichergroRe des verwendeten
Systems muls gewahrleistet sein.

4. Einzelne Funktionen oder Funktionsgruppen sollen in sich abgeschlossene, selbstandige Einheiten
bilden.

5. Um komplexe Funktionen schnell verfagbar zu machen, soll der Einsatz einer Hochsprache maéglich
sein.

6. Zur Realisierung der einzelnen Erweiterungen sollen gebrauchliche Assembler und Compiler
benutzt werden konnen.

Grundsatze

Zum besseren Verstandnis, wie sich ohne Anderung der Systemteile CCP, BDOS und BIOS Anderungen
an den Systemfunktionen vornehmen lassen, sei zunachst dargelegt, wie der Speicher eines Rechners
unter CP/M organisiert ist und wie ein RSM in das Betriebssystem integriert wird.

Adresse: Inhalt:

Oh: jp wboot Sprungvektor ins BIOS, fuhrt Warmstart aus

3h: db iobyte I/0-Byte

4h: db cdsk Disk/User

5h: jp bdos Sprungvektor, uber den alle Aufrufe des
Betriebssystems erfolgen

100h: Beginn der TPA (Speicherbereich fur
Anwenderprogramme)

bdos-806h: Beginn des Standard-CCP (wird von vielen
Anwenderprogrammen uUberschrieben)

bdos: Beginn des Kernbetriebssystems (BDOS)

wboot-3: Beginn des gerateabhangigen Teils des

Betriebssystems (BIOS)
Die Speicheraufteilung bei CP/M 2. Uber die Sprungbefehle auf den
Adressen 0 und 5 kann man die Lage des Systems im Speicher bestimmen.

Das Betriebssystem CP/M liegt grundsatzlich am oberen Ende des verfugbaren Speichers, der bei der
Adresse Null beginnen und far CP/M 2.2 mindestens 20 KByte umfassen muR. Transiente Programme
darfen den Speicherbereich von 100h bis maximal zur Adresse bdos-1 nutzen; die Systemfunktionen

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25



2026/02/17 22:25 3/11 RSM fir CP/M 2.2

werden durch einen CALL auf die Adresse bdos aufgerufen. Damit die transienten Programme diese
Adresse nicht explizit 'wissen' missen - was es unmoglich machen wurde, ein Programm ohne
Anderungen auf Rechnern mit unterschiedlichem Speicherausbau zu verwenden -, erfolgt der
Einsprung ins BDOS nicht direkt, sondern tber einen Sprungbefehl (Sprungvektor) auf Adresse 5h.
Aus diesem lalst sich auch die GroBe des nutzbaren Speichers ableiten: Die letzte freie Adresse ist das
Sprungziel (16-Bit-Wert auf Adresse 6h) minus eins. So enthalten nur drei Bytes in einem garantiert
vorhandenen Speicherbereich alle notwendigen Informationen Uber die 'groBen Unbekannten' BDOS-
Einsprung und Speicherausbau.

Wenn man nun das System erweitern will, so mu8 man hierfur Platz schaffen. Dazu wird
zweckmaBigerweise das ohnehin unbestimmte obere Ende des Speichers herangezogen, in dem man
die Zieladresse des Sprungs bei 5h um einen noch zu ermittelnden Betrag erniedrigt. Auf diese Weise
entsteht unterhalb des CCP ein vor Uberschreiben geschitzter Speicherbereich, in den beliebige
Programme geladen werden konnen. Es muB lediglich dafur gesorgt sein, daS an der Stelle, auf die
der neue Sprungvektor bei Adresse 5h zeigt, ein Weitersprung zum BDOS eingerichtet ist. Alternativ
kann man den Sprung abfangen und die BDOS- Unterprogramme durch neuen Code ersetzen - dem
Tuftler sind keine Grenzen gesetzt.

Nach demselben Verfahren lassen sich auch mehrere Erweiterungen hintereinanderhangen. Solange
das Speicherende nur anhand des Sprungvektors ermittelt wird, ist es vollig gleich glltig, ob dieser
noch auf den BDOS-Anfang zeigt oder bereits 'verbogen' wurde.

Um das Entfernen von Erweiterungen braucht man sich normalerweise keine Sorgen zu machen. Da
die Warmstartroutine im BIOS unter anderem den Sprungvektor initialisiert, genltgt ein Control-C oder
JP 0, um die ursprungliche Speicherkonfiguration wiederherzustellen.

