
2026/01/09 17:11 1/5 CRC-Berechnung

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

CRC-Berechnung

In diversen U880-Programmen, z.B. EPROM-Software, wird oftmals eine Prüfsumme ausgegeben.
Dabei handelt es sich fast immer um eine 16 BIT-CRC-Prüfsumme, d.h. ein 17-Bit-Polynom, nach
Standard CCITT:

CRC-CCITT (CRC-16) x^16 + x^12 + x^5 + 1

s. Wikipedia

Als Startwert wird eigentlich immer 0FFFFh genommen.

Pseudocode

for each byte:
 crc ^= byte << 8
 for 8 bits:
 if (crc & 0x8000):
 crc = (crc << 1) ^ 0x1021
 else:
 crc <<= 1

 In der DDR-Literatur liest man auch oft „SDLC-Polynom“. SLDC (Synchronous Data Link Control)
wurde Mitte der 70er von IBM für die Kommunikation zwischen ihren Rechnern über die System
Network Architecture (SNA) entwickelt. Als Standard-CRC kommt hier das obige CRC16-CCITT-
Polynom zum Einsatz.

In Perl kann man die CRC so berechnen (nicht optimiert, reine Umsetzung des Polynoms!). Die Und-
Verknüpfung mit 0x8000 erfolgt zur Maskierung des Hi-Bits 15; Die Und-Verknüpfung mit 0xFFFF ist
nötig, um das Ergebnis als 16Bit-Zahl zu belassen.

$buf =; #Arrays von 2KiByte FFh
$len = 2048; #Anzahl der Bytes

#CRC-CCITT (CRC-16) x16 + x12 + x5 + 1
$POLY = 0b_0001_0000_0010_0001; # das 17. Bit (x^16) entfällt,
 # da nur mit 16 Bit gearbeitet wird

#Startwert
$crc16 = 0xFFFF;

for ($i=0;$i<$len;$i++) {
 my $byte = ord(substr($buf,$i,1)); # nächstes Byte aus Buffer holen

 $byte = $byte * 0x100; # in 16 Bit wandeln
 for (0..7) # 8 Bits pro Byte
 {
 if (($byte & 0x8000) ^ ($crc16 & 0x8000)) {
 # wenn die Hi-Bits unterschiedlich sind, dann

http://de.wikipedia.org/wiki/Zyklische_Redundanzpr%C3%BCfung
http://perldoc.perl.org/functions/ord.html
http://perldoc.perl.org/functions/substr.html

Last update: 2025/08/21 10:31 cpm:crc https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 17:11

 $crc16 <<= 1; # shift left
 $crc16 ^= $POLY; # XOR-Verknüpfung mit CRC-Poly
 $crc16 &= 0xFFFF; # beschränken auf 16 Bit
 } else {
 # ansonsten nächstes Bit ohne Verküpfung
 $crc16 <<= 1; # shift left
 $crc16 &= 0xFFFF; # beschränken auf 16 Bit
 }
 $byte <<= 1; # shift left, nächstes Bit
 $byte &= 0xFFFF;
 }
}

Ausgabe
printf "CRC = %.4X\n", $crc16;

Normalerweise werden CRC-Polynome mit reverser Bit-Reihenfolge berechnet; auch die einzelnen
Bytes werden in umgekehrter Reihenfolge abgearbeitet. Und richtig optimal wird es erst mit
vorbrechneten Tabellen…

In Assembler sieht die CRC-Routine wie folgt aus. Die Berechnung ist optimiert und erfolgt
tetradenweise. (Der Code stammt aus der Z9001-EPROM-Software)

in: DE = Startadr., BC = Länge
out: HL = CRC

;---

; CRC berechnen
; Routine aus EPROMA2
; in DE = Startadr., BC = Länge, out HL=CRC
; CRC-CCITT (CRC-16) x16 + x12 + x5 + 1
;---

crc: ld hl, 0FFFFh
crc1: ld a, (de)
 xor h
 ld h, a
 rrca
 rrca
 rrca
 rrca
 and 0Fh
 xor h
 ld h, a
 rrca
 rrca
 rrca
 push af
 and 1Fh
 xor l

http://perldoc.perl.org/functions/printf.html

2026/01/09 17:11 3/5 CRC-Berechnung

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

 ld l, a
 pop af
 push af
 rrca
 and 0F0h
 xor l
 ld l, a
 pop af
 and 0E0h
 xor h
 ld h, l
 ld l, a
 inc de
 dec bc
 ld a, b
 or c
 jr nz, crc1
 ret

und hier eine direkte Implementierung ohne Optimierung (und dadurch langsamer, aber leichter zu
verstehen)

