
 NL8-1

 N E W S L E T T E R # 8

 January 1983

 Aloha from Hawaii! The Soft Warehouse Newsle tter provides you
with information on new Soft Warehouse product s, and software
extensions or corrections to existing products. In addition, the
newsletter is a medium for the exchange of ideas and application
programs within the growing community of muMATH and muLISP users.

 If you would like to subscribe, or extend you r subscription to
the Newsletter for three issues beyond the expirati on number on your
mailing label, please send $6 ($10 for orders from outside the U.S.
or Canada) by check, VISA, or Master Card to The Soft Warehouse,
P.O. Box 11174, Honolulu, Hawaii, 96828, U.S.A. A complete set of
back issues is available on request for $15.

 Announcing the AAAI-83 Conference

 The third national conference of the American Association for
Artificial Intelligence will be held from August 22 to 26, 1983 in
Washington, D.C. Authors of substantial, origin al research in AI
can submit papers to AAAI, 445 Burgess Drive, Menl o Park, CA, 94025
or the Arpanet address AAAI-OFFICE@SUMEX-AIM.

 Recent muMATH Reviews

 The October 1982 edition of Creative Compu ting contains a
positive review of the CP/M-80 version muMATH/muSIM P-80 by Dr. David
D. Shochat of Santa Monica College, California. It revis es an
earlier review of muMATH-79 that appeared in the AC M SIGPC (Special
Interest Group, Personal Computers) Notes.

 Bruce Powel Douglass is also a muMATH enthusiast. He has a
short review of the full feature TRS-80 version of muMATH/muSIMP in
the November 1982 issue of 80 Micro . Currently this full feature
version for the TRS-80 Models 1 and 3 can be obtai ned only from The
Soft Warehouse. Owners of the limited version TR S-80 muMATH may
qualify for a discount when they purchase the full version.

 A "Down Under" muMATH User Group

 Australian muMATHematicians interested in form ing a users group
should write Grahame Wilson at P.O. Box 145, Glebe , N.S.W. 2037; or
leave a message on The Australian Beginning net for user
WILSPOBOGLEB; or leave a message on the MI Comput er Club net for
user #1604. Mr. Wilson will also soon have a Sourc e user address.

 NL8-2

 * * * * * * * T h e m u M A T H e m a t i c i a n * * * * * *

 The SUPER-CALCULATOR:
 A Scientific Calculator using muMATH
 Stuart Edwards -- Honolulu, Hawai i

 muMATH users normally use the system in the " calculator mode"
of operation. In this mode, the user enters an expression; the
system evaluates the expression and displays the e valuated result.
Building on the algebraic capabilites of muMATH, I have extended the
capabilities of the system to make it function as a sophisticated
scientific calculator. Specifically, the package I have developed:

* has an extensive set of predefined units and ph ysical constants;

* allows "implicit multiplication" whereby the "*" operator is
 assumed if no other operator is present;

* displays the numerical part of any answer sep arately from the
 non-numerical part and automatically converts it to scientific
 notation if it is very large or very small;

* carries units along algebraically in the calcul ation, converting
 them as necessary to standard units;

* provides an infix operator "in" which allows th e user to specify
 in what units the answer is to be displayed.

For instance, the system calculates expressions suc h as

 ? 53 kilo meter / (5 liter) in mile / gal lon;
 @: 24.9321412 mile / gallon

This expression calculates mileage in mpg for someo ne who has driven
53 kilometers on 5 liters of gas. As another exam ple, assuming the
Earth is a perfect sphere of radius 3959 miles, t hen its volume in
teaspoons would be

 ? 4 pi / 3 (3959 mile)^3 in teaspoon;
 @: 2.1981149 10^26 teaspoon

The choice of teaspoons as a unit of volume her e is of course
arbitrary; the result may just as easily be displ ayed in gallons,
cubic miles, bushels, etc.

 The "in" operator is smart enough to know i f the requested
units make sense for the calculation being perform ed. Thus in the
example, since 4, pi, 3 and 3959 are all dimensionl ess and "mile" is
being raised to the third power, "in" can tell that the result is a
volume and should be expressed in units of volume. Since "teaspoon"
is a unit of volume, the dimensions are consistent .

