Anpassung

256 K - RAH-Floppy

nach HP 3/8:

an

Z 1813

Einsatz der 256K-RAM-Floppy nach MP 3/88 am Z1013

Durch den Einsatz einer RAM-Floppy nach MP 3/88 kann der $Z 1013$ zu einem sehr leistungsfaiaigen Rechner ausgebaut werden. Zum einen ist es dadurch möglich, CP/M-kompatible Software zu nutzen, und zum anderen die Ver seitungsgeschwindigkeiten bei dieser Software extrem zu steigern. Auch die Nutzung der RAM-Floppy ohne ein CP/M-Betriebssystem ist mit entsprechender Software mbglich, die nur den originalen Monitor mit eventueller Erweiterung durch den Sprungverteiler (BEEP-Funktion) der IG-HC (AG Z 1013) benötigt (HEADERDISK).
Die Bestückung der RAM-Floppy kann wahlweise mit oder ohne Hauptspeicher erfolgen, was besonders für die z1013-tutzer günstig ist, die den Hauptspeicher bereits auf 64 K aufgerulstet haben.

1. Vollbestückung für Z 1013

Da es im Z1013 durch das Fohlen des Koppelbusses keine /MEMDI1und MEMDI2-Signale gibt, brauchen folgende IC's nicht bestuckt zu werden:
D51, D52, D53, D54 und D49
Damit enfallen auch die DIL-Schalter und das Wiokelfeld C. Es ist aber unbedingt darauf zu achton, daß die in diesen IC's vorgesehenen Durchkontaktierungen durch entsprechende Drahtbrücken realisiert werden. Dies gilt im besonderen auch fur das Wickelfeld A, an dem einige Durchkontaktierungen wichtis für die Adressierung der RAM-Floppy sind.
Un den Rechner auch mit 4 NHz Takt betreiben zu können, war es erforderlich, die RC-Kombinationen R33-R36 und C3-C6 im Wert zu ändern: 150 Ohm / 100 pF , C3 mußte sogar ganz entfallen. Die RC-Werte der RAM-Floppy (R1/R2, C1/C2) konnten beibehalten verden ($390 \mathrm{pF}, 180$ Ohm).
Um den Monitor-EPROM sowie den Bildwiederholspeicher aus dem 64 K Hauptspeicher auszublenden, muß durch den Z1013 das /RDYSignal für diesen Speicherbreich erzeugt werden. Dieses Signal an der Bussteckerleiste (C25) ist im Z 1013 mit CASO
belegt, welches aber am Bussteaker in keiner Weise fur externe Baugruppen benlligt wird und außerdem nicht der K1520-Steckernorm entspricht. Das Signal CASG wird deshalb auf der Z1013Grundplatine direkt an der Steckerleiste (C25) abgeritzt. An diese Stelle tritt nun das /RDY-Signal, welches folgendermaßen orzeugt wird:
Entsprechond Bild 1 werden an den Adressdekoder A23 fünf Dioden mit der Katode an Pin 4,5,6,7,9 angeschlossen, wozu sich am besten Mehrfach-Dioden SAM 65 eignen. Die Anoden der Dioden werden zusammengeschaltet und uber einem pull-up-Widerstand an +5 V gelegt. Der Verbindungspunkt der Dioden-Anoden ist schon das benß̈tigte /RDY-Signal, welches an das nun freie Pin C25 des Systemsteckers angeschlossen wird.
Neben der /RDY-Signalgenerierung muß der auf der Originalplatine vorhandene 16 KByte-RAM inaktiv geschaltet verden. Am einfachsten orfolgt dies, indem das /CAS-Signal für die $16-\mathrm{KByte}-\mathrm{IC}$'s vom Ausgang (Pin 6) des IC's AB getrennt wird und speicherseitis uber einen Widerstand von 1 KOhm auf +5 V gelegt wird. V oo rahisied Es wird aber davor gewarnt, die Betriebsspannung der 0256 abzuschalten, da diese dann den Bus extrem stark belasten.
Eine andere Variante besteht darin, den 16 KByte-RAM auf der Grundplatine weiter zu nutzen und diesen im externen 64K-Block mit auszublenden. Das erfolgt, indem das /CAS-Signal der U256 mit nooh einer Diode auf die /RDY-Leitung seklemmit wird. Die Katode liegt dazu am /CAS der U256, die Anode am /RDY-Signal. Bei der Wahl der 10-Grund-Adresse der RAM-Floppy muß darauf seachtet werden, daß diese nicht mit der unvollständigen Dekodierung der IO-Adressen der Grundplatine in Konflikt geraten. Da außerden die Wahl der IO-Grundadresse im Wickelfeld D eingeschrlankt ist, wurde die 98H (bei einer RF-Karte) bzw. die 58 H fur eine awoite RF-Karte gewihlt. Dazu sind folgende Verbindungen im Wickelfeld D zu realisieren:

