
2026/02/17 22:25 1/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Fetter Text

RSM

In der c't 1/87 und 2/87 gab es interessante Artikel über resident system module für CP/M 2.2,
vergleichbar mit den RSX für CP/M 3. Es handelt sich hier um nachladbare kleine Programme, die
etwa BDOS oder BIOS erweitern, wie zusätzliche Gerätetreiber o.ä.

CP/M 2 lernt dazu. Modulare Systemerweiterungen auch für das 'alte' CP/M von Eckhard Lieber und
Thomas von Massenbach Teil 1 c't 1987, Heft 1, S. 124-135; Teil 2 c't 1987, Heft 2, S. 78-85

Hier kommt das PRL-Format (http://www.seasip.demon.co.uk/Cpm/prl.html) zum Einsatz.

Beide Autoren und auch die c't haben der Veröffentlichung der Artikel im Internet zugestimmt.

Teil 1 c't 1987, Heft 1, S. 124-135

Bestimmt haben Sie bei der Arbeit mit CP/M 2 schon häufiger die eine oder andere nützliche
Systemfunktion vermißt, besonders, wenn Sie einmal ausführlich mit dem moderneren CP/M Plus
'spielen' durften. Nun ist der einfachste Weg zu mehr Komfort, der Umstieg auf CP/M Plus, nicht
immer gangbar - nicht jeder CP/M-2- Rechner ist gleichermaßen CP/M-Plus-geeignet. Man kann aber
auch dem guten alten CP/M 2 zusätzliche Fähigkeiten verleihen.

Die frühen Versionen des Betriebssystems CP/M bieten, bedingt durch ihr hohes Alter und die zur Zeit
ihrer Entwicklung unabdingbaren Speicherplatz- Sparmaßnahmen, nur die notwendigsten
Systemfunktionen. Doch trotz der im Vergleich mit modernen Betriebssystemen spartanischen
Ausstattung ist CP/M 2.2 noch immer weit verbreitet - um für andere 'Disk Operating Systems' (DOS)
ein ähnlich großes Software-Angebot auf die Beine zu stellen, bedurfte es des guten Namens gewisser
Hardware-Hersteller - und schließlich gab es auch bei CP/M Weiterentwicklungen. Eine davon
mündete in die letzte CP/M-Version für die 8- Bit-Prozessoren 8080/Z80, die Version 3.0 (CP/M Plus).
Daneben wurden in Anwenderkreisen diverse Konzepte für Systemerweiterungen 'ausgekocht', um
den von Haus aus recht mageren Komfort von CP/M 1.4 und 2.x zu verbessern. Allerdings weisen
nahezu alle diese Konzepte drei gravierende Mängel auf:

Die meisten Erweiterungen führen umfangreiche Modifikationen der Systemsoftware durch. Aus
diesem Grund lassen sie sich nicht beliebig mit anderen Erweiterungen kombinieren, da sie sich
gegenseitig behindern oder das ganze System zum Zusammenbruch bringen können.

Die Erweiterungen belegen, wie zum Beispiel MicroShell, nicht unerheblich viel Speicherplatz
mit Funktionen, die nur selten benötigt werden.

Eigene Erweiterungen lassen sich nicht einbinden, da keine einheitliche Schnittstellen
konvention gegeben ist.

Pflichten

Diese Mängel schränken die Einsatzmöglichkeiten herkömmlicher CP/M- Erweiterungen erheblich ein,
so daß ihnen trotz prinzipieller Vorzüge eine größere Verbreitung versagt geblieben ist. Außerdem
betreffen die gewünschten Änderungen oft lediglich die elementaren Ein-/Ausgabefunktionen

http://www.seasip.demon.co.uk/Cpm/prl.html

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25

(beispielsweise Zeichenumkodierung für spezielle Drucker) und lassen sich deshalb genauso gut im
BIOS einbauen. In vielen Fällen ist das jedoch nicht möglich, zumal BIOS- Änderungen immer mit
relativ großem Aufwand und dem Risiko verbunden sind, daß das System hinterher nicht mehr richtig
läuft.

Vor diesem Hintergrund reifte der Entschluß, ein neues Konzept für Systemerweiterungen zu
realisieren, das im folgenden beschrieben werden soll. Als erstes wurde ein 'Pflichtenheft' erstellt:

1. Die Systemerweiterungen sollen das Kernbetriebssystem (CCP, BDOS und BIOS) unberührt lassen.

2. Sie sollen vom Anwender je nach Bedarf beliebig zusammengestellt werden können.

3. Die Unabhängigkeit von der BIOS-Implementation und der Speichergröße des verwendeten
Systems muß gewährleistet sein.

4. Einzelne Funktionen oder Funktionsgruppen sollen in sich abgeschlossene, selbständige Einheiten
bilden.

5. Um komplexe Funktionen schnell verfügbar zu machen, soll der Einsatz einer Hochsprache möglich
sein.

6. Zur Realisierung der einzelnen Erweiterungen sollen gebräuchliche Assembler und Compiler
benutzt werden können.

Grundsätze

Zum besseren Verständnis, wie sich ohne Änderung der Systemteile CCP, BDOS und BIOS Änderungen
an den Systemfunktionen vornehmen lassen, sei zunächst dargelegt, wie der Speicher eines Rechners
unter CP/M organisiert ist und wie ein RSM in das Betriebssystem integriert wird.