 All this checking is done by defining the un its in terms of
standard units. For example, the standard unit f or length is the

 NL8-3

meter, and each unit of length is defined as some number of meters.
Areas are in square meters ("meter^2"), volumes ar e in cubic meters
("meter^3"), etc. When a calculation is performe d, everything is
first converted to standard units and the resulti ng expression is
simplified algebraically. Next, the "in" operat or looks at the
expression on the right - the desired units - and converts it into
standard units too. Then since the required result and the units in
which it is to be expressed are both in standard un its, it should be
possible to divide them algebraically and have all units cancel out,
leaving just the numerical portion. The final ste p is to take this
numerical portion and append the required units in their original
form for display.

 If the units are not appropriate for the expression being
evaluated, then not all the units will cancel whe n "in" does its
algebraic division. This is readily apparent in the final result,
since extra standard units will be introduce d to force an
algebraically correct answer. For instance, sup pose we want to
compute the average speed of an airplane that trav els 2250 miles in
5 hours, using the expression

 ? 5 hour / (2250 mile) in meter / second;
 @: (0.0049709 second^2 / meter^2) meter / second

Here "meter / second" is an appropriate unit of v elocity, but "5
hour / (2250 mile)" is the wrong way to perform the calculation. It
should be "2250 mile / (5 hour)". Since we entere d the expression
incorrectly, the units do not all cancel out and the extra
"second^2" and "meter^2" are introduced to show us our error and to
compensate algebraically for it.

 This is an important feature of the calculatin g system because
it provides a check that the formula you are usin g is appropriate
for the units you think the answer should be in. For example, if
you think you're computing a velocity and your expr ession evaluates
to a frequency, the error is immediately apparent.

 Over a hundred pre-defined units and physica l constants are
included with the system. And of course, you are free to add more
units and physical constants to the built-in ones.

 There are three pages of documentation includ ing examples and
six pages of commented source listing. To run th e package, it is
recommended that your system have at least 48K of m ain memory.

 To obtain a printed listing of the source and documentation for
the SUPER-CALCULATOR package send $10 (U.S.) by che ck or money order
to The Soft Warehouse, PO Box 11174, Honolulu, Ha waii, 96828-0174,
USA. Note that the SUPER-CALCULATOR package is c opyrighted by Mr.
Edwards and is not A Soft Warehouse product. Ques tions concerning
the package should be directed, in writing, to Mr. Edwards, c/o The
Soft Warehouse.

 NL8-4

 A muSIMP Breakpoint Debugging Facility
 Steve Messick -- Fairbanks, Alask a

 The file BREAK.MUS contains the code for a si mple muSIMP break
package. Breaking into a function while it is ex ecuting is often
useful when debugging. Temporarily stopping the p rogram allows one
to examine the values of local as well as global v ariables. These
values can even be changed before allowing the prog ram to continue.

 The package is fairly simple to use. E dit the desired
functions (e.g. using an external editor or PDS) to insert a call to
the function BREAK in any suspect code. When BRE AK is called, it
prints its arguments and calls a modified DRIVER fu nction. If it is
non-FALSE, the first argument is printed. The se cond is evaluated
before printing. If the third argument is non-FAL SE, the second is
printed in list notation, otherwise the second is printed in mathe-
matical notation. Type "RETURN" and a semicolon to exit the break
and allow the program to continue.

 As an example of the use of the break package, imagine you are
working on a function named SCALEFACTORS. Then if

 BREAK ("In SCALEFACTORS, VAR= ", VAR),

is inserted within the function, each time SCALEF ACTORS is called
the quoted string is printed followed by the value of the variable
VAR. Typing "RETURN" after setting VAR to a diff erent value will
cause SCALEFACTORS to resume execution using the ne w value of VAR.

 When the modified DRIVER function is called by BREAK, it exits
if you type "RETURN" following the question mark prompt. If you
have the PDS muSIMP editor, the easiest way to get a copy of DRIVER
is to use SAVEPROG to write DRIVER to a file. Th en a text editor
can be used to make the necessary modifications to create the file
listed below. Note that unusual variable names h ave been used to
avoid conflict with the names of local variables.