1. 98 H

29-34, 31-36, 33-30, 35-32, 37-38
2. 58 H

29-34, 31-36, 33-30, 35-38, 37-32
Die Verbindung der RF-Karte mit dem Z1013 erfolgt entweder über
den Erweiterungsbaugruppenträger, wobei dann ein zweireihiger 58 -poliger Steokverbinder benutat werden muß, oder, was wesentlich effektiver ist, man verbindet die RF-Karte uber einen 1:1 Adapterstecker direkt mit dem Busstecker des Z1013. Probleme mit dem dann ungetriebenen Bus entstanden weder bei 2 noch bei 4 MHz Takt.
2. Peilbestückung der RF-Karte (ohne Hauptspeicher)

Wenn der verwendete $Z 1013$ schon mit 64 K auf der Grundplatine ausgeristet ist, kann ein großer Teil der Bauelemente eingespart werden. Folgende $I C$'s kömnen entfallen: D51, D52, D53, D54, D49, (D46), D47, D48, D45, D54-D61, D43 und D44
D46 kann nur dann entfallon, wenn eine Brücke zwischen Pin 8 und 9 eingefugt wird.
Weiterhin können R22-R29, R31-R47 sowie C3-C6 entfallen.
Sehr kritisch ist die Realisierung der Durchicontaktierungen an den nichtbestückten IC's, was sehr haufis zu Fehlern führt. Verlinderungen am Z1013 sind bei der Teilbestückung der RF-Karte nicht notwondis. Sie kam 1:1 an Busstecker des Z1013 angesohlossen werden. Fur die 10-Grundadresse gilt das unter Pkt. 1 Gesiste.

3. Inbetrielunahse an $Z 1013$

ำ

Bevor die EF -Karte an den 21013 angesteckt wird, muß eine gründLiche Sichtkontrolle aller Lötstellen und Durchkontaktierungen erfolgen. Nit Sicherheit findet man immer wieder noch eine Stelle, an der man vergessen hat, ein Bauelement von der Bauelementeseite her anzulzten. Es hat sich bewhrt, die gesarate Platte oder wenigstans die LBtaugen vor allem auf der Bauelementeseite vor dem Bestilcken gu verzinnen. Damit sinkt auch die Gefahy von Haarrissen tans erheblich.
Ala erstes empilehlt es sich, die Stromaufnahme der Platte im Buhemustand su measen. Bei einer vollbestückten Platte liegt die

Stromaufnahme etwa bei $0,5 \mathrm{~A}$, bei einer teilbestickten bei etwa $0,36 \mathrm{~A}$.
Wach dem Aufistecken der Platte (im spannungslosen Zustend!i) maß sich der Rechner wieder ganz normal melden. Danach kann das in Anhang befindliche Testprogramm geladen und gestartet werden (Standort 100H-4B7H, Start: 100H). Werden beim Test alle Sektoren und Tracks als fehlerhaft gemeldet, so liest der Fehler wahrscheinlich in der Adressierung oder im Datenbustreiber bsw. in dessen Ansteuerung. Wird immer ein bestimater Speicher-IC als fehlerhaft ausgegeben, so kann der IC selbst Bitfehler auf-
 unterbrochen (meist fehlende Durchkontaktierung). Es kommt auch vor, dab bei jeden Durchlauf ein anderer IC als fohlerhaft orkannt vird. In diesem Fall liegen meist Refresh-Fehler vor, oder die Betriebsspannung ist durch die nun höhere Belastung des Netateils verbrument bsw. hat nicht die vorgeschriebene HBhe. Aus Erfahrung kann gesagt verden, dab die Speicher bei einer Spannung von $4,8 \mathrm{~V}$ nicht mehr ordentlich laufen (Basteltypen!).

```
* Beschreibung zum Programm HEADER-DISK 45 *
* (c) by Rainer Brosig IG-HC 1/89 *
*************************************************************
```

Standort: E000-E7FFH (wit Puffer) Start: E01BH

HEADER-DISK 45 ist ein Programm zur HEADERSAVE-kompatiblen Verwaltung von max. 2 RAM-Disketten nach MP 3/88. Uw die Disk moge lichst optimal auszulasten, murde auf ein Directory veraichtet, sodab die Files sequentiell auf der Floppy, beginnend mit einem HEADERSAVE-kompatiblen Kopf, angelegt sind. Die damit verbundenen Suchzeiten sind ummerklich und werden durch die verkürzte Ladezeit wieder kompensiert.
Beim Einschalten des Rechners ist es wichtid, vor dem ersten Beschreiben der Disk diese komplett zu löschen.