 Adresse: Inhalt:

 0h: jp wboot Sprungvektor ins BIOS, führt Warmstart aus
 3h: db iobyte I/O-Byte
 4h: db cdsk Disk/User
 5h: jp bdos Sprungvektor, über den alle Aufrufe des
 Betriebssystems erfolgen
 100h: Beginn der TPA (Speicherbereich für
 Anwenderprogramme)
 bdos-806h: Beginn des Standard-CCP (wird von vielen
 Anwenderprogrammen überschrieben)
 bdos: Beginn des Kernbetriebssystems (BDOS)
 wboot-3: Beginn des geräteabhängigen Teils des
 Betriebssystems (BIOS)
 Die Speicheraufteilung bei CP/M 2. Über die Sprungbefehle auf den
 Adressen 0 und 5 kann man die Lage des Systems im Speicher bestimmen.

Das Betriebssystem CP/M liegt grundsätzlich am oberen Ende des verfügbaren Speichers, der bei der
Adresse Null beginnen und für CP/M 2.2 mindestens 20 KByte umfassen muß. Transiente Programme
dürfen den Speicherbereich von 100h bis maximal zur Adresse bdos-1 nutzen; die Systemfunktionen

2026/02/17 22:25 3/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

werden durch einen CALL auf die Adresse bdos aufgerufen. Damit die transienten Programme diese
Adresse nicht explizit 'wissen' müssen - was es unmöglich machen würde, ein Programm ohne
Änderungen auf Rechnern mit unterschiedlichem Speicherausbau zu verwenden - , erfolgt der
Einsprung ins BDOS nicht direkt, sondern über einen Sprungbefehl (Sprungvektor) auf Adresse 5h.
Aus diesem läßt sich auch die Größe des nutzbaren Speichers ableiten: Die letzte freie Adresse ist das
Sprungziel (16-Bit-Wert auf Adresse 6h) minus eins. So enthalten nur drei Bytes in einem garantiert
vorhandenen Speicherbereich alle notwendigen Informationen über die 'großen Unbekannten' BDOS-
Einsprung und Speicherausbau.

Wenn man nun das System erweitern will, so muß man hierfür Platz schaffen. Dazu wird
zweckmäßigerweise das ohnehin unbestimmte obere Ende des Speichers herangezogen, in dem man
die Zieladresse des Sprungs bei 5h um einen noch zu ermittelnden Betrag erniedrigt. Auf diese Weise
entsteht unterhalb des CCP ein vor Überschreiben geschützter Speicherbereich, in den beliebige
Programme geladen werden können. Es muß lediglich dafür gesorgt sein, daß an der Stelle, auf die
der neue Sprungvektor bei Adresse 5h zeigt, ein Weitersprung zum BDOS eingerichtet ist. Alternativ
kann man den Sprung abfangen und die BDOS- Unterprogramme durch neuen Code ersetzen - dem
Tüftler sind keine Grenzen gesetzt.

Nach demselben Verfahren lassen sich auch mehrere Erweiterungen hintereinanderhängen. Solange
das Speicherende nur anhand des Sprungvektors ermittelt wird, ist es völlig gleich gültig, ob dieser
noch auf den BDOS-Anfang zeigt oder bereits 'verbogen' wurde.

Um das Entfernen von Erweiterungen braucht man sich normalerweise keine Sorgen zu machen. Da
die Warmstartroutine im BIOS unter anderem den Sprungvektor initialisiert, genügt ein Control-C oder
JP 0, um die ursprüngliche Speicherkonfiguration wiederherzustellen.

Feinheiten

Dies ist also das Arbeitsprinzip beim RSM-Konzept. Ein paar weitere Punkte lassen sich am besten an
einem Beispiel erläutern, einem kleinen Druckertreiber für den TRS80 Daisy Wheel II Printer.

→ daisy.mac: Ein erstes Beispiel für ein RSM.

Ähnlich wie eine RSX unter CP/M Plus besitzt ein RSM einen standardisierten Vorspann, der aus zwei
Sprungbefehlen, einem Namen und einer Prüfsumme besteht. Der erste der Sprungbefehle führt in
das RSM, wo überprüft wird, ob ein BDOS- Aufruf (Funktionsnummer in Register C) abzufangen und
umzufunktionieren ist oder nicht. Der zweite Sprung (JP 0) wird beim Laden des RSM initialisiert und
stellt den Ausgang zum Betriebssystem oder einem weiteren RSM dar. Auf die bei den
Sprungvektoren folgt der Modulname, der acht Zeichen umfaßt, sowie eine 16-Bit- Prüfsumme über
den Namen, die der Lader überprüft; nur bei positivem Resultat wird das geladene Modul in das
System eingebunden.