Feinheiten

Dies ist also das Arbeitsprinzip beim RSM-Konzept. Ein paar weitere Punkte lassen sich am besten an
einem Beispiel erlautern, einem kleinen Druckertreiber fir den TRS80 Daisy Wheel Il Printer.

- daisy.mac: Ein erstes Beispiel fir ein RSM.

Ahnlich wie eine RSX unter CP/M Plus besitzt ein RSM einen standardisierten Vorspann, der aus zwei
Sprungbefehlen, einem Namen und einer Prifsumme besteht. Der erste der Sprungbefehle fuhrt in
das RSM, wo Uberpruft wird, ob ein BDOS- Aufruf (Funktionsnummer in Register C) abzufangen und
umzufunktionieren ist oder nicht. Der zweite Sprung (JP 0) wird beim Laden des RSM initialisiert und
stellt den Ausgang zum Betriebssystem oder einem weiteren RSM dar. Auf die bei den
Sprungvektoren folgt der Modulname, der acht Zeichen umfaft, sowie eine 16-Bit- Priufsumme Uber
den Namen, die der Lader Uberpruft; nur bei positivem Resultat wird das geladene Modul in das
System eingebunden.

Das Beispiel zeigt aber nicht nur die RSM-Formalitaten, sondern auch zwei wichtige
programmiertechnische Besonderheiten: Zum einen sollte man, sofern im RSM
Unterprogrammaufrufe oder PUSH-/POP-Operationen verwendet werden, stets einen lokalen Stack
einrichten (wie es Ubrigens auch im BDOS geschieht). Bei vielen Anwenderprogram men ist der Stack
namlich so knapp bemessen, dal$ er bei zusatzlicher Belastung durch das RSM Uberlauft - in der Folge
treten dann irgendwelche obskuren Fehler auf, deren Ursache in der Regel nur sehr schwer zu finden
ist.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/



Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

Zum anderen sollten Aufrufe von BDOS-Funktionen immer Uber den zweiten Sprung im RSM-Vorspann
abgewickelt werden ('call exit') statt Uber Adresse 5h. Sonst kann es passieren, dal das RSM in sich
selbst hangenbleibt. Von dieser Regel gibt es wie Ublich auch Ausnahmen, doch dazu ein andermal.

Die zweite Forderung kann bei Verwendung mehrerer RSMs dazu fuhren, daf beim Laden der RSMs
eine bestimmte Reihenfolge einzuhalten ist: Ruft ein RSM eine Funktion aus einem anderen auf, muf§
dieses in der Kette hinter dem aufrufenden angesiedelt, also vorher geladen worden sein.

Format

Aus den Punkten 2 und 3 des Pflichtenheftes folgt, dalS der Speicherbereich fur eine
Systemerweiterung anders als bei transienten Programmen grundsatzlich nicht feststeht. Das RSM
muB daher als verschiebbarer (relokalisierbarer) Objektcode vorliegen, der erst beim Laden in
ablauffahigen Maschinencode umgesetzt wird.

Die Wahl fiel auf das von MP/M her bekannte PRL-Dateiformat (Page Relocatable), das auch fur die
RSX des CP/M Plus zum Einsatz kommt. Anders als REL-Objektcode, wie ihn viele Assembler (RMAC,
M80, ...) und Compiler erzeugen, a3t sich PRL- Objektcode nur seitenweise (I Seite = 256 Byte) und
nicht byteweise verschieben, da zum Relokali-

sieren nur ein 8-Bit-Offset verwendet wird (flr das hoherwertige Byte der anzupassenden Adressen).
Daflr hat das PRL-Format den gewaltigen Vorteil, dal8 die Relokalisierungsinformation nicht wie beim
REL-Format in den Objektcode eingestreut ist, sondern als Tabelle dahinter steht. Der
nichtrelokalisierte PRL-Code sieht also schon wie richtiger Maschinencode aus (ORG-Adresse 100h),
was man von REL-Code nicht behaupten kann, und kann demzufolge mit einem gewo6hnlichen
Debugger ausgetestet werden; man muf ihn nach dem Einlesen lediglich um 100h - die GroRe des
Vorspanns - nach unten verschieben.

