
 NL4-1

 N E W S L E T T E R # 4

 March 1981

 This is the fourth issue of The Soft Warehouse Newsletter . The
newsletters are devoted to bringing our customers up to date on the
latest news, updates, and products of The Soft Warehouse. In
addition, they provide a medium for the growing co mmunity of muLISP
and muMATH users to exchange ideas and application programs. We are
always in need of suggestions, gripes, short articl es and/or program
listings for publication. This newsletter can be as useful as you
want to make it. Before we get down to business, several announce-
ments are in order:

 muMATH and muLISP Reviews

 Buried in the back of the November 1980 issue of BYTE on page
324 is an excellent review of muSIMP and muMATH-79 by Gregg Williams
of BYTE. He gives a very lucid explanation of th e capabilities of
the system. Since the article is not listed i n the table of
contents you may have missed it. In the forthco ming April 1981
issue there will be a comparative review of muLISP and some of our
competitors' LISPs. It should prove to be an inter esting comparison
and give LISP some badly needed press. Also of int erest is a review
of the TRS-80 version of muMATH on page 81 of the O ctober 1980 issue
of SoftSide magazine.

 SYMSAC '81
 ACM Symposium on Symbolic and Algebraic Com putation

 SIGSAM (ACM's Special Interest Group on Symbolic and Alg ebraic
Manipulation) is sponsoring a major conference this summer. Topics
include i) design and analysis of algorithms, ii) languages,
systems, and machine architectures, iii) algebraic , elementary, and
transcendental function computations, iv) compu tational number,
group, and ring theory, and v) the interface of num eric and symbolic
computation methods. It will be held from August 5 to 7, 1981 in
Snowbird, Utah, U.S.A. For more information wr ite the General
Chairman, B. F. Caviness , Department of Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, NY, 12181, U.S.A.

 IJCAI '81
 International Joint Conference on Artificial I ntelligence

 The seventh IJACI Conference will be held fro m August 24 to 28
at the University of British Columbia in Vancouver , B.C., Canada.
Papers covering all areas of interest in AI are p lanned. General
topics include i) applications of AI, ii) vision processing, iii)
problem solving, iv) expert systems, and v) natur al language. In

 NL4-2

parallel with the conference will be an R&D exhib ition where the
latest AI hardware and software will be demonstr ated. The Soft
Warehouse hopes to be there with some of our new pr oducts including
an even higher performance implementation of muLIS P and muMATH on a
16-bit microprocessor. For information you can w rite Pat Hayes ,
General Chairman, IJCAI-81, Computer Science Dept ., University of
Rochester, Mathematical Sciences Bldg., Rochester, NY, 14627, U.S.A.

 Newsletter Subscription Policy

 Generally, copies of The SWH Newsletter inclu ded with shipment
of a system (if any) are not charged against the three (3) free
copies promised in the SWH License Agreement. Unless you have
renewed your subscription, this is the last free newsletter for
owners of systems with SWH serial numbers ending in 137 through 216.
Those with serial numbers ending in 217 through 274 will receive one
more issue. Finally, those with serial number s ending in 275
through 356 will receive two more issues. If yo u would like to
subscribe or extend your subscription for anothe r three issues,
please send $5 (US) cash or check to The Soft Ware house, P.O. Box
11174, Honolulu, Hawaii, 96828, U.S.A.

* * * * * * * * * * * The muMATHematician * * * * * * * * * * *

 Handy muSIMP Utility Functions

 Often in muMATH when you have gone astray it is necessary to
restore a number of variables to their original u nbound status in
order to begin anew. Or you may be running out of available memory
space and it is necessary to delete some old expr essions "hanging
around" as forgotten variable values. Remembering and then deleting
these values will be greatly facilitated by the fu nctions BOUND and
CLEAR which are defined in the file CLEAR.MUS. T he basic idea for
the functions was contributed by Pierre Schwob of PRS Corporation
(Program Research & Software), NY, NY.