Das Beispiel zeigt aber nicht nur die RSM-Formalitäten, sondern auch zwei wichtige
programmiertechnische Besonderheiten: Zum einen sollte man, sofern im RSM
Unterprogrammaufrufe oder PUSH-/POP-Operationen verwendet werden, stets einen lokalen Stack
einrichten (wie es übrigens auch im BDOS geschieht). Bei vielen Anwenderprogram men ist der Stack
nämlich so knapp bemessen, daß er bei zusätzlicher Belastung durch das RSM überläuft - in der Folge
treten dann irgendwelche obskuren Fehler auf, deren Ursache in der Regel nur sehr schwer zu finden
ist.

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25

Zum anderen sollten Aufrufe von BDOS-Funktionen immer über den zweiten Sprung im RSM-Vorspann
abgewickelt werden ('call exit') statt über Adresse 5h. Sonst kann es passieren, daß das RSM in sich
selbst hängenbleibt. Von dieser Regel gibt es wie üblich auch Ausnahmen, doch dazu ein andermal.

Die zweite Forderung kann bei Verwendung mehrerer RSMs dazu führen, daß beim Laden der RSMs
eine bestimmte Reihenfolge einzuhalten ist: Ruft ein RSM eine Funktion aus einem anderen auf, muß
dieses in der Kette hinter dem aufrufenden angesiedelt, also vorher geladen worden sein.

Format

Aus den Punkten 2 und 3 des Pflichtenheftes folgt, daß der Speicherbereich für eine
Systemerweiterung anders als bei transienten Programmen grundsätzlich nicht feststeht. Das RSM
muß daher als verschiebbarer (relokalisierbarer) Objektcode vorliegen, der erst beim Laden in
ablauffähigen Maschinencode umgesetzt wird.

Die Wahl fiel auf das von MP/M her bekannte PRL-Dateiformat (Page Relocatable), das auch für die
RSX des CP/M Plus zum Einsatz kommt. Anders als REL-Objektcode, wie ihn viele Assembler (RMAC,
M80, …) und Compiler erzeugen, läßt sich PRL- Objektcode nur seitenweise (l Seite = 256 Byte) und
nicht byteweise verschieben, da zum Relokali-

sieren nur ein 8-Bit-Offset verwendet wird (für das höherwertige Byte der anzupassenden Adressen).
Dafür hat das PRL-Format den gewaltigen Vorteil, daß die Relokalisierungsinformation nicht wie beim
REL-Format in den Objektcode eingestreut ist, sondern als Tabelle dahinter steht. Der
nichtrelokalisierte PRL-Code sieht also schon wie richtiger Maschinencode aus (ORG-Adresse 100h),
was man von REL-Code nicht behaupten kann, und kann demzufolge mit einem gewöhnlichen
Debugger ausgetestet werden; man muß ihn nach dem Einlesen lediglich um 100h - die Größe des
Vorspanns - nach unten verschieben.

PRL- Dateien lassen sich mit dem LINK80 von Digital Research unmittelbar aus REL-Dateien erzeugen.
Falls kein LINK80 zur Verfügung steht, erfüllt das BASIC- Programm GENRSM denselben Zweck, wenn
auch etwas umständlicher: Es erwartet als Eingabe zwei relokalisierte Objektcode-Dateien des RSM
mit unterschiedlichen Startadressen (100h und 200h).

Dazu ist der RSM-Quelltext zunächst wie für ein transientes Programm mit ORG 100H zu
assemblieren. Anschließend muß man mit dem Editor die Argumente aller ORG-Anweisungen um
100h erhöhen und den Assembler ein zweites Mal bemühen. Sofern der Assembler REL-Dateien
erzeugt, müssen die beiden Objektdateien noch gelinkt oder 'geladen' werden.

Nun kann man GENRSM starten, das die Eingabedatei 1 (ORG-Adresse 100h) in die RSM-/PRL-
Ausgabedatei überträgt und dabei byteweise mit der Eingabedatei 2 (ORG- Adresse 200h) vergleicht,
bei Bedarf das zugehörige Bit in der Relokalisierungstabelle setzt und zum Schluß die Tabelle sowie
die Dateilänge in die Ausgabedatei schreibt. Eine Verwechslung der Eingabedateien führt zum
Abbruch, ebenso wie der Fall, daß man beim Ändern der ORG-Anweisung nicht auf gepaßt und einen
anderen Wert als 200h eingetragen hat.