PRL- Dateien lassen sich mit dem LINK80 von Digital Research unmittelbar aus REL-Dateien erzeugen.
Falls kein LINK80 zur Verfugung steht, erflllt das BASIC- Programm GENRSM denselben Zweck, wenn
auch etwas umstandlicher: Es erwartet als Eingabe zwei relokalisierte Objektcode-Dateien des RSM
mit unterschiedlichen Startadressen (100h und 200h).

Dazu ist der RSM-Quelltext zunachst wie fur ein transientes Programm mit ORG 100H zu
assemblieren. AnschlieBend mult man mit dem Editor die Argumente aller ORG-Anweisungen um
100h erhdhen und den Assembler ein zweites Mal bemUhen. Sofern der Assembler REL-Dateien
erzeugt, mussen die beiden Objektdateien noch gelinkt oder 'geladen' werden.

Nun kann man GENRSM starten, das die Eingabedatei 1 (ORG-Adresse 100h) in die RSM-/PRL-
Ausgabedatei Ubertragt und dabei byteweise mit der Eingabedatei 2 (ORG- Adresse 200h) vergleicht,
bei Bedarf das zugehorige Bit in der Relokalisierungstabelle setzt und zum SchlufS die Tabelle sowie
die Dateilange in die Ausgabedatei schreibt. Eine Verwechslung der Eingabedateien fuhrt zum
Abbruch, ebenso wie der Fall, daB man beim Andern der ORG-Anweisung nicht auf gepaRt und einen
anderen Wert als 200h eingetragen hat.

Dagegen erkennt GENRSM nicht, wenn in den Eingabedateien die Datenbereiche des RSM (Buffer,
Stack) nicht vorhanden oder abgeschnitten sind. Manche Assembler beziehungsweise Linker
Ubernehmen mit DBFS (DS) reservierte Bereiche, die am Ende des Quelltextes stehen, nicht in die
(COM-)Ausgabedatei, um diese nicht unndétig aufzublahen. Dem kann man jedoch sehr einfach
abhelfen, indem man das letzte vom RSM belegte Byte mit DEFB oder DEFW (DB/DW) initialisiert.

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25



2026/02/17 22:25 5/11 RSM fir CP/M 2.2

Bei Verwendung von Z80-Assemblern und -Linkern, die nur absolute Codesegmente erzeugen kdnnen
(beispielsweise ZASM und ZLINK), muf8 im BASIC-Programm an den beiden vermerkten Stellen ('Siehe
Text') noch der Offset von 256 dazuaddiert werden. Denn in diesem Fall beginnt der RSM-Code in der
Eingabedatei 2, bedingt durch die ORG-200H-Anweisung, erst 256 (100h) Bytes nach dem
Dateianfang.

Weiterhin kann die im BASIC-Programm vorgegebene Dateiklasse fur die Eingabedateien (BIN), je
nach Linker, in 'COM' zu andern sein.

Um die Vorgehensweise bei den unterschiedlichen Assemblern und Linkern noch einmal zu
verdeutlichen, ist oben ein kleines Beispiel abgedruckt, das alle notwendigen Quelltextanderungen
und Benutzereingaben zur Erzeugung des RSM 'MODUL' wiedergibt. Dieses RSM lenkt die
Druckerausgaben eines Programms (BDOS- Funktion 5) auf den Punch-Kanal um (BDOS-Funktion 4).

-> rsm: Drei Beispiele, wie man mit verschiedenen Assemblern und Linkern eine RSM-Datei im PRL-
Format erzeugt.

-> genrsm.bas: Dieses MBASIC-Programm erzeugt PRL-Dateien, wenn der LINK8O0 nicht zur
Verflgung steht.

Record 1, Byte 0 : 0

Record 1, Byte 1,2 : Lange des Programms in Bytes
Record 1, Byte 3 : 0 (nicht benutzt)

Record 1, Byte 4,5 : Zusatzlich bendtigter Speicher
Record 1, Byte 6 - 127 : 0

Record 2, Byte 0 - 127 :0

Record 3 und folgende enthalten den eigentlichen Maschinencode.
Direkt anschlieBend folgt eine Bit-Tabelle, in der alle
adrelBabhangigen
Bytes mit jeweils einem Bit vermerkt sind, beginnend mit dem
hochstwertigen Bit des ersten Bytes der Tabelle. Ein gesetztes Bit
bedeutet, daB das zu gehdrige Byte mit einem Offset zu versehen ist.
Der
Offset ist das hoherwertige Byte der Zieladresse - 100h.