 NL4-3

% File: CLEAR.MUS 02/25/81 The Soft Warehouse %

% Function BOUND returns a list of all the bound va riables (i.e.
muSIMP names which have a value other than themselv es) in the
current oblist if the value of FLAG is FALSE. If F LAG is NON-FALSE,
the value of bound variables is displayed instead. %

FUNCTION BOUND (FLAG,
 %Local:% LST1, LST2),
 LST1: OBLIST (),
 LOOP
 WHEN EMPTY (LST1),
 WHEN FLAG, NEWLINE () EXIT,
 REVERSE (LST2) EXIT,
 BLOCK
 WHEN FIRST(LST1) EQ EVAL(FIRST(LST1)) EXIT,
 WHEN FIRST(LST1) EQ 'LST1 EXIT,
 WHEN FIRST(LST1) EQ 'LST2 EXIT,
 WHEN FIRST(LST1) EQ 'FLAG EXIT,
 BLOCK
 WHEN FLAG,
 NEWLINE (), PRINT (FIRST(LST1)), SPACES (10-SPAC ES()),
 PRINT (" = "),
 PRTMATH (EVAL(FIRST(LST1)), 0, 0, TRUE) EXIT END BLOCK,
 PUSH (FIRST(LST1), LST2),
 ENDBLOCK,
 POP (LST1),
 ENDLOOP,
ENDFUN $

% Function CLEAR (LST) is used to free or unbind al l bound
variables in the list LST. It can be used in conju nction with
the function BOUND to restore all user defined vari ables to
their original unbound status. %

FUNCTION CLEAR (LST),
 LOOP
 WHEN EMPTY (LST) EXIT,
 ASSIGN (FIRST(LST), POP(LST)),
 ENDLOOP,
ENDFUN $

RDS () $

 NL4-4

 A FOR-loop Construct for muSIMP

 T. B. Robinson of Research Machines, Oxford, England has done
it again! This time he has written an extension to muSIMP which
correctly parses the FOR-loop construct found in m ore conventional
computer languages. The following is his descripti on:

 A FOR-loop begins with the matchfix operator FOR and ends with
the delimiter ENDFOR. An exit from the loop can be made at any time
using a WHEN...EXIT construct. The keywords FROM, TO, and BY can be
included after the FOR (in any order). Any or all can be omitted.
FROM and BY default to 1; TO effectively default s to infinity by
omitting the loop termination test. The BY and TO elements are
evaluated each time round the loop as in Algol. Note that commas
are required after the FROM, TO, and BY keyword ope rands.

 The value returned by a FOR-loop strongly de pends upon what
caused the exit from the loop. Normally exit occ urs when the FOR-
loop variable meets or exceedes its terminating val ue. In this case
the value of the variable which actually caused th e termination is
the value returned by the FOR-loop. However, if ex it occurred early
due to a WHEN...EXIT construct, the value of that construct is the
value of the FOR-LOOP. The following are some func tions showing the
use of various permutations of the FOR-loop stateme nt:

FUNCTION FORTEST (), FUNCTION F ORTEST0 (),
 FOR I FROM 1, TO 7, BY 2, FOR I TO 7,
 PRINT (I), SPACES (2), PRINT (I), SPACES (2),
 ENDFOR, ENDFOR,
ENDFUN$ ENDFUN$

 WHILE <condition>, UNLESS <condition>, and UNTIL <condition>
can be used as additional loop termination condit ions. WHILE is
equivalent to UNLESS NOT with the test being p erformed at the
beginning of the loop. The UNTIL test is perform ed at the end of
the loop.

FUNCTION FORTEST1 (), FUNCTION FO RTEST2 (),
 FOR I BY 2, WHILE I*I<100, FOR I FRO M 1, TO 20, BY I,
 PRINT (I), SPACES (2), PRINT (I), SPACES (2),
 ENDFOR, ENDFOR,
ENDFUN$ ENDFUN$

FUNCTION FORTEST3 (), FUNCTION FO RTEST4 (A),
 FOR I TO -20, BY -1, FOR I TO A,
 PRINT (I), SPACES (2), PRINT (I), SPACES (2),
 ENDFOR, ENDFOR,
ENDFUN$ ENDFUN$

FUNCTION FORTEST5 (A), FUNCTION FO RTEST6 (),
 FOR I TO A, UNLESS A>10, FOR I UNT IL I*I>100,
 PRINT (I), SPACES (2), PRINT (I), SPACES (2),
 ENDFOR, ENDFOR,
ENDFUN$ ENDFUN$