Dagegen erkennt GENRSM nicht, wenn in den Eingabedateien die Datenbereiche des RSM (Buffer,
Stack) nicht vorhanden oder abgeschnitten sind. Manche Assembler beziehungsweise Linker
übernehmen mit DBFS (DS) reservierte Bereiche, die am Ende des Quelltextes stehen, nicht in die
(COM-)Ausgabedatei, um diese nicht unnötig aufzublähen. Dem kann man jedoch sehr einfach
abhelfen, indem man das letzte vom RSM belegte Byte mit DEFB oder DEFW (DB/DW) initialisiert.

2026/02/17 22:25 5/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Bei Verwendung von Z80-Assemblern und -Linkern, die nur absolute Codesegmente erzeugen können
(beispielsweise ZASM und ZLINK), muß im BASIC-Programm an den beiden vermerkten Stellen ('Siehe
Text') noch der Offset von 256 dazuaddiert werden. Denn in diesem Fall beginnt der RSM-Code in der
Eingabedatei 2, bedingt durch die ORG-200H-Anweisung, erst 256 (100h) Bytes nach dem
Dateianfang.

Weiterhin kann die im BASIC-Programm vorgegebene Dateiklasse für die Eingabedateien (BIN), je
nach Linker, in 'COM' zu ändern sein.

Um die Vorgehensweise bei den unterschiedlichen Assemblern und Linkern noch einmal zu
verdeutlichen, ist oben ein kleines Beispiel abgedruckt, das alle notwendigen Quelltextänderungen
und Benutzereingaben zur Erzeugung des RSM 'MODUL' wiedergibt. Dieses RSM lenkt die
Druckerausgaben eines Programms (BDOS- Funktion 5) auf den Punch-Kanal um (BDOS-Funktion 4).

–> rsm: Drei Beispiele, wie man mit verschiedenen Assemblern und Linkern eine RSM-Datei im PRL-
Format erzeugt.

–> genrsm.bas: Dieses MBASIC-Programm erzeugt PRL-Dateien, wenn der LINK80 nicht zur
Verfügung steht.

 Record 1, Byte 0 : 0
 Record 1, Byte 1,2 : Länge des Programms in Bytes
 Record 1, Byte 3 : 0 (nicht benutzt)
 Record 1, Byte 4,5 : Zusätzlich benötigter Speicher
 Record 1, Byte 6 - 127 : 0
 Record 2, Byte 0 - 127 :0
 Record 3 und folgende enthalten den eigentlichen Maschinencode.
 Direkt anschließend folgt eine Bit-Tabelle, in der alle
adreßabhängigen
 Bytes mit jeweils einem Bit vermerkt sind, beginnend mit dem
 höchstwertigen Bit des ersten Bytes der Tabelle. Ein gesetztes Bit
 bedeutet, daß das zu gehörige Byte mit einem Offset zu versehen ist.
Der
 Offset ist das höherwertige Byte der Zieladresse - 100h.

So ist das PRL-Dateiformat aufgebaut. Dem verschiebbaren Maschinencode ist ein 256-Byte-Header
vorangestellt.

Laden

Und wie kommen die im PRL-Format vorliegenden RSMs nun an ihren Platz? Da der CCP bei den CP/M-
Versionen vor 3.0 auf Systemerweiterungen noch nicht eingerichtet ist, mußte ein spezielles
Ladeprogramm RSM.COM geschrieben werden. Er erfüllt folgende Aufgaben (in der Reihenfolge der
Ausführung):

CPU, CP/M und Datei testen

Bei einer 8080/85-CPU, einer Nicht-PRL-Datei (erstes Byte ungleich 0) oder unter CP/M Plus verweigert
der Lader die Mitarbeit.

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25

Platz reservieren

Die Summe der Angaben in den Bytes 2, 3 und 4, 5 der PRL-Datei ergibt die Länge des RSM. Um
diesen Wert wird das Ende der TPA vorverlegt, es sei denn, die verbleibende TPA ist kleiner als 8
KByte (Abbruch). Beim ersten zu ladenden RSM ist noch die Länge des CCP zu berücksichtigen (2
KByte beim Standard-CCP), der erhalten bleiben muß.

RSM laden und relokalisieren

Der Lader liest die in der PRL-Datei angegebene Anzahl Programmbytes unmittelbar in den
Zieladreßbereich ein und relokalisiert sie an Ort und Stelle. Ein vorzeitiges Ende der PRL-Datei führt
zum Abbruch.

Prüfsumme abfragen

Anschließend wird die Prüfsumme über den Modulnamen gebildet und mit der im RSM- internen
verglichen. Bei Ungleichheit war es vielleicht doch keine RSM-PRL- Datei… (Abbruch).

Sprungvektoren einrichten

Die vorletzte Aktion des Laders (nach der 'O.K.'-Meldung) ist das Setzen des neuen Sprungvektors auf
Adresse 5h und des 'Fortsetzungs'vektors im RSM. Ab diesem Zeitpunkt ist das Modul in das System
eingebunden und geschützt.

