2026/01/24 13:18 1/5 CRC-Berechnung

CRC-Berechnung

In diversen U880-Programmen, z.B. EPROM-Software, wird oftmals eine Prifsumme ausgegeben.
Dabei handelt es sich fast immer um eine 16 BIT-CRC-Prufsumme, d.h. ein 17-Bit-Polynom, nach
Standard CCITT:

CRC-CCITT (CRC-16) x~16 + x~12 + x5+ 1
s. Wikipedia

Als Startwert wird eigentlich immer OFFFFh genommen.

® In der DDR-Literatur liest man auch oft ,,SDLC-Polynom*. SLDC (Synchronous Data Link Control)
wurde Mitte der 70er von IBM fur die Kommunikation zwischen ihren Rechnern Uber die System
Network Architecture (SNA) entwickelt. Als Standard-CRC kommt hier das obige CRC16-CCITT-
Polynom zum Einsatz.

In Perl kann man die CRC so berechnen (nicht optimiert, reine Umsetzung des Polynoms!). Die Und-
Verknlpfung mit 0x8000 erfolgt zur Maskierung des Hi-Bits 15; Die Und-Verknupfung mit OXFFFF ist
notig, um das Ergebnis als 16Bit-Zahl zu belassen.

$buf #Arrays von 2KiByte FFh
$len 2048 #Anzahl der Bytes

#CRC-CCITT (CRC-16) x16 + x12 + x5 + 1
$POLY = Ob 0001 0000 0010 0001; # das 17. Bit (x"16) entfallt,
da nur mit 16 Bit gearbeitet wird

#Startwert
$crcl6 OxXFFFF

$i=0;%$i<%$len;$1i

$byte = ord(substr($buf,$i,1 # nachstes Byte aus Buffer holen
$byte = $byte * 0x100 # in 16 Bit wandeln
0..7) # 8 Bits pro Byte

$byte & 0x8000 $crcle & 0x8000

wenn die Hi-Bits unterschiedlich sind, dann
$crcl6 1 # shift left
$crcl6 $POLY # XOR-Verknupfung mit CRC-Poly
$crcl6 OXFFFF # beschranken auf 16 Bit

ansonsten nachstes Bit ohne Verkupfung

$crcl6 1 # shift left
$crcl6 OXFFFF # beschranken auf 16 Bit
$byte 1 # shift left, nachstes Bit

$byte OxXFFFF

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

http://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung
http://perldoc.perl.org/functions/ord.html
http://perldoc.perl.org/functions/substr.html

Last update: 2014/03/11 09:18 cpm:crc https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc?rev=1394529494

Ausgabe
printf "CRC = %.4X\n", $crcl6

Normalerweise werden CRC-Polynome mit reverser Bit-Reihenfolge berechnet; auch die einzelnen
Bytes werden in umgekehrter Reihenfolge abgearbeitet. Und richtig optimal wird es erst mit
vorbrechneten Tabellen...

In Assembler sieht die CRC-Routine wie folgt aus. Die Berechnung ist optimiert und erfolgt
tetradenweise. (Der Code stammt aus der Z9001-EPROM-Software)

in: DE = Startadr., BC = Lange
out: HL = CRC

; CRC berechnen

; Routine aus EPROMA2

;, In DE = Startadr., BC = Lange, out HL=CRC
; CRC-CCITT (CRC-16) x16 + x12 + x5 + 1

crc: hl, OFFFFh
crcl: a, (de

h, a

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/24 13:18

http://perldoc.perl.org/functions/printf.html

2026/01/24 13:

CRC-Berechnung

18 3/5
1d h, 1

1d 1, a

inc de

dec bc

1d a, b

or C

jr nz, crcl

ret

und hier eine direkte Implementierung ohne Optimierung (und dadurch langsamer, aber leichter zu

verstehen)