Kommandos HEADER-DISK 45:
er READ

- laden File entsprechend abgefragter Filenummer mit Autostart bei Typ=C vom aktuellen Disk

ORRR - wie OR, aber Autostartverbot

ORN - wie OR, aber nach Name+Typ vom aktuellen Disk

CRNN - wie ORN, aber Autostartverbot

OR aadr - auf aadr vom aktuellen Disk verschoben laden

ORA - wie er, nur mit zusitglicher Umschaltund auf Disk A (@RB->auf Disk B)

OW aadr eadr sadr ENT \rightarrow Typ+Name
WRITE

- saven File auf aktuelle Disk

QN: - wie ow, aber es wird der alte Kopfinhalt genommen z. B nach olhh (!!nach ef ist der Kopf zerstört!!)

OF FILES

- Anzeige der Files auf dem aktuellen Disk

OFA - wie ©F, aber mit zuslitzlicher Zwangsumschaltung des Disk
© KILL

- 18achen eines Files entsprechend abgef ragter Nummer auf aktuellem Disk

OKA

EXN - wie OX. aber 16scher nach Name tTyp statt nach Nummer

OKAG - Komplett1b̈rchures Disk A
OXBG - ..". B

* - Umschalten auf Disk A

OB - Umschalten auf Disk B

Der Aufruf der Unterprogramme erfolgt HEADERSAVE-kompatibel uber den Spruntverteiler auf E000H. Dabei karn ein auf Adr. EOOOH stehender HEADERSAVE-Treiber gegen das HEADER-DISK-Prosraw ausgetauscht werden, ohne dab Kinderungen am rufenden Prosram erfolgen milasen. Bei den Blockroutinen bestehen Einschrlinkungen bezitglich der max. Größe des Files auf 64K. Die Grundadressen der Disks können in E024H (A) und E025H (B) bei Bedarf telindert werden.

LOC $\quad 0001 \quad 020304 \quad 0506 \quad 07 \quad 08 \quad 09$ OA OB OC OD OE OF
0123456789 ABCDEF

E010: 51 E3 C3 D7 E1 C3 65 E4 C3 8D E2 C3 7F E6 C3 4 CB E020: EO 0000 C 9 98 58 F 506003 A 24 EO 32 FD E6 78 E030: 32 FE E6 F1 C9 F5 O6 01 3A 25 EO 18 EF CD DO EO E040: FE 41 CC 26 EO FE 42 CC 35 EO C9 CD 3D EO E7 02 E050: OD 444953 4B 3A AO 4 A FE E6 C6 41 E7 OO $3 E$ OD E060: E7 00 CD 06 E3 $D C$ CB E6 D8 $3 \mathrm{E} \quad 01$ CD A6 EO CD 12 E070: E3 38 10 3A F6 E6 47 C6 O3 E6 $1 \mathrm{~F} \quad 20$ 02

 EOAO: FF E6 CD 6B E5 C9 32 FB E6 11 FF E6 CD C2 E5 3E
 EOCO: CD F1 E5 3E OD 1213 AF 12. 11 FF E6 CD 6B E5 C9 EODO: $2 A 160023 \quad 23 \quad 23$ 7E FD $6 F 2 B$ FD $26007 E$ C9 CD EOEO: 3D EO CD 98 E1 DB CD E4 E2 3A EC OO FE 43 CO FD EOFO: 7D FE 20 CO 2A E4 OO E9 FD 2600 FE 3 A C4 15 EO E100: E110:
 E390: EF E6 ED 4428095 F AF B0 28097 B B8 $38 \quad 05 \mathrm{CD}$ E3AO: AE E3 D1 C9 78935743 CD AE E3 4218 F1 C5 CD E3B0: E7 E3 3A F1 E6 4F 3A F7 E6 B7 20 04 ED B2 1802 E3C0: ED B3 F1 F5 E5 2A EF E6 B7 20 OB 2422 EF E6 28 E3DO: 0918114 F 0922 EF E6 30 OA 21 F1 E6 34 3A FD E3E0: E6 C6 04 BE E1 C1 C9 E5 2A EF E6 CD F5 E3 ED 61 E3FO: OC ED 69 E1 C9 3A FD E6 C6 064 F C9 21 FO E6 B7 E400: 34 C0 21 F1 E6 34 3A FD E6 C6 04 BE C9 CD 6D E2 E410: E5 21 F1 E6 3A FD E6 C6 02 BE E1 DO 3F D5 1100 E420: 00 EB ED 52 B7 112000 ED 52 D1 D8 ED 52 C9 E5 E430: D5 C5 E7 02 OD 4E 72 BA 2A 2B 00221600 E7 01