Modul aktivieren

Manche RSMs benötigen eine Initialisierung, die zweckmäßigerweise durch den ersten Auf ruf (erster
'BDOS-Call' nach dem Einbinden ins System) ausgelöst werden sollte. Dazu fordert der Lader zum
Schluß einen 'Direct Console Input' an (BDOS-Funktion 6 mit E = FFh), dessen Ergebnis ignoriert wird.

Die Forderung, den CCP zu erhalten, ergibt sich vor allem daraus, daß CP/M zwei Wege zur Verfügung
stellt, aus einem Anwenderprogramm zur Kommandoebene des Systems zurückzukehren - den
Warmstart (JP 0) und den Rücksprung (RET) zum CCP. Beim RSM-Lader ist sogar nur der zweite Weg
gangbar, da ein Warmstart unter anderem den Sprungvektor zum BDOS auf die ursprüngliche
Adresse zurückstellen und damit ein gerade eingebundenes RSM sofort wieder 'entbinden' würde.
Außerdem: Was nützt einem ein System mit RSM(s), wenn man wegen des fehlenden CCP kein
Programm mehr aufrufen kann?

Um den Lader zu starten, ist eine Zeile nach dem Muster

A>RSM <filename>

einzugeben. Als Dateiklasse wird 'RSM' angenommen, so fern sie nicht explizit angegeben ist. Fehlt
der Dateiname oder enthält er Jokerzeichen ('*'/'?'), bricht RSM.COM ab. Außer bei falscher CPU endet
der Programmlauf immer mit einer Aufzählung der eingebundenen RSMs und ihrer Anfangsadressen.

Es friert

Wie gesagt bleibt RSMs ohne besondere Vorkehrungen nur bis zum nächsten Warmstart aktiv.
Mitunter besteht jedoch der Wunsch oder auch die Notwendigkeit, die Erweiterung(en) zu erhalten,
beispielsweise, wenn darüber eine submit- ähnliche Ablaufsteuerung per Eingabedatei stattfindet

2026/02/17 22:25 7/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

(dem GET-Befehl von CP/M Plus vergleichbar).

Diese Aufgabe übernimmt das RSM 'FREEZE'. Dazu muß FREEZE, und das ist leider nicht zu umgehen,
die 'erste Pflicht' verletzen und in das existierende System eingreifen: Es klinkt sich in die BIOS-
Sprungleiste ein, indem es den Sprung zur Warmstart-Routine bei Adresse bios + 3 auf eine eigene
Routine umlenkt. Diese errichtet einen lokalen Stack, initialisiert den BDOS-Sprungvektor auf den
Anfang von FREEZE, setzt das Diskettensystem zurück (BDOS-Funk tion 13) und verzweigt zum
zweiten Einsprang in den CCP (Adresse ccp + 3, CCP-Aufruf mit Löschen des Eingabepuffers).

–> freeze.mac: Damit man RSMs nicht nach jedem Warmstart neu laden muß, können sie mit
diesem Spezial-RSM 'eingefroren' werden.

Nach dem Aktivieren von FREEZE sind alle vorher geladenen RSMs warmstartsicher installiert, ebenso
der CCP und das BDOS, die somit beim 'Warmboot' nicht mehr nachge laden zu werden brauchen -
ein recht erfreulicher Randeffekt. Selbstverständlich können hinterher weitere Moduln geladen
werden, die allerdings nicht mehr geschützt sind, es sei denn, man lädt FREEZE erneut. In dem Fall
bleibt jedoch die alte Kopie von FREEZE im Speicher und belegt eine wertvolle Page.

Will man das ursprüngliche System wiederherstellen, kann man die 'Brutalmethode' anwenden
(Kaltstart des Systems) oder etwas subtiler vorgehen, indem man FREEZE 'in den Selbstmord treibt':
Bei Aufruf der BDOS-Funktion 255 restauriert FREEZE nämlich den alten Warmstartvektor in der BlOS-
Sprungleiste und löst einen Warmstart aus. Zuvor wird noch ein BDOS-Call Nummer 254 abgesetzt,
der die bis dato geschützten RSMs über den bevorstehenden 'Rausschmiss' informiert. Diese können
dann eventuell notwendige Sicherungsmaßnahmen durchführen.

Mit dem anschließenden Warmstart steht die TPA wieder in alter Größe zur Verfügung. 'Alt' heißt hier:
vor dem Laden des gerade deaktivierten FREEZE. Befinden sich mehrere FREEZE-Moduln im Speicher,
wird nur der Bereich bis zum nächsten FREEZE freigegeben. Man kann also gezielt mehrere Blöcke
von Erweiterungen 'einfrieren' und einzeln wieder 'loseisen' - eine Möglichkeit, die unter Umständen
wertvoller sein kann als der vorhin zitierte wertvolle Speicherplatz.