% File: BREAK.MUS 5 January 83 Steve Messick %

% BREAK prints its arguments, then calls the new DR IVER function %

SUBROUTINE BREAK ("!BREAK1", "!BREAK2", "!BREAK3"),
 NEWLINE (),
 BLOCK
 WHEN "!BREAK1",
 PRINT ("!BREAK1"),
 WHEN "!BREAK2",
 BLOCK
 WHEN "!BREAK3", PRINT (EVAL("!BREAK2")) EXIT,
 PRTMATH (EVAL("!BREAK2")),
 ENDBLOCK EXIT EXIT ENDBLOCK,
 DRIVER (FALSE, '*),
ENDSUB$

 NL8-5

% This version of DRIVER exits after "RETURN" is ty ped. %

FUNCTION DRIVER ("!BREAKX1", "!BREAKX2", "!BREAKX3" , "!BREAKX4",
 "!BREAKX5"),
 "!BREAKX4": '?,
 BLOCK
 WHEN "!BREAKX2",
 "!BREAKX4": "!BREAKX2",
 "!BREAKX3": TRUE,
 "!BREAKX2": FALSE EXIT,
 ENDBLOCK,
 BLOCK
 WHEN NOT "!BREAKX1", RDS () EXIT,
 ENDBLOCK,
 WRS (),
 READCHAR: TRUE,
 NEWLINE (2),
 LOOP
 ERR: FALSE,
 BLOCK
 WHEN ECHO (),
 PRINT ("!BREAKX4"), SPACES (1),
 WHEN NOT RDS AND BELL, PRINT (ASCII(7)) EX IT EXIT,
 ENDBLOCK,
 "!BREAKX1": FALSE,
 "!BREAKX1": PARSE (SCAN (), 0),
 "!BREAKX2": SCAN,
 BLOCK
 WHEN ECHO (), NEWLINE (NEWLINE) EXIT,
 ENDBLOCK,
 BLOCK
 WHEN ERR OR NOT TERMINATOR(),
 SYNTAX (OPERATOR, "NOT FOUND"), NEWLINE () EXIT,
 WHEN "!BREAKX1" EQ 'RETURN,
 "!BREAKX5": TRUE EXIT,
 WHEN "!BREAKX2" EQ '$,
 @: EVAL ("!BREAKX1"),
 WHEN ECHO (),
 NEWLINE () EXIT EXIT,
 PRINT ('@), PRINT (':),
 @: EVAL ("!BREAKX1"),
 SPACES (1),
 BLOCK
 WHEN "!BREAKX2" EQ ';,
 PRTMATH (@, 0, 0, TRUE) EXIT,
 PRINT (@),
 ENDBLOCK,
 NEWLINE (2),
 NEWLINE (NEWLINE),
 ENDBLOCK,
 WHEN "!BREAKX3" AND "!BREAKX5", FALSE EXIT,
 ENDLOOP,
ENDFUN$

RDS ()$

 NL8-6

* * * * * * * * * * T h e m u L I S P e r * * * * * * * * * *

 A Mini-muLISP Editor
 Peter D. Grogono -- Montreal, Queb ec

 I have written a "quick and dirty" editor for developing muLISP
programs that are too large to run along with the m uSTAR editor. My
editor is not as easy to use as muSTAR and is som ewhat limited in
its capabilities. For example, you can neither del ete nor insert an
expression before the first element of a list. Nev ertheless, I find
it a useful tool that makes it possible to interac tively polish up
large muLISP programs. An experienced muLISP hack er could probably
improve it without a major increase in size.

 To use the editor, startup muLISP without mu STAR and read in
the file EDIT.LIB using an RDS command. Variables , functions, and
property values can be edited by entering one o f the following
expressions:

 (EDIT <variable>) a variable's value,
 (EDFUN <function>) a function' s definition,
 (EDPROP <variable> <property>) a variable's pr operty value.

 An edit command is invoked by entering a sing le letter. The
command is applied to the object currently being displayed. The
following is a list of the currently implemented co mmands.

A Get CAR of object.
D Get CDR of object.
N Get next component of a list. The previous c ommand must have
 been "A" or "N".
U Undo the last A or D command (i.e. go back up t he structure).
C Change the object. You enter the new value o f the object as a
 LISP S-expression terminated by <RETURN>. Prev ious command must
 have been "A" or "N".
I Insert a component into a list. If the previou s command was "A"
 or "N", insert the new object after the displa yed object. If
 the previous command was "D" or "X" insert the new object at the
 front of the displayed list.
X Delete the first component of the displayed list. Previous
 command must have been "D" or "X".
R Reset: display entire modified structure.
E Exit editor.

 I have also written three other muLISP program s that may be of
interest to readers of the Newsletter: an interpr eter for a subset
of D. A. Turner's programming language SASL, implem ented by combina-
tors; an interpreter for John Backus's FP notation ; and a verifier
for programs written in Dijkstra's guarded command notation. The
interpreters are "toy" programs, but they suffice t o illustrate some
of the possibilities (and difficulties) of pu rely applicative
programming.