 E460: D1 C1 D1 E1 C9 21 1B 0011 EO 00010400 ED BO E470: 2A 230022 E4 0021 ED 00 3E D3 0603772310 E480: FC CD 98 E4 FD 7C 32 EC 00 2A 160001100011 F490: FO 00 ED BO E7 02 BD C9 FD 7C B7 20 17 E/ O2 On - AAO : E4BO: E4C0:
E4DO: E4EO: E4FO: E500:
E510:
E520:
E530:
E540:
E550:
E560: E570: E580:
E590:
E5A0:
E5B0:
TCO:
baDO:
E5EO:
E5FO:
E600:
E610:
E620:
E630:
E640:
E650:
E660:
E670:
E680:
E690:
E6AO:
E6B0:
F6CO:
E6D0:
F6EO:
E6FO: 2D 5A 0000000000010000000000580100

. * *9.......... Ak. B5. W. . R. .K. .F.
(c) by R. B rosig 1/89free:. -Z............. X.

LOC $\quad 0001 \quad 02 \quad 0304 \quad 05 \quad 06 \quad 07 \quad 08 \quad 09 \quad 0 A \quad O B \quad O C \quad O D \quad O E \quad O F$

0110: AF C9 3A 0301 C6 07 4F 2A AD 04 AF 29292929
0120: ED 5B AF 0419 CB 1C CB 1D CB 1F ED 79 7D OD ED

0140: D5 E5 210000 22 AD 04 22 AF 0421290422 B1

0170: AF $0423 \quad 22$ AF 04 B7 ED 5220 DO 21000022 AF

01B0: 2034 OD 202020 3D 3D 3D 3D 3D 3D 3D 3D 3D 3D
O1C0: 3D OD OD OD 45

O1F0: 7A 20 6A $657765696 C 73207565 \quad 67657261$
0200: $6465207665727363686 F 2 D$ OD OD 62 65 6E

0230: $72 \quad 6965 \quad 6265 \quad 6 \mathrm{E} \quad 2075$ 6E 64206162676574

0280: 65 6E 2E OD OD $202020 \quad 20 \quad 20 \quad 20 \quad 20 \quad 20 \quad 20 \quad 2020$
0290: $202020 \quad 20 \quad 28 \quad 632920 \quad 62 \quad 79$
02AO: $2052 \quad 42$ BD 2A 2B 00 36 20 21 B3 0436
02B0: 01 CD F1 02 E7 02 OD OD $6 E \quad 6 F 6368206569$ 6K
02C0: 6D 61 6C 20 6L 656769657274 3A OD 6D 2A 2B
02D0:-00 362021 B3 043601 CD 3 3F 01 CD F1 02 E7 02

02FO: FF 21290422 B1 0421000022 AD 0422 AF 04

0310: 7A $2601 \quad 2 F 2129040680 \mathrm{BE} 20 \quad 0723 \quad 3 \mathrm{C} \quad 10 \mathrm{F9}$
0320:
0330:
0340:
0350:
0360:
0370:
0380:
0390:
03AO:
03B0:
03CO:
03D0:
03EO:
03F0:
0400:

0450: 9699 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7
0460: A6 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7
0470: B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7
\qquad yul yல. !., "......! ! . . . W: . . W: . . . 21 ...w".............. *
 R
$256 K$ -RAM-FLOPPY-TEST

```
4. ==========
```

 s wird der gesam te Zeichen-..sat z jeweils ungera de verscho-. . ben und nesiert auf die RF ge-..so rieben und abget estet... Die IO-G rundadresse kann in. Zelle 103H eingetragen werd en.
(c) by RB. *+. 6 !. . 6. .?noch ein mal negiert:...*+ .6 !. . 6 . 9.

TEST BEENDET.
!).
(.ji) W: . . W: . . .
2. B2........ F

EHLER. .TRACK:
SECTOR: : : BYTE W / λ R R : . : N. 2. . O. . . B. >0. . >1. entspr ioht IC: . :...'? .?. .2........0. 0: :........ 1 >ENTER<. $\%+.6$ (...............2. . . . <2... qretuvv xyzatiod

Alle aufgefuhrten Bauelemente bebefinden sich auf der Rechnerplatte.

Die gestrichelt gezeichneten Dioden werden zusätzlich benötigt.