Der Aufruf der BDOS-'Anti- FREEZE'-Funktion kann von jedem Programm aus erfolgen (anstelle des JP
0). Selbst wenn kein FREEZE-Modul im Speicher steht, sind Probleme wegen der Funktionsnummer
nicht zu befürchten, weil das BDOS bei unbekannten Funktionen so fort 'returnt'. Alternativ ist das
folgende Minimalprogramm geeignet.

Fortzusetzen

Mit den hier vorgestellten Programmen ist das Handwerkszeug zum Erstellen und Arbeiten mit RSMs
komplett, soweit es die Programmierung in As semblersprache betrifft. Auf weitere Aspekte des RSM-
Konzeptes - etwa die Realisierung komplexerer Funktionen in einer Hochsprache (Fortran) - können
wir aus Platzgründen erst im zweiten Teil des Artikels eingehen. Dort werden auch noch ein paar
nützliche Applikationen zu finden sein, zum Beispiel ein Zeileneditor, der die BDOS-Funktion 10 (Read
Console Buffer) ersetzt und das Zurückholen und Editieren der letzten Eingaben erlaubt.

Literatur

[l] Bernd Pol, Vom Umgang mit CP/M, Eine allgemeinver ständliche Einführung, IWT Verlag,
Vaterstetten, 1983

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25

[2] Allan R.Miller, Mastering CP/M, Sybex Inc., Berkeley, California, 1983

[3] Rodnay Zaks, How to Pro gram the Z80, Sybex Inc., Ber keley, California, 1980

[4] LINK80 Operator's Guide, Digital Research, 1980

[5] MP/M II Operating System, Programmer's Guide, Digital Research, 1981

[6] CP/M Operating System, Ma nual, Digital Research, 1982

[7] Hans-Peter Sauer, Veränderlich, Systemerweiterungen unter CP/M-Plus, c't 4/86

–> rsm.mac: Das Ladeprogramm für die RSMs ist in zwei Versionen abgedruckt: Als Assembler-
Quelltext für diejenigen, die alles genau wissen wollen, …
… und als Hexdump für diejenigen, die es schnell und ohne viel Aufwand zum Laufen bringen wollen.

Teil 2 c't 1987, Heft 1, S. 78-85

Nachdem Sie vielleicht schon die ersten Erfahrungen mit RSMs und ihrer Programmierung in
Assembler gesammelt haben, wollen wir nun wie versprochen noch ein paar 'Feinheiten' nachreichen.
Zum einen ist damit die Möglichkeit gemeint, für die Erstellung eines RSM auch Hochsprachen-
Compiler einzusetzen; zum anderen, was besondere Einsatzfälle an besonderen Maßnahmen
verlangen. Und schließlich drucken wir zwei 'Leckerbissen' für CP/M-User und -Programmierer ab - die
RSMs EDLIN und BDOSINFO.

Will man komplexe Funktionen als RSM implementieren, so ist es sinnvoll, komplizierte Routinen, die
in Assembler nur sehr schwierig realisierbar sind, in einer höheren Programmiersprache zu erstellen.
Voraussetzung dafür ist, daß der Compiler relokalisierbaren Objektcode erzeugt, der mit dem in
Assembler geschriebenen RSM-Rumpf zusammen'gelinkt' und mit einem der vorgestellten Verfahren
in eine PRL-Datei umgesetzt werden kann. Geeignet ist zum Beispiel der Fortran-Compiler F80 von
Microsoft, der darüber hinaus über gut dokumentierte Schnittstellen zu Assembler-Programmen
verfügt.

Typische Anwendungen für Hochsprachen-Unterprogramme sind Berechnungen (floating point) oder
komplexe Ein-/Ausgaben. Als triviales Beispiel möge ein Fortran- Programm dienen, welches einen
Integer-Wert formatiert auf den Bildschirm ausgibt. Angenommen, der Quelltext des aufrufenden
Assembler-Programms liege als AS.MAC und der des Fortran-Unterprogramms als FORTRAN.FOR auf
der Diskette vor, dann erzeugen M80, F80 und LINK80 mit folgenden Eingaben das RSM
(MODUL.RSM):

A>F80 =FORTRAN A>M80 =AS A>LINK MODUL.RSM = AS,FORTRAN,FORLIB[S][OP]

Fortran-Unterprogramme von einem Assembler programm aus aufzurufen, ist
mit dem F80-Compiler gar nicht so kompliziert, wie dieses Beispiel einer
formatierten INTEGER-Ausgabe zeigt.