So ist das PRL-Dateiformat aufgebaut. Dem verschiebbaren Maschinencode ist ein 256-Byte-Header
vorangestellt.

Laden

Und wie kommen die im PRL-Format vorliegenden RSMs nun an ihren Platz? Da der CCP bei den CP/M-
Versionen vor 3.0 auf Systemerweiterungen noch nicht eingerichtet ist, muRte ein spezielles
Ladeprogramm RSM.COM geschrieben werden. Er erflllt folgende Aufgaben (in der Reihenfolge der
Ausflhrung):

CPU, CP/M und Datei testen

Bei einer 8080/85-CPU, einer Nicht-PRL-Datei (erstes Byte ungleich 0) oder unter CP/M Plus verweigert
der Lader die Mitarbeit.

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/



Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

Platz reservieren

Die Summe der Angaben in den Bytes 2, 3 und 4, 5 der PRL-Datei ergibt die Lange des RSM. Um
diesen Wert wird das Ende der TPA vorverlegt, es sei denn, die verbleibende TPA ist kleiner als 8
KByte (Abbruch). Beim ersten zu ladenden RSM ist noch die Lange des CCP zu berucksichtigen (2
KByte beim Standard-CCP), der erhalten bleiben muRB.

RSM laden und relokalisieren

Der Lader liest die in der PRL-Datei angegebene Anzahl Programmbytes unmittelbar in den
ZieladreBbereich ein und relokalisiert sie an Ort und Stelle. Ein vorzeitiges Ende der PRL-Datei fuhrt
zum Abbruch.

Prufsumme abfragen

AnschlieBend wird die Prifsumme Uber den Modulnamen gebildet und mit der im RSM- internen
verglichen. Bei Ungleichheit war es vielleicht doch keine RSM-PRL- Datei... (Abbruch).

Sprungvektoren einrichten

Die vorletzte Aktion des Laders (nach der '0.K.'-Meldung) ist das Setzen des neuen Sprungvektors auf
Adresse 5h und des 'Fortsetzungs'vektors im RSM. Ab diesem Zeitpunkt ist das Modul in das System
eingebunden und geschutzt.

Modul aktivieren

Manche RSMs bendtigen eine Initialisierung, die zweckmaRigerweise durch den ersten Auf ruf (erster
'‘BDOS-Call' nach dem Einbinden ins System) ausgel6st werden sollte. Dazu fordert der Lader zum
SchluB einen 'Direct Console Input' an (BDOS-Funktion 6 mit E = FFh), dessen Ergebnis ignoriert wird.

Die Forderung, den CCP zu erhalten, ergibt sich vor allem daraus, da CP/M zwei Wege zur Verfugung
stellt, aus einem Anwenderprogramm zur Kommandoebene des Systems zurickzukehren - den
Warmstart (JP 0) und den Rucksprung (RET) zum CCP. Beim RSM-Lader ist sogar nur der zweite Weg
gangbar, da ein Warmstart unter anderem den Sprungvektor zum BDOS auf die urspringliche
Adresse zuruckstellen und damit ein gerade eingebundenes RSM sofort wieder 'entbinden' wirde.
Aullerdem: Was nltzt einem ein System mit RSM(s), wenn man wegen des fehlenden CCP kein
Programm mehr aufrufen kann?

Um den Lader zu starten, ist eine Zeile nach dem Muster
A>RSM <filename>

einzugeben. Als Dateiklasse wird 'RSM' angenommen, so fern sie nicht explizit angegeben ist. Fehlt
der Dateiname oder enthalt er Jokerzeichen ('*'/'?'), bricht RSM.COM ab. AuBer bei falscher CPU endet
der Programmlauf immer mit einer Aufzahlung der eingebundenen RSMs und ihrer Anfangsadressen.

Es friert

Wie gesagt bleibt RSMs ohne besondere Vorkehrungen nur bis zum nachsten Warmstart aktiv.
Mitunter besteht jedoch der Wunsch oder auch die Notwendigkeit, die Erweiterung(en) zu erhalten,
beispielsweise, wenn daruber eine submit- ahnliche Ablaufsteuerung per Eingabedatei stattfindet

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25



2026/02/17 22:25 7/11 RSM fir CP/M 2.2

(dem GET-Befehl von CP/M Plus vergleichbar).