;---

; CRC berechnen
; Routine aus FA 11/86
; ab HL, bis DE, ret HL=CRC (SDLC x16+x12+x5+x1)
;---

 ; ab DE, BC Bytes, ret HL=CRC
crc_fa0 ld h,d
 ld l,e
 dec bc
 add hl,bc
 ex hl,de
 ld (arg2),de

 ; ab HL, bis (arg2), ret HL=CRC
crc_fa ld de, 0FFFFh ; rücksetzen CRC
bytecrc ld b,80h ; beginne mit Bit 7
crclp1 sla e ; CRC schieben
 rl d
 sbc a,a ; Cy=1 -> A=FF
 xor (hl) ; Cy=0 -> A=00
 and b
 jr z,crc0
 ;Rückkopplung CRC-Generator
 ld a,e
 xor 21h ; 0010_0001 bei SDLC
 ld e,a

Last update: 2025/08/21 10:31 cpm:crc https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/09 17:11

 ld a,d
 xor 10h ; 0001_0000 bei SDLC
 ld d,a
crc0 srl b
 jr nc,crclp1 ; Byte fertig?
 ;
 ld bc,(arg2)
 xor a ; Cy -> 0
 sbc hl,bc
 add hl,bc
 inc hl
 jr nz,bytecrc ; fertig?
 ex de,hl ; CRC nach HL
 ret

arg2 ds 2

 end

s.a.

http://www.robotrontechnik.de/html/forum/thwb/showtopic.php?threadid=3846
http://www.ac1-info.de/literatur/fa_86_11.htm (Berechnung nach SDLC, mit Bit-Schieberegister)
http://werner.dichler.at/sites/default/files/attachment/prj21_CRC%20Einfuehrung.pdf von
Werner Dichler

Hardware

aus mc 1984/07

CRC ist die Abkürzung für Cyclic Redundancy Check und so etwas ähnliches wie eine Prüfsumme, darf
aber damit nicht verwechselt werden, da die Erzeugung des CRC aufwendiger ist. Dabei werden nicht
einfach die einzelnen Bytes aufaddiert, sondern verschiedene Bits gemäß einem sogenannten
Generator- Polynom. Es gibt dabei sehr unterschiedliche Vorschriften, jedoch verwendet man bei den
gängigen Controllern das vom CCITT definierte Polynom. Es lautet G(x) = 1 + x^5 + x^12 + x^16.
Daraus kann man eine Schaltung konstruieren, die etwa wie in Bild 16 aussieht. Ein Reset-Eingang
sorgt dafür, daß das Schieberegister auf einen definierten Wert gesetzt werden kann. Dann werden
der Eingang FREI auf 1 gelegt und zusammen mit einem Takt die Daten an E angelegt. Nach dem
Ende des Datenstroms wird FREI auf 0 gelegt, und die CRC-Bytes können aus dem Register
geschoben werden. Um nun einen Datenstrom zu testen, wird genauso wie vorher verfahren, nur daß
nun auch die CRC-Bytes mitverrechnet werden. Das Ergebnis im Schieberegister muß anschließend 0
sein.

http://www.robotrontechnik.de/html/forum/thwb/showtopic.php?threadid=3846
http://www.ac1-info.de/literatur/fa_86_11.htm
http://werner.dichler.at/sites/default/files/attachment/prj21_CRC%20Einfuehrung.pdf

2026/01/09 17:11 5/5 CRC-Berechnung

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc

Last update: 2025/08/21 10:31

https://hc-ddr.hucki.net/wiki/lib/exe/detail.php/cpm/crc-hardware.jpg?id=cpm%3Acrc
https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/crc

	CRC-Berechnung
	Hardware