 NL4-5

% File: FORLOOP.MUS 06/22/84 T. B. Robi nson %

% Modified by The Soft Warehouse for compatibility with muSIMP-83 %

MOVD ('APPLY, 'FORLOOP)$

DELIMITER: ADJOIN ('ENDFOR, DELIMITER)$

FUNCTION SIGN (EX1),
 WHEN NEGATIVE(EX1), -1 EXIT,
 WHEN ZERO (EX1), 0 EXIT,
 1,
ENDFUN$

FUNCTION FORPARSE (VAR,
 % Local: % FROM, TO, BY, UNTIL, BODY, ARGLIST, ARGS),
 FROM: BY :1,
 BODY: MATCH (SCAN (), 'ENDFOR),
 BLOCK
 WHEN TO,
 BODY: ADJOIN (LIST (LIST ('>, LIST ('*, LIST ('-,
 VAR, '(EVAL TO)), '(SIGN (EVAL BY))), 0), VAR), B ODY),
 ARGLIST: LIST (VAR, 'TO, 'BY),
 WHEN INTEGER (TO),
 WHEN INTEGER (BY),
 ARGS: LIST (FROM, TO, BY) EXIT,
 ARGS: LIST (FROM, TO, LIST ('', BY)) EXIT,
 WHEN INTEGER (BY),
 ARGS: LIST (FROM, LIST ('', TO), BY) EXIT,
 ARGS: LIST (FROM, LIST ('', TO), LIST ('', BY)) EXIT,
 ARGLIST: LIST (VAR, 'BY),
 WHEN INTEGER (BY),
 ARGS: LIST (FROM, BY) EXIT,
 ARGS: LIST (FROM, LIST ('', BY)),
 ENDBLOCK,
 BLOCK
 WHEN UNTIL,
 BODY: CONCATEN (BODY, UNTIL) EXIT,
 ENDBLOCK,
 BODY: LIST ('FUNCTION, ARGLIST, ADJOIN ('LOOP, CO NCATEN (BODY,
 LIST (LIST (':, VAR, LIST ('+, VAR, '(EVAL B Y))))))),
 BODY: LIST ('FORLOOP, LIST ('', BODY), ARGS),
ENDFUN$

FUNCTION ENDFORPARSE(),
 BLOCK
 WHEN SCAN EQ COMMA,
 SCAN () EXIT,
 ENDBLOCK,
 WHEN SCAN EQ 'ENDFOR, FALSE EXIT,
 PARSE (SCAN, 0),
ENDFUN$

 NL4-6

FUNCTION FROMPARSE (),
 FROM: PARSE (SCAN (), 0),
 ENDFORPARSE (),
ENDFUN$

FUNCTION TOPARSE (),
 TO: PARSE (SCAN (), 0),
 ENDFORPARSE (),
ENDFUN$

FUNCTION BYPARSE (),
 BY: PARSE (SCAN (), 0),
 ENDFORPARSE ()
ENDFUN$

FUNCTION MAKEFUN (LEX1),
 WHEN ATOM (LEX1),
 LIST ('IDENTITY, LEX1) EXIT,
 LEX1,
ENDFUN$

FUNCTION UNTILPARSE (),
 UNTIL: ADJOIN (LIST (MAKEFUN (PARSE (SCAN (), 0)) , VAR), UNTIL),
 ENDFORPARSE (),
ENDFUN$

PROPERTY PREFIX, FOR,
 FORPARSE (SCAN ())$

PROPERTY PREFIX, FROM,
 FROMPARSE ()$

PROPERTY PREFIX, TO,
 TOPARSE ()$

PROPERTY PREFIX, BY,
 BYPARSE ()$

PROPERTY PREFIX, WHILE,
 LIST (LIST ('NOT, PARSE (SCAN (), 0)), VAR)$

PROPERTY PREFIX, UNLESS,
 LIST (MAKEFUN (PARSE (SCAN (), 0)), VAR)$

PROPERTY PREFIX, UNTIL,
 UNTILPARSE ()$

RDS ()$

 NL4-7

 Bug in the Matrix Package

 A bug was found in the matrix division pack age. It caused
strange things to happen when the "\" operator was used to perform
matrix division. It affects only versions 1/14/ 80, 8/14/80 and
8/23/80 of MATRIX.ARR. Do not alter a 12/27/79 or earlier version
of the file. On the eighth line of the function STARTBACK (which
begins around line 99 of the file) change the c all to function
"APPLY" to "ADJOIN". Then change the date of the f ile to 10/06/80.

 Bugs in the Integration Package

 Three errors have turned up in the muMATH sou rce file INT.DIF.
The errors can easily be fixed using any CP/M compatible text
editor. Once corrected the version date given in the first line of
the file should be changed to: 11/26/80.