Diese Aufgabe Ubernimmt das RSM 'FREEZE'. Dazu mufR FREEZE, und das ist leider nicht zu umgehen,
die 'erste Pflicht' verletzen und in das existierende System eingreifen: Es klinkt sich in die BIOS-
Sprungleiste ein, indem es den Sprung zur Warmstart-Routine bei Adresse bios + 3 auf eine eigene
Routine umlenkt. Diese errichtet einen lokalen Stack, initialisiert den BDOS-Sprungvektor auf den
Anfang von FREEZE, setzt das Diskettensystem zurtick (BDOS-Funk tion 13) und verzweigt zum
zweiten Einsprang in den CCP (Adresse ccp + 3, CCP-Aufruf mit Loschen des Eingabepuffers).

-> freeze.mac: Damit man RSMs nicht nach jedem Warmstart neu laden muf3, kdnnen sie mit
diesem Spezial-RSM 'eingefroren' werden.

Nach dem Aktivieren von FREEZE sind alle vorher geladenen RSMs warmstartsicher installiert, ebenso
der CCP und das BDOS, die somit beim ‘Warmboot' nicht mehr nachge laden zu werden brauchen -
ein recht erfreulicher Randeffekt. Selbstverstandlich kdnnen hinterher weitere Moduln geladen
werden, die allerdings nicht mehr geschitzt sind, es sei denn, man ladt FREEZE erneut. In dem Fall
bleibt jedoch die alte Kopie von FREEZE im Speicher und belegt eine wertvolle Page.

Will man das urspriingliche System wiederherstellen, kann man die 'Brutalmethode' anwenden
(Kaltstart des Systems) oder etwas subtiler vorgehen, indem man FREEZE 'in den Selbstmord treibt':
Bei Aufruf der BDOS-Funktion 255 restauriert FREEZE namlich den alten Warmstartvektor in der BIOS-
Sprungleiste und |6st einen Warmstart aus. Zuvor wird noch ein BDOS-Call Nummer 254 abgesetzt,
der die bis dato geschitzten RSMs Uber den bevorstehenden 'Rausschmiss' informiert. Diese kénnen
dann eventuell notwendige Sicherungsmafnahmen durchfihren.

Mit dem anschlieBenden Warmstart steht die TPA wieder in alter GroBe zur Verfugung. 'Alt' heilt hier:
vor dem Laden des gerade deaktivierten FREEZE. Befinden sich mehrere FREEZE-Moduln im Speicher,
wird nur der Bereich bis zum nachsten FREEZE freigegeben. Man kann also gezielt mehrere Blocke
von Erweiterungen 'einfrieren' und einzeln wieder 'loseisen' - eine Moglichkeit, die unter Umstanden
wertvoller sein kann als der vorhin zitierte wertvolle Speicherplatz.

Der Aufruf der BDOS-'Anti- FREEZE'-Funktion kann von jedem Programm aus erfolgen (anstelle des JP
0). Selbst wenn kein FREEZE-Modul im Speicher steht, sind Probleme wegen der Funktionsnummer
nicht zu befurchten, weil das BDOS bei unbekannten Funktionen so fort 'returnt’. Alternativ ist das
folgende Minimalprogramm geeignet.

Fortzusetzen

Mit den hier vorgestellten Programmen ist das Handwerkszeug zum Erstellen und Arbeiten mit RSMs
komplett, soweit es die Programmierung in As semblersprache betrifft. Auf weitere Aspekte des RSM-
Konzeptes - etwa die Realisierung komplexerer Funktionen in einer Hochsprache (Fortran) - kdnnen
wir aus Platzgrinden erst im zweiten Teil des Artikels eingehen. Dort werden auch noch ein paar
nutzliche Applikationen zu finden sein, zum Beispiel ein Zeileneditor, der die BDOS-Funktion 10 (Read
Console Buffer) ersetzt und das Zurtckholen und Editieren der letzten Eingaben erlaubt.

Literatur

[1] Bernd Pol, Vom Umgang mit CP/M, Eine allgemeinver standliche EinfUhrung, IWT Verlag,
Vaterstetten, 1983

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/



Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

[2] Allan R.Miller, Mastering CP/M, Sybex Inc., Berkeley, California, 1983

[3] Rodnay Zaks, How to Pro gram the Z80, Sybex Inc., Ber keley, California, 1980
[4] LINK80 Operator's Guide, Digital Research, 1980

[5] MP/M Il Operating System, Programmer's Guide, Digital Research, 1981

[6] CP/M Operating System, Ma nual, Digital Research, 1982

[7] Hans-Peter Sauer, Veranderlich, Systemerweiterungen unter CP/M-Plus, c't 4/86

-> rsm.mac: Das Ladeprogramm fir die RSMs ist in zwei Versionen abgedruckt: Als Assembler-
Quelltext fur diejenigen, die alles genau wissen wollen, ...
... und als Hexdump flr diejenigen, die es schnell und ohne viel Aufwand zum Laufen bringen wollen.