 The verifier consists of a parser, a verifi cation condition

 NL8-7

generator, a simplifier, and a theorem prover. It accepts small
programs adorned with pre- and post-conditions, ge nerates theorems
whose truth guarantees partial correctness of t he program, and
attempts to prove the theorem by natural deduction . The programs
may contain assignments, if and do statements, and arrays; you have
to provide loop invariants. I suspect that this program could be
considerably enhanced without exceeding the limitat ions of a micro-
processor.

 If you would like to obtain these other progr ams in printed or
machine readable form, please write to me at 4125 B eaconsfield Ave.,
Montreal, Quebec, H4A 2H4, CANADA or phone (514) 48 3-1422.

% File: EDIT.LIB November 83 P eter D. Grogono %

(PUTD DEFUN (QUOTE (NLAMBDA (NAM BDY)
 (PUTD NAM BDY) NAM)))

(DEFUN PUTQQ (NLAMBDA (NAM IND BDY)
 (PUT NAM IND BDY) NAM)))

(DEFUN EDFUN (LAMBDA (FUN) % Edit a function %
 (PUTD FUN (EDIT (GETD FUN)))))

(DEFUN EDPROP (LAMBDA (ATM PROP) % Edit a property value %
 (PUT ATM PROP (EDIT (GET ATM PROP)))))

(DEFUN EDIT (LAMBDA (OBJ % Edit a variable %
 % Local variables: % CMD STACK)
 ($RESTORE)
 (PRINT OBJ)
 (SETQ READCH NIL)
 (READCH)
 (LOOP
 (SETQ CMD (READCH)) % Insert (PRIN1 CMD) to echo command %
 ((EQ CMD (QUOTE E))
 (SETQ READCH T)
 ($RESTORE))
 (((MEMBER CMD (QUOTE (A D N U C I R X)))
 (APPLY (GET CMD $EDFUNC) NIL)
 (PRINT OBJ)) % Use a pretty-printer if you've got one %
 ($ERR)))))

% Report an error. Could be replaced by CTRL-G to ring the bell. %

(DEFUN $ERR (LAMBDA ()
 (PRINT "Error!")))

% Get the modified object from the bottom of the st ack. %

(DEFUN $RESTORE (LAMBDA ()
 (LOOP

 NL8-8

 ((NULL STACK))
 (SETQ OBJ (CDR (POP STACK))))
 (PUSH (CONS (QUOTE A) OBJ) STACK)
 OBJ))

% Each action is defined as a property of the corre sponding command %

(PUTQQ A $EDFUNC (LAMBDA ()
 ((ATOM OBJ) ($ERR))
 (PUSH (CONS (QUOTE A) OBJ) STACK)
 (SETQ OBJ (CAR OBJ))))

(PUTQQ D $EDFUNC (LAMBDA ()
 ((ATOM OBJ) ($ERR))
 (PUSH (CONS (QUOTE D) OBJ) STACK)
 (SETQ OBJ (CDR OBJ))))

(PUTQQ N $EDFUNC (LAMBDA ()
 ((EQ (CAAR STACK) (QUOTE A))
 ((NULL (CDDAR STACK))
 ($ERR))
 (PUSH (CONS (QUOTE A) (CDDAR STACK)) STACK)
 (SETQ OBJ (CADAR STACK)))
 ($ERR)))

(PUTQQ U $EDFUNC (LAMBDA ()
 ((NULL (CDR STACK)) ($ERR))
 (SETQ OBJ (CDR (POP STACK)))))

(PUTQQ C $EDFUNC (LAMBDA ()
 ((EQ (CAAR STACK) (QUOTE A))
 (PRIN1 "? ")
 (SETQ READCH T)
 (SETQ OBJ (CAR (RPLACA (CDAR STACK) (READ))))
 (SETQ READCH NIL)
 (READCH))
 ($ERR)))

(PUTQQ I $EDFUNC (LAMBDA ()
 (PRIN1 "? ")
 (SETQ READCH T)
 (SETQ OBJ (CDR (RPLACD (CDAR STACK) (CONS (READ) (CDDAR STACK)))))
 (SETQ READCH NIL)
 (READCH)))

(PUTQQ R $EDFUNC (LAMBDA ()
 ($RESTORE)))

(PUTQQ X $EDFUNC (LAMBDA ()
 ((EQ (CAAR STACK) (QUOTE D))
 (SETQ OBJ (CDR (RPLACD (CDAR STACK) (CDR (CDDAR STACK))))))
 ($ERR)))

(RDS)

 NL8-9

 MACROS: Expanding Your Programming Horizons

 We have synthesized work done by Tom Yonkman of San Diego,
California and Steve Messick of Anchorage, Alaska to produce a macro
expansion package for muLISP. The source file, MAC ROS.LIB, consists
of muLISP functions that enable you to write macr o definitions in
the Maclisp style.

