
2026/01/13 14:35 1/5 Arnold-Assembler

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

Arnold-Assembler

Die meisten meiner Assembler-Programme sind mit dem Arnold-Assembler übersetzbar. Der
Assembler von Alfred Arnold ist ein universeller Makro-Cross-Assembler für eine Vielzahl von
Mikroprozessoren und -Controllern. Außerdem ist er komplett kostenlos.

Allerdings erzeugt der Arnold-Assembler erzeugt nicht direkt Binär-Dateien oder auch Hex-Dateien,
sondern *.p-Zwischencode-Dateien. Diese müssen mit einem weiteren Programm p2bin.exe erst zu
einer Binär-Datei umgeformt werden.

Deswegen liegt in den Downloadpaketen oft eine kleine Batch-Datei as.cmd bei, mit der ein
Assemblerquelltext in eine Binärdatei umgewandelt wird:

as.exe -cpu Z80 -L file.asm
p2bin.exe -r $-$ file.p
del file.p

Hinweise

Der Assembler ist recht kompatibel zum M80 und anderen Assemblern. Nur Zeichenketten müssen in
„..“ statt Hochkommas geschrieben werden. Einzelne Charakter-Zeichen bleiben in Hochkommas.

Kleine Perl-Programme erleichtern die Arbeit

convasm.pl konvertiert SYPS K1520 - U880 - Syntax nach Zilog-Syntax
convida.pl Konvertiert IDAPro-Z80-ASM-Dateien in brauchbares Format für den Arnold-
Assembler

Beim Z8-Prozessor muss beachtet werden, dass der Assembler automatisch versucht, die
Registernutzung zu optimieren. Um 100% originalen Code zu erreichen, ist es hilfreich, RP auf ein
ungenutzte Adresse zu setzen:

 assume RP:0C0h ; keine Optimierung durch AS!

Beim Z80-Prozessor kann man eine alternative Syntax für Hex-Zahlen aktivieren. Das erfolgt mit

 INTSYNTAX +0xhex

Dann sind Hex-Zahlen in C-Notation zulässig, z.B. 0xc000

Eine weitere Variante ist

INTSYNTAX +$hex, +%bin

Das erlaubt $efb0, %00100111 zusätzlich zur Suffix-Notation 0EFBh.

Diverses

http://john.ccac.rwth-aachen.de:8000/as/
http://www.ss64.com/nt/del.html

Last update: 2025/12/10 08:57 cpm:arnold_assembler https://hc-ddr.hucki.net/wiki/doku.php/cpm/arnold_assembler

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/13 14:35

statt equ EVAL oder .SET

SET und EQU erlauben die Definition typenloser Konstanten, d.h. sie werden keinem Segment
zugeordnet und ihre Verwendung erzeugt in kei- nem Fall eine Warnung wegen Segment-
Vermischung. Während EQU Konstan- ten definiert, die nicht wieder (mit EQU) geändert werden
können, er- laubt SET die Definition von Variablen.

Einige Prozessoren besitzen leider bereits selber einen SET-Befehl. Bei diesen muß EVAL anstelle von
SET verwendet werden, falls sich der Maschinenbefehl nicht durch die andere Anzahl der Argumente
erkennen läßt. Alternativ ist es auch immer möglich, durch einen vorangestell- ten Punkt (.SET
anstelle SET) explizit den Pseudobefehl aufzurufen.

Ausdrücke in IF .. ELSEIF .. ENDIF

 !! log. XOR
 || log. OR
 && log. AND
 ~~ log. NOT
 >> log. Rechtsschieben
 << log. Linksschieben
 = Gleichheit
 == Alias für =
 <> Ungleichheit
 != Alias für <>

 MOD #
 SHL <<
 SHR >>

PAGE –> NEWPAGE

Symbolnamen

Wann immer der Name eines Symboles mit einem Punkt (.) anfängt, wird das Symbol nicht mit
diesem Namen in der Symboltabelle abgelegt. Stattdessen wird der Name des zuletzt definierten
Symbols ohne vorangestellten Punkt davor gehängt. Auf diese Weise nehmen Symbole, deren Name
nicht mit einem Punkt anfängt, quasi die Rolle von 'Bereichsgrenzen' ein und Symbole, deren Name
mit einem Punkt anfängt, können in jedem Be- reich neu verwendet werden.