Teil 2 c't 1987, Heft 1, S. 78-85

Nachdem Sie vielleicht schon die ersten Erfahrungen mit RSMs und ihrer Programmierung in
Assembler gesammelt haben, wollen wir nun wie versprochen noch ein paar 'Feinheiten' nachreichen.
Zum einen ist damit die Moglichkeit gemeint, flr die Erstellung eines RSM auch Hochsprachen-
Compiler einzusetzen; zum anderen, was besondere Einsatzfalle an besonderen Mallhahmen
verlangen. Und schlieBlich drucken wir zwei 'Leckerbissen’ fur CP/M-User und -Programmierer ab - die
RSMs EDLIN und BDOSINFO.

Will man komplexe Funktionen als RSM implementieren, so ist es sinnvoll, komplizierte Routinen, die
in Assembler nur sehr schwierig realisierbar sind, in einer héheren Programmiersprache zu erstellen.
Voraussetzung dafur ist, dal der Compiler relokalisierbaren Objektcode erzeugt, der mit dem in
Assembler geschriebenen RSM-Rumpf zusammen'gelinkt' und mit einem der vorgestellten Verfahren
in eine PRL-Datei umgesetzt werden kann. Geeignet ist zum Beispiel der Fortran-Compiler F80 von
Microsoft, der dartber hinaus tber gut dokumentierte Schnittstellen zu Assembler-Programmen
verflgt.

Typische Anwendungen fur Hochsprachen-Unterprogramme sind Berechnungen (floating point) oder
komplexe Ein-/Ausgaben. Als triviales Beispiel moge ein Fortran- Programm dienen, welches einen
Integer-Wert formatiert auf den Bildschirm ausgibt. Angenommen, der Quelltext des aufrufenden
Assembler-Programms liege als AS.MAC und der des Fortran-Unterprogramms als FORTRAN.FOR auf
der Diskette vor, dann erzeugen M80, F80 und LINK80 mit folgenden Eingaben das RSM
(MODUL.RSM):

A>F80 =FORTRAN A>M80 =AS A>LINK MODUL.RSM = AS,FORTRAN,FORLIB[S][OP]

Fortran-Unterprogramme von einem Assembler programm aus aufzurufen, ist
mit dem F80-Compiler gar nicht so kompliziert, wie dieses Beispiel einer
formatierten INTEGER-Ausgabe zeigt.

Mehr BIOS

BIOS-Anderungen per RSM stehen eigentlich im Widerspruch zu Punkt 1 des Pflichtenheftes, wonach

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25



2026/02/17 22:25 9/11 RSM fir CP/M 2.2

die Erweiterungen das bestehende System unberUhrt lassen sollen. Sie stellen aber ein besonders
weites Betatigungsfeld dar, weil auf diese Weise allen CP/M-Benutzern geholfen ist, deren BIOS sich in
einem ROM befindet oder sich wegen mangelnder Dokumentation nicht andern 1aBt. (Besser ist es
natdrlich, wenn das BIOS als Source in einer Datei vorliegt, aber die Politik mancher Hersteller steht
dem bekanntlich entgegen...)

Die Arbeitsweise von RSMs mit BIOS-Erweiterungen entspricht der des FREEZE- Moduls aus dem
letzten Heft: Der vom Lader ausgefuhrte BDOS-Call #6 wird abgefangen, der zur gewunschten BIOS-
Funktion gehdrende Vektor aus der BIOSSprungleiste gelesen und gespeichert. AnschlieBend ist der
Vektor so zu 'verbiegen', daR er auf die neue Funktionsroutine im RSM zeigt. Erkennt das RSM den
(nur) von FREEZE initiierten BDOS-Call #254, restauriert es den alten Vektor, gibt dann aber im
Unterschied zu FREEZE den BDOS-Call weiter, damit sich auch die folgenden RSMs auf ihre
‘Entladung' vorbereiten kénnen.