 1. Bug 1 occurs when attempting to integ rate expressions
involving the LOG of a LOG (e.g. INT(LOG(LOG(X)), X). The fix is
needed for all versions of INT.DIF dated 8/25/ 80 and earlier.
Change the definition of the following property wh ich occurs around
line 112 in the file to:

 PROPERTY INT, LOG, FUNCTION (EX2, EX3),
 WHEN EX3 EQ #E,
 WHEN FREE (EX3:DIF(EX2,INDET), INDET),
 EX2 * (LN(EX2)-1)/EX3 EXIT EXIT, % Changed Line %
 ENDFUN $

 2. Bug 2 occurs when constant factors can be removed from an
expression but the remaining expression still cann ot be integrated
(e.g. INT(B*F(X),X)). The fix is needed for all ve rsions of INT.DIF
dated 10/30/80 and earlier. Change the next-to- last line of the
definition of the function INT1 (which begins on line 76 of the
file) to:

 EX1: EVAL(EX1),
 WHEN EX3:INT2(), TRGEXPD:-7, EX2*EVAL(EX3) EXIT,
 EX2 * LIST ('INT, EX1, INDET), % Changed Line %
 ENDFUN $

 3. Bug 3 occurs when integrating an expres sion which is a
product divided by a constant (e.g. INT(A*X/3,X)). The fix is
needed only for the 8/25/80 and 10/30/80 versions of INT.DIF; do not
change a 7/16/79 version. Change the seventh line of the definition
of DRVDIV (which begins on line 43 of the file) to:

 FUNCTION DRVDIV (LEX1),
 % Fluid vars from INT & INT1: INDET, EX1, EX2 , EX3, EX4, EX5 %
 WHEN EMPTY (LEX1), INT3() EXIT,
 WHEN (EX4:POP(LEX1)) = INDET, DRVDIV (LEX1) EXIT,
 EX5: EX1 / EX4,
 WHEN ZERO (EX3:DIF(EX4,INDET)),
 EX2: EX2*EX4, EX1: EX5, DRVDIV (LEX1) EX IT, % Changed %

 NL4-8

* * * * * * * * * * * * * The muLISPer * * * * * * * * * * * * *

 A Note to Users of muLISP-79 and muSIMP-79

 An extremely useful pair of functions added to muLISP-80 and
muSIMP-80 are the PUSH and POP pair of "stack fu nctions". These
provide the analogues in muLISP and muSIMP of the stack operators
commonly found in machine languages. They are exp lained in the new
muLISP manual as follows:

 POP - if X is the name of a list, then PO P [X] returns the
 car of that list while setting X to the cdr of the list.

 PUSH - if Y is the name of a list and X is an expression,
 then PUSH [X, Y] will cons X onto the list Y and update Y to
 point to this enlarged list.

 They provide a convenient yet structured exte nsion of muLISP
especially when used with the LOOP construct. Fo r example see the
definition of MKTOWER in the Tower of Hanoi functio ns given below.

 Unfortunately, however, they were not includ ed in muLISP-79.
But have no fear, LISP is an extensible language and as such it is
easy to define the "stack functions" in terms of m ore conventional
functions. The only cost in the user-defined stac k functions is a
loss in execution efficiency. muSIMP-79 users can define analogous
functions in muSIMP. The muLISP definitions are as follows:

 (DEFUN POP (NLAMBDA (NAM)
 (POP1 NAM (EVAL NAM))))

 (DEFUN POP1 (LAMBDA (NAM LST)
 (SET NAM (CDR LST))
 (CAR LST)))

 (DEFUN PUSH (NLAMBDA (EXPN NAM)
 (SET NAM (CONS (EVAL EXPN) (EVAL NAM)))))

 Dazzler Robot for Blocks World

 The Blocks World was created as the domain o f discourse for
Terry Winograd's thesis Understanding of Natural Language [1972].
The Blocks World has become the basis for much sub sequent work and
discussion in the field of AI. John Dunn of Time Arts Synthesis,
1905 San Ramon Ave., Mountain View, CA, 94043 ha s implemented in
muLISP the low-level primitives which would be nece ssary for writing
a system similar to Winograd's. muLISP makes machi ne language calls
to the BDAZ animation package . It is a general purpose graphics
utility package designed for use with Cromemco's Da zzler tm graphics
board. Currently John is putting the BDAZ packa ge in the public
domain. Contact him for details.

 The Dazzler "Soft" Robot is a 2D implementatio n of a robot arm

 NL4-9

that will move blocks and wedges from a shelf to a table and back.
The arm is semi-intelligent in that it will move b locks out of the
way in order to get to the one it needs, and it won 't put a block on
a wedge.