Mehr BIOS

BIOS-Änderungen per RSM stehen eigentlich im Widerspruch zu Punkt 1 des Pflichtenheftes, wonach

2026/02/17 22:25 9/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

die Erweiterungen das bestehende System unberührt lassen sollen. Sie stellen aber ein besonders
weites Betätigungsfeld dar, weil auf diese Weise allen CP/M-Benutzern geholfen ist, deren BIOS sich in
einem ROM befindet oder sich wegen mangelnder Dokumentation nicht ändern läßt. (Besser ist es
natürlich, wenn das BIOS als Source in einer Datei vorliegt, aber die Politik mancher Hersteller steht
dem bekanntlich entgegen…)

Die Arbeitsweise von RSMs mit BIOS-Erweiterungen entspricht der des FREEZE- Moduls aus dem
letzten Heft: Der vom Lader ausgeführte BDOS-Call #6 wird abgefangen, der zur gewünschten BIOS-
Funktion gehörende Vektor aus der BIOSSprungleiste gelesen und gespeichert. Anschließend ist der
Vektor so zu 'verbiegen', daß er auf die neue Funktionsroutine im RSM zeigt. Erkennt das RSM den
(nur) von FREEZE initiierten BDOS-Call #254, restauriert es den alten Vektor, gibt dann aber im
Unterschied zu FREEZE den BDOS-Call weiter, damit sich auch die folgenden RSMs auf ihre
'Entladung' vorbereiten können.

Daraus folgt für den Umgang mit solchen Erweiterungen zweierlei: Zum einen verlangen BlOS-
ändernde RSMs unbedingt ein nachfolgend geladenes FREEZE-Modul. Sonst ist ein Systemabsturz
vorprogrammiert, da die RSMs den nächsten Warmstart nicht überstehen, die Änderungen in der
BlOS-Sprungleiste aber schon. (Alternativ kann man die Freeze-Funktion auch mit in das betreffende
RSM einbauen.) Zum anderen spielt es keine Rolle, ob noch weitere RSMs im Speicher stehen, die die
gleiche BIOS-Funktion modifizieren. Das Modul, das als letztes den BlOS-Sprungvektor ändert, ist das
erste, das die Änderung wieder rückgängig macht. Die alte Routine 'wiederzufinden' ist auch bei
beliebiger Verschachtelung möglich.

Eingabekomfort

Kommen wir nun zu den beiden RSM-Anwendungen. Die erste, EDLIN, ist ein komfortabler
Zeileneditor, der die BDOS-Funktion 'Read Console Buffer' (Nummer 10) ersetzt. Nach dem Laden
dieses RSM werden alle Programme, die die BDOS- Funktion 10 aufrufen, von EDLIN statt vom BDOS
bedient, so auch der CCP.

EDLIN besitzt einen zirkulär organisierten Puffer für die letzten sechs Eingabezeilen, die mit den
WordStar-kompatiblen Kommandos Control-E (letzte Eingabezeile) und Control-X (nächste
Eingabezeile) in die aktuelle Eingabezeile übernommen werden können. Ein Edieren innerhalb der
Eingabezeile, meistens zur Korrektur fehlerhafter Eingaben, ist mit ebenfalls WordStar-kompatiblen
Befehlen möglich; weiterhin verfügt EDLIN über einen Insert-Modus, dessen Aktivierung auf dem
Bildschirm sichtbar gemacht werden kann (etwa durch Umschalten der Cursor- Darstellung, siehe
Hinweise im Listing). Die Tabelle 'EDLIN-Kommandos' gibt einen Überblick über die implementierten
Control-Codes und ihre Wirkung.

EDLIN-Kommandos
Ctrl-V Insert on/off
Ctrl-S, Ctrl-H Cursor links
Ctrl-D Cursor rechts
Ctrl-A Cursor zum Zeilenanfang
Ctrl-F Cursor zum Zeilenende
Ctrl-E letzte Eingabezeile aus dem Puffer holen
Ctrl-X nächste Eingabezeile aus dem Puffer holen
Ctrl-Y Zeile löschen
Ctrl-G Zeichen auf Cursor-Position löschen

Last update: 2011/10/19 15:23 cpm:rsm:ct https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

https://hc-ddr.hucki.net/wiki/ Printed on 2026/02/17 22:25

EDLIN-Kommandos
DEL Zeichen links vom Cursor löschen
Ctrl-C Warmstart, falls Cursor in Spalte 1
Ctrl-P Printer on/off
Ctrl-M (Return) Eingabe beenden

Das abgedruckte Programm er setzt übrigens nicht nur die BDOS-Funktion 10, sondern auch die
Funktionen l (Console Input), 2 (Console Output) und 1 1 (Get Console Status). Diese werden jedoch
nicht wie die Funktion 'Read Console Buffer' erweitert, sondern eher im Gegenteil: Anders als die
Original-Funktionen werten die Ersatz-Routinen weder Control-C noch Control-S aus, auch die
Expansion von TAB-Codes bei der Ausgabe unterbleibt. Im allgemeinen stören diese Ein schränkungen
nicht; falls doch, kann man durch Löschen oder 'Kommentarisieren' (';' in die erste Spalte der
Programmzeile) der zugehörigen Abfragen zu den Original-Funktionen zu rückkehren. (Betroffen sind
die ersten drei CP/JP-Sequenzen nach dem Label 'exec'.)