Daraus folgt fur den Umgang mit solchen Erweiterungen zweierlei: Zum einen verlangen BIOS-
andernde RSMs unbedingt ein nachfolgend geladenes FREEZE-Modul. Sonst ist ein Systemabsturz
vorprogrammiert, da die RSMs den nachsten Warmstart nicht Giberstehen, die Anderungen in der
BIOS-Sprungleiste aber schon. (Alternativ kann man die Freeze-Funktion auch mit in das betreffende
RSM einbauen.) Zum anderen spielt es keine Rolle, ob noch weitere RSMs im Speicher stehen, die die
gleiche BIOS-Funktion modifizieren. Das Modul, das als letztes den BIOS-Sprungvektor andert, ist das
erste, das die Anderung wieder riickgangig macht. Die alte Routine 'wiederzufinden' ist auch bei
beliebiger Verschachtelung maglich.

Eingabekomfort

Kommen wir nun zu den beiden RSM-Anwendungen. Die erste, EDLIN, ist ein komfortabler
Zeileneditor, der die BDOS-Funktion 'Read Console Buffer' (Nummer 10) ersetzt. Nach dem Laden
dieses RSM werden alle Programme, die die BDOS- Funktion 10 aufrufen, von EDLIN statt vom BDOS
bedient, so auch der CCP.

EDLIN besitzt einen zirkular organisierten Puffer fir die letzten sechs Eingabezeilen, die mit den
WordStar-kompatiblen Kommandos Control-E (letzte Eingabezeile) und Control-X (nachste
Eingabezeile) in die aktuelle Eingabezeile tbernommen werden kénnen. Ein Edieren innerhalb der
Eingabezeile, meistens zur Korrektur fehlerhafter Eingaben, ist mit ebenfalls WordStar-kompatiblen
Befehlen mdoglich; weiterhin verflgt EDLIN Uber einen Insert-Modus, dessen Aktivierung auf dem
Bildschirm sichtbar gemacht werden kann (etwa durch Umschalten der Cursor- Darstellung, siehe
Hinweise im Listing). Die Tabelle 'EDLIN-Kommandos' gibt einen Uberblick tiber die implementierten
Control-Codes und ihre Wirkung.

EDLIN-Kommandos

Ctrl-v Insert on/off

Ctrl-S, Ctrl-H |Cursor links

Ctrl-D Cursor rechts

Ctrl-A Cursor zum Zeilenanfang

Ctrl-F Cursor zum Zeilenende

Ctrl-E letzte Eingabezeile aus dem Puffer holen
Ctrl-X nachste Eingabezeile aus dem Puffer holen
Ctrl-Y Zeile 16schen

Ctrl-G Zeichen auf Cursor-Position I6schen

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/



Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

EDLIN-Kommandos

DEL Zeichen links vom Cursor |6schen
Ctrl-C Warmstart, falls Cursor in Spalte 1
Ctrl-P Printer on/off

Ctrl-M (Return)|Eingabe beenden

Das abgedruckte Programm er setzt Ubrigens nicht nur die BDOS-Funktion 10, sondern auch die
Funktionen | (Console Input), 2 (Console Output) und 1 1 (Get Console Status). Diese werden jedoch
nicht wie die Funktion 'Read Console Buffer' erweitert, sondern eher im Gegenteil: Anders als die
Original-Funktionen werten die Ersatz-Routinen weder Control-C noch Control-S aus, auch die
Expansion von TAB-Codes bei der Ausgabe unterbleibt. Im allgemeinen stéren diese Ein schrankungen
nicht; falls doch, kann man durch Léschen oder 'Kommentarisieren' (';' in die erste Spalte der
Programmzeile) der zugehoérigen Abfragen zu den Original-Funktionen zu ruckkehren. (Betroffen sind
die ersten drei CP/JP-Sequenzen nach dem Label 'exec'.)

Das BDOS informiert

BDOSINFO ist ein Hilfsprogramm, das alle BDOS-Aufrufe mit Ausnahme der Zeichen- 1/0-Funktionen
(Console-, List-, Reader- und Punch- Funktionen) auf dem Bildschirm und eventuell auf dem Drucker
protokolliert. Damit 138t sich sehr schén die Arbeitsweise von PIP und anderen Programmen
beobachten. Weiterhin ist BDOSINFO sehr nutzlich bei der Fehlersuche in nichtlauffahigen
Programmen und bei der Eigenentwicklung von CP/M-Programmen.