 A macro is similar to a no-spread, call-by- name function in
that it takes any number of arguments and does not evaluate them.
Unlike no-spread functions the entire macro call , including the
macro name, is bound to the macro's lone paramete r. Also unlike
other Lisp function types, the evaluated macro is not returned
directly but instead is evaluated a second time. T he function DM is
used to define new macros using the form:

 (DM <identifier> (<var>) <body>)

 As a trivial example, the following defines t he macro FIRST to
be a pseudonym for CAR:

 (DM FIRST (BODY) (CONS (QUOTE CAR) (CDR B ODY)))

 When muLISP evaluates the macro call (FIRST X), (FIRST X) is
bound to BODY. The first evaluation returns the l ist (CAR X), the
second the value of (CAR X). Macros first translat e, then execute.
Hence the need of double evaluation. The trans lation phase is
commonly referred to as macro expansion.

 The much more useful LET macro, as defined in MACROS.LIB,
provides a convenient means of creating and initia lizing temporary
variables within a function definition. The synta x for a LET macro
call is

 (LET ((<var 1> <val 1>)
 (<var 2> <val 2>)
 ...
 (<var n> <val n>)) <body>)

 Variables are assigned their respective value s and the body is
evaluated within that new environment. When the b ody is exited the
original environment is restored. The LET macro expands into the
form

 ((LAMBDA (<var 1> <var 2> ... <var n>) <body>)
 <val 1> <val 2> ... <val n>)

 With macros you can abbreviate frequently used code, customize
muLISP or create an entirely new language desig ned to solve a
specific problem. The authors of Artificial Intelligence
Programming (Charniak et al., Lawerence Erlbaum Associates, 1980)
are strong advocates of Lisp macros. It is an exce llent source book
for Lisp macros and AI programming techniques in ge neral.

 NL8-10

% File: MACRO.LIB October 83 %

 % A muLISP Macro Expansion Package %

% DM is the macro defining function %

(DEFUN DM (NLAMBDA L
 (PUTD (CAR L) (LIST NLAMBDA *MACRO-BODY* (LIST (Q UOTE MACHAC)
 (LIST (QUOTE QUOTE) (CAR L)) *MACRO-BODY*)))
 (PUT (CAR L) MACRO (CONS NLAMBDA (CONS (CAADR L) (CDDR L))))
 (SAVELIST (QUOTE FUNCTION) (CAR L))
 (CAR L)))

% DEX is identical to DEFUN except that it expand s macros when a
function is defined. %

(DM DEX (L)
 (CONS (QUOTE DEFUN) (EXPANDMACROS (CDR L))))

(DEFUN EXPANDMACROS (LAMBDA (*L*)
 ((OR (ATOM *L*) (EQ (CAR *L*) (QUOTE QUOTE)))
 L)
 ((ISMACRO (CAR *L*))
 (LIST (QUOTE EVAL)
 (EXPANDMACROS (APPLY (ISMACRO (CAR *L*)) *L*))))
 (EXPANDREST *L*)))

(DEFUN EXPANDREST (LAMBDA (*N*)
 ((ATOM *N*) *N*)
 (CONS (EXPANDMACROS (CAR *N*)) (EXPANDREST (CDR * N*)))))

(DEFUN ISMACRO (LAMBDA (X)
 ((NAME X)
 (GET X MACRO))))

% MACHAC expands the macro when called. %

(DEFUN MACHAC (LAMBDA (*MACRO-FUNC* *MACRO-BODY*)
 (EVAL (APPLY (ISMACRO *MACRO-FUNC*)
 (CONS *MACRO-FUNC* *MACRO-BODY*)))))

(DM LET (*LET*)
 (LET-AUX (CADR *LET*) (CDDR *LET*)))

(DEFUN LET-AUX (LAMBDA (VARS-N-VALS BODY
 % Local: % VARS VALS)
 (LOOP
 ((NULL VARS-N-VALS))
 (PUSH (CAR (CAR VARS-N-VALS)) VARS)
 (PUSH (CADR (POP VARS-N-VALS)) VALS))
 (CONS (CONS (QUOTE LAMBDA) (CONS (REVERSE VARS) B ODY))
 (REVERSE VALS))))

(RDS)