; CRC berechnen
; Routine aus FA 11/86

; ab HL,

crc_fa0

crc_fa
bytecrc
crclpl

crcO

bis DE, ret HL=CRC (SDLC x16+x12+x5+x1)

, ab DE, BC Bytes, ret HL=CRC

1d h,d
1d 1,e
dec bc
add hl,bc
ex hl,de
1d arg2),de

;, ab HL, bis (arg2), ret HL=CRC

1d de, OFFFFh ; riucksetzen CRC

1d b, 80h ; beginne mit Bit 7
sla e ; CRC schieben

ri d

sbc a,a ; Cy=1 -> A=FF

Xor hl ; Cy=0 -> A=00

and b

jr z,crco

;Rickkopplung CRC-Generator
d a,e

Xor 21h ; 0010 0001 bei SDLC
1d e,a
1d a,d
Xor 10h ; 0001 0000 bei SDLC
1d d,a

srl b

jr nc,crclpl , Byte fertig?

1d bc, (arg2

xXor a ; Cy -> 0
sbc hl, bc
add h1l,bc

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Last update: 2014/03/11 09:18 cpm:crc https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc?rev=1394529494

hl
nz,bytecrc ;, fertig?
de, hl ; CRC nach HL

arg2 ds
end

S.a.

e http://www.robotrontechnik.de/html/forum/thwb/showtopic.php?threadid=3846
e http://www.acl-info.de/literatur/fa_86_11.htm (Berechnung nach SDLC, mit Bit-Schieberegister)

e http://werner.dichler.at/sites/default/files/attachment/prj21_CRC%Z20Einfuehrung.pdf von
Werner Dichler

Hardware

aus mc 1984/07

CRC ist die AbkUrzung fur Cyclic Redundancy Check und so etwas ahnliches wie eine Priufsumme, darf
aber damit nicht verwechselt werden, da die Erzeugung des CRC aufwendiger ist. Dabei werden nicht
einfach die einzelnen Bytes aufaddiert, sondern verschiedene Bits gemals einem sogenannten
Generator- Polynom. Es gibt dabei sehr unterschiedliche Vorschriften, jedoch verwendet man bei den
gangigen Controllern das vom CCITT definierte Polynom. Es lautet G(x) = 1 + x5 + x~12 + x"16.
Daraus kann man eine Schaltung konstruieren, die etwa wie in Bild 16 aussieht. Ein Reset-Eingang
sorgt dafur, dal das Schieberegister auf einen definierten Wert gesetzt werden kann. Dann werden
der Eingang FREI auf 1 gelegt und zusammen mit einem Takt die Daten an E angelegt. Nach dem
Ende des Datenstroms wird FREI auf 0 gelegt, und die CRC-Bytes konnen aus dem Register
geschoben werden. Um nun einen Datenstrom zu testen, wird genauso wie vorher verfahren, nur dafl8
nun auch die CRC-Bytes mitverrechnet werden. Das Ergebnis im Schieberegister mul§ anschlieBend 0
sein.

Glx)e1+x® + e ¥ (CRC-CCITT)

setzan

- S SN W T R
TR R
Bild 16. Erzeugung DA L] L] L % LI B FU a3
¥ = E 1 d P = '—=F' . - o 8 r"‘-’_| o o
von [:RL»B}-tES Reset 6 _[1 1 3 | % T |7 Pt
mit einem T ‘ L
Schieberegister E'

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/24 13:18

http://www.robotrontechnik.de/html/forum/thwb/showtopic.php?threadid=3846
http://www.ac1-info.de/literatur/fa_86_11.htm
http://werner.dichler.at/sites/default/files/attachment/prj21_CRC%20Einfuehrung.pdf
https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/cpm/crc-hardware.jpg?id=cpm%3Acrc

2026/01/24 13:18 5/5 CRC-Berechnung

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc?rev=1394529494

Last update: 2014/03/11 09:18

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc?rev=1394529494

	CRC-Berechnung
	Hardware