 The program is intended as a set of tools for AI work, not as a
finished product. There is no human interface to s peak of, only the
"hardware" of the robot arm. Functions can be use d as they are, as
robot primitives for a higher-level LISP program, or they can be
used as a guide for building other "soft" robots.

 Hardware required:
 A Z-80 system with at least 48K of RAM.
 Cromemco Dazzler graphics subsystem.

 Software required:
 muLISP-80 modified with the overlay suppl ied with BDAZ
 BDAZ animation package for the Dazzler, " BDAZ.COM"
 The BDAZ screen files for the table & box es,
 "TABLE.DAZ" & "BOXES.DAZ"
 The low-level MuLISP/BDAZ interface progr am "EXTRA.LIB"
 The high-level MuLISP/BDAZ interface prog ram "DAZ.LIB"
 CPM or CDOS with the TPA located at the n ormal 100 hex

 The Tower of Hanoi Problem

 This is a popular computer problem that shou ld exercise the
recursive nature of any good LISP programmer. The game begins with
three pegs (say A, B, and C) with a number of dis ks stacked on peg
A. All the disks are of different diameter with t he largest on the
bottom of the stack and the smallest on top. The o bject of the game
is to move the disks from peg A to peg B using pe g C as a spare.
The following rules must be observed: i) only one disk can be moved
at a time, ii) no disk can ever be placed on a sma ller disk. Read
no further if you want to solve the problem for you rself.

 A muLISP solution to the Tower of Hanoi proble m is provided in
the listing of HANOI.LIB printed below. The fun ction XFER below
embodies the heart of the algorithm. XFER moves N UM disks from peg
SOURCE to peg DEST using peg SPARE as a spare. This is done by
moving NUM-1 disks to the spare peg, moving the r emaining disk to
DEST peg, and finally moving the NUM-1 disks to the DEST peg by
using the original SOURCE peg as the spare. Natura lly the algorithm
must be called recursively to move the NUM-1 disk s. In fact it
requires 2 n moves to move n disks.

 The program displays the three pegs horizo ntally with the
letters of the alphabet representing the disks, th e smallest disk A
being on "top". The process is started by calli ng the function
HANOI with a positive integer argument equal to the number of disks
desired. For example:

 (HANOI 5)

 NL4-10

 I highly recommend not using a hard copy terminal for this! A
muSIMP solution to this same problem was provided by Pierre Schwob
of PRS Corporation.

% File: HANOI.LIB 03/02/81 The Soft Warehouse %

(DEFUN HANOI (LAMBDA (NUM
 %Local: % A B C TAB1 TAB2)
 (SETQ A (MKTOWER NUM ALPHABET))
 (SETQ TAB1 (PLUS (LENGTH (PACK A)) 4))
 (SETQ TAB2 (TIMES 2 TAB1))
 (PRINTTOWERS)
 (XFER NUM (QUOTE A) (QUOTE B) (QUOTE C))
 " "))

(DEFUN MKTOWER (LAMBDA (NUM ALPHABET TOWER)
 (LOOP
 ((ZEROP NUM)
 (REVERSE TOWER))
 (PUSH (POP ALPHABET) TOWER)
 (SETQ NUM (SUB1 NUM)))))

(DEFUN XFER (LAMBDA (NUM SOURCE DEST SPARE)
 ((ZEROP NUM))
 (XFER (SUB1 NUM) SOURCE SPARE DEST)
 (MOVE SOURCE DEST)
 (XFER (SUB1 NUM) SPARE DEST SOURCE)))

(DEFUN MOVE (LAMBDA (SOURCE DEST)
 (SET DEST (CONS (CAR (EVAL SOURCE)) (EVAL DEST)))
 (SET SOURCE (CDR (EVAL SOURCE)))
 (PRINTTOWERS)))

(DEFUN PRINTTOWERS (LAMBDA NIL
 (TERPRI)
 (PRINHANOI A) (TAB TAB1)
 (PRINHANOI B) (TAB TAB2)
 (PRINHANOI C)))

(DEFUN PRINHANOI (LAMBDA (LST)
 (LOOP
 ((NULL LST))
 (PRIN1 (POP LST)))))

(DEFUN SUB1 (LAMBDA (NUM)
 (DIFFERENCE NUM 1)))

(DEFUN TAB (LAMBDA (NUM)
 (SPACES (DIFFERENCE NUM (SPACES)))))

(SETQ ALPHABET (QUOTE (A B C D E F G H I J K L M N O P Q R S T U V
 W X Y Z)))

(RDS)