Standard-Funktionen

; AS-Funktionen
hi function x,(x>>8)&255
lo function x, x&255
setlength function text,len,substr(text+' ',0,len)

hi(), lo() liefern das obere bzw. untere Byte eines Words
setlength() z.B. für DATE, damit hier immer eine konstante Länge bleibt: db setlength(DATE,10)

individuell z.B. zur Ausgabepositionierung im Bildwiederholspeicher

2026/01/13 14:35 3/5 Arnold-Assembler

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

; Z9001 bws(zeile 0..23, spalte 0..39) analog print_at
bws function z,s,z*40+s+0EC00h
bwsc function z,s,z*40+s+0E800h

Makros

Beim Aufruf eines Makros werden die beim Aufruf angegebenen Parameter- namen überall textuell im
Befehlsblock eingesetzt und der sich so er- gebene Assemblercode wird normal assembliert. Das
funktioniert auch beim Ersetzen des Befehls

LOGOP MACRO LINST
 LD A,B
 LINST D ;;apply logical instruction to B and D
 LD B,A ;;and result to B
 LD A,C
 LINST E ;;apply logical instruction to C and E
 LD C,A ;;and result to C
 RET
 ENDM
LOGOP XOR

Wichtig ist, daß der Assembler alle Parameterna- men im case-sensitiven Modus in Großbuchstaben
umsetzt, in Strings aber nie eine Umwandlung in Großbuchstaben erfolgt. Die Makroparame-
ternamen müssen in den Stringkonstanten daher groß geschrieben wer- den.

Der Unter- strich erlaubt es, einzelne Makroparameternamen zu einem Symbol zusam- menzuketten,
z.B. CALL part1_part2

Ein etwas verstecktes (und mit Vorsicht zu nutzendes) Feature ist, Symbolnamen aus String-Variablen
zusammenzubauen, indem man den Namen des Strings mit geschweiften Klammern in den
Symbolnamen einbaut. So kann man z.B. den Namen eines Symbols anhand des Wertes eines
anderen Symbols festlegen:

cnt .set cnt+1
temp equ "\{CNT}"
 jrnz skip{temp}
 .
 .
skip{temp}: nop

Beispiele:

; ich möchte im Arnold-Assembler für Z80-Code Zeichenketten Byte für Byte
mit
; 0A8h XOR-verknüpfen, also statt
; DB CR,"Test",0
; die Bytefolge A5, FC, CD, DB, DC, A8 erzeugen.

 cpu z80

Last update: 2025/12/10 08:57 cpm:arnold_assembler https://hc-ddr.hucki.net/wiki/doku.php/cpm/arnold_assembler

https://hc-ddr.hucki.net/wiki/ Printed on 2026/01/13 14:35

CR equ 0dh

DX macro X,{NOEXPAND}
 IFNB X
 if EXPRTYPE(x) = 2
 irpc y,x
 DB 'Y' ! 0A8h
 ENDM
 else
 DB (X) ! 0A8h
 endif
 shift
 DX ALLARGS
 endif
 endm

; Codierte Texte erzeugen:
 DX CR,"Test",0

 end

s.a. FORTH für den KC85/2-4, dort gibt es ein umfangreicheres header-Makro, das den FORTH-Header
erzeugt.

ASIDE-Assembler-Makros

; Anpassung Arnold-Assembler
 cpu z80

DEFM macro x
 IFNB X
 DB (X)
 shift
 DEFM ALLARGS
 endif
 endm

DEFS macro a,b
 ifb b
 ds a
 else
 db a dup(b)
 endif
 endm

 INTSYNTAX +$hex ; # --> $

hi function x,(x>>8)&255

https://hc-ddr.hucki.net/wiki/doku.php/forth/kc85-figforth

2026/01/13 14:35 5/5 Arnold-Assembler

Homecomputer DDR - https://hc-ddr.hucki.net/wiki/

lo function x, x&255

From:
https://hc-ddr.hucki.net/wiki/ - Homecomputer DDR

Permanent link:
https://hc-ddr.hucki.net/wiki/doku.php/cpm/arnold_assembler

Last update: 2025/12/10 08:57

https://hc-ddr.hucki.net/wiki/
https://hc-ddr.hucki.net/wiki/doku.php/cpm/arnold_assembler

	Arnold-Assembler
	Hinweise
	Standard-Funktionen
	Makros
	ASIDE-Assembler-Makros