Das BDOS informiert

BDOSINFO ist ein Hilfsprogramm, das alle BDOS-Aufrufe mit Ausnahme der Zeichen- I/O-Funktionen
(Console-, List-, Reader- und Punch- Funktionen) auf dem Bildschirm und eventuell auf dem Drucker
protokolliert. Damit läßt sich sehr schön die Arbeitsweise von PIP und anderen Programmen
beobachten. Weiterhin ist BDOSINFO sehr nützlich bei der Fehlersuche in nichtlauffähigen
Programmen und bei der Eigenentwicklung von CP/M-Programmen.

Programmtechnisch enthält BDOSINFO noch einen kleinen Gag: Es stellt selbsttätig fest, ob sich das
aufrufende Programm oberhalb oder unterhalb des eigenen Adreßbereichs befindet (Subtraktion RSM-
Anfangs- minus Aufrufadresse), und kann somit unterscheiden zwischen BDOS-Calls von
Systembestandteilen (CCP oder höherliegende RSMs) und Anwenderprogrammen (oder tiefer
liegenden RSMs). Nur letztere werden 'mitgeschrieben'.

Viel zu tun

Die Möglichkeiten, das CP/M-2-System durch RSMs 'aufzubohren', sind fast nur durch die eigene
Phantasie begrenzt. Die Beispiele zu diesem Artikel stellen nur eine kleine Auswahl der denk- und
machbaren Erweiterungen dar. Selbst komplexere Gebilde wie Grafiktreiber oder Mathematik-Pakete,
deren Funktionen mit nicht definierten Funktionscodes aufgerufen werden (üblicherweise größer 80h),
lassen sich realisieren (das CP/M-Plus-Grafikpaket GSX arbeitet ähnlich).

Einschränkungen ergeben sich lediglich durch das zwangsläufige Schrumpfen der TPA. Verschiedene
CP/M-Programme benötigen nun einmal soundso viele freie Kilobytes (zum Beispiel braucht WordStar
3.0 mindestens 40 KByte TPA), die erhalten bleiben müssen. Um Ihnen eine Vorstellung von den
Platzverhältnissen unter CP/M 2.2 zu geben: Die Nenn-Systemgröße beinhaltet 2 KByte für den CCP,
3,5 KByte für das BDOS und 1,5 KByte für das BIOS, bei einem 64K-CP/M verbleiben also 57 KByte für
die TPA.

Allerdings hat man bei RSMs (wie bei allen Programmen, die kaum Texte enthalten) schon einiges zu
programmieren, um in die Größenordnung von Kilobytes zu kommen. Somit braucht man sich
normalerweise nur dann Sorgen um den Speicherplatz zu machen, wenn man mehrere größere RSMs

2026/02/17 22:25 11/11 RSM für CP/M 2.2

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

gleichzeitig im Speicher halten muß - und diese Fälle sind ziemlich selten. Ob die Sorgen dann auch
begründet sind, zeigt am besten ein Versuch.

Wie bereits im ersten Teil des Artikels angedeutet, kann es in Ausnahmefällen erforderlich sein, von
der Regel abzuweichen, daß BDOS-Aufrufe in einem RSM nur über den zweiten Sprungbefehl im RSM-
Kopf zuerfolgen haben. Diese Ausnahmen zeichnen sich dadurch aus, daß a) mehrere RSMs benötigt
werden, b) die gewünschte Funktion nicht in dem aufrufenden RSM enthalten ist (sonst wäre der
Umweg über Adresse 5 unnötig) und c) die Reihenfolge der RSMs nicht variabel gehalten werden kann
(wenn etwa das aufrufende RSM 'einzufrieren' ist und das andere nicht). Ein Beispiel wäre, daß man
die Funktion einer BIOS-Erweiterung, die zusammen mit FREEZE als erstes geladen wird, von dem
Vorhandensein bestimmter weiterer RSMs abhängig machen will. Praktisch kommen solche Fälle
jedoch kaum vor, hier sind sie nur der Vollständigkeit halber aufgeführt.

Wir danken Herrn Rainer Wagner für die freundliche Unterstützung unserer Arbeit.

–> edlin.mac: Etwas länger, aber weit leistungsfähiger als die Original-Read-Buffer-BDOS-Routine:
der Zeileneditor EDLIN.

–> bdosinfo.mac: Außer zu den sogenannten Charakter-IO-Funktionen hat BDOSINFO zu jeder von
einem Anwenderprogramm aufgerufenen BDOS-Funktion etwas zu sagen„.

Download

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

Last update: 2011/10/19 15:23

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/rsm/ct?rev=1319037824

	RSM
	Pflichten
	Grundsätze
	Feinheiten
	Format
	Laden
	Es friert
	Fortzusetzen
	Mehr BIOS
	Eingabekomfort
	Das BDOS informiert
	Viel zu tun

	Download