Programmtechnisch enthalt BDOSINFO noch einen kleinen Gag: Es stellt selbsttatig fest, ob sich das
aufrufende Programm oberhalb oder unterhalb des eigenen AdreRbereichs befindet (Subtraktion RSM-
Anfangs- minus Aufrufadresse), und kann somit unterscheiden zwischen BDOS-Calls von
Systembestandteilen (CCP oder hoherliegende RSMs) und Anwenderprogrammen (oder tiefer
liegenden RSMs). Nur letztere werden 'mitgeschrieben’.

Viel zu tun

Die Maglichkeiten, das CP/M-2-System durch RSMs 'aufzubohren’, sind fast nur durch die eigene
Phantasie begrenzt. Die Beispiele zu diesem Artikel stellen nur eine kleine Auswahl der denk- und
machbaren Erweiterungen dar. Selbst komplexere Gebilde wie Grafiktreiber oder Mathematik-Pakete,
deren Funktionen mit nicht definierten Funktionscodes aufgerufen werden (Ublicherweise gréier 80h),
lassen sich realisieren (das CP/M-Plus-Grafikpaket GSX arbeitet ahnlich).

Einschrankungen ergeben sich lediglich durch das zwangslaufige Schrumpfen der TPA. Verschiedene
CP/M-Programme bendétigen nun einmal soundso viele freie Kilobytes (zum Beispiel braucht WordStar
3.0 mindestens 40 KByte TPA), die erhalten bleiben missen. Um Ihnen eine Vorstellung von den
Platzverhaltnissen unter CP/M 2.2 zu geben: Die Nenn-SystemgroRRe beinhaltet 2 KByte fir den CCP,
3,5 KByte fur das BDOS und 1,5 KByte fur das BIOS, bei einem 64K-CP/M verbleiben also 57 KByte flr
die TPA.

Allerdings hat man bei RSMs (wie bei allen Programmen, die kaum Texte enthalten) schon einiges zu
programmieren, um in die GroBenordnung von Kilobytes zu kommen. Somit braucht man sich
normalerweise nur dann Sorgen um den Speicherplatz zu machen, wenn man mehrere groRere RSMs

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25



2026/02/17 22:25 11/11 RSM fir CP/M 2.2

gleichzeitig im Speicher halten mul$ - und diese Falle sind ziemlich selten. Ob die Sorgen dann auch
begrindet sind, zeigt am besten ein Versuch.

Wie bereits im ersten Teil des Artikels angedeutet, kann es in Ausnahmefallen erforderlich sein, von
der Regel abzuweichen, dall BDOS-Aufrufe in einem RSM nur Uber den zweiten Sprungbefehl im RSM-
Kopf zuerfolgen haben. Diese Ausnahmen zeichnen sich dadurch aus, dal§ a) mehrere RSMs bendtigt
werden, b) die gewunschte Funktion nicht in dem aufrufenden RSM enthalten ist (sonst ware der
Umweg Uber Adresse 5 unnotig) und c) die Reihenfolge der RSMs nicht variabel gehalten werden kann
(wenn etwa das aufrufende RSM 'einzufrieren' ist und das andere nicht). Ein Beispiel ware, daR man
die Funktion einer BIOS-Erweiterung, die zusammen mit FREEZE als erstes geladen wird, von dem
Vorhandensein bestimmter weiterer RSMs abhangig machen will. Praktisch kommen solche Falle
jedoch kaum vor, hier sind sie nur der Vollstandigkeit halber aufgefthrt.

Wir danken Herrn Rainer Wagner fur die freundliche Unterstitzung unserer Arbeit.

-> edlin.mac: Etwas langer, aber weit leistungsfahiger als die Original-Read-Buffer-BDOS-Routine:
der Zeileneditor EDLIN.

-> bdosinfo.mac: Auler zu den sogenannten Charakter-10-Funktionen hat BDOSINFO zu jeder von
einem Anwenderprogramm aufgerufenen BDOS-Funktion etwas zu sagen,,.

Download

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

Last update: 2011/10/19 15:23

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/


https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

	RSM
	Pflichten
	Grundsätze
	Feinheiten
	Format
	Laden
	Es friert
	Fortzusetzen
	Mehr BIOS
	Eingabekomfort
	Das BDOS informiert
	Viel zu tun

	Download

