
 NL2-1

 N E W S L E T T E R # 2

 March 1980

 This is the second edition of The Soft Wareh ouse Newsletter .
It is devoted to bringing our customers up to dat e on the latest
news, updates, and products of The Soft Warehouse. In addition, it
provides a medium for the growing community of muLISP and
muSIMP/muMATH users to exchange ideas and general purpose uti lity
programs. We welcome short contributions, or announcements
regarding applications for our products.

 Since our November Newsletter was issued, we h ave received some
valuable suggestions from customers concerning corrections and
improvements to both our reference manuals. Al so an excellent
muSIMP function definition pretty printer was con tributed and is
included in this letter. First, however, here are some hot news
items:

 MICROSOFT to Distribute muLISP and muMATH

 The Soft Warehouse has licensed to Microsoft of Bellevue,
Washington the rights to distribute both our curren t products. As
you may have noticed from their ads in the March an d April issues of
BYTE, they have begun a major sales effort. In additio n to the CP/M
version, Microsoft will soon be distributing muMAT H for the TRS-80,
thus making symbolic math available to a much larger audience.
Costing much less, the TRS-80 version will not have all the features
of its CP/M counter-part. We will continue to di stribute the CP/M
version of our systems until next fall, at which ti me Microsoft will
gain exclusivity.

 Microsoft is widely recognized, especially wi th OEMs, for high
quality software and of course they have a much more extensive
marketing ability than The Soft Warehouse. This should greatly
accelerate the recognition and acceptance of LI SP and computer
algebra among the computing public. Most imp ortant from our
standpoint and yours, the arrangement frees us to concentrate on
what we do best -- innovative software develo pment for small
computers.

 NL2-2

 1980 LISP Conference

 In case you haven't heard, there will be a L ISP conference on
the Stanford University campus from August 24 to 2 7. The program
committee includes many of the important names i n the field of
applicative languages including the man who starte d it all, John
McCarthy. The topics include applicative and object oriented
languages, LISP program verification, the design a nd implementation
of hardware LISP machines, and computer algebra. Information is
available from

Conference Head: Local Arran gements:
 John R. Allen Dr. Ruth E. Davis
 Stanford Artificial Intelligence Lab Dept. of EECS
 Stanford University Universi ty of Santa Clara
 Stanford, CA 94305 Santa Cl ara, CA 95053
 (415) 497-4971 (408) 98 4-4358

 The Small Systems Group's Software Survey

 The Small Systems Group is making an extensiv e survey of CP/M
based software systems. As both authors and users of such software,
we strongly support this project. Consequently, w e have enclosed a
copy of their Grass Roots Software Evaluation Survey form. If you
wish to participate, just fill it out and send it directly to The
Small Systems Group, Box 5429, Santa Monica, CA 90 405.

* * * * * * * * * * * * The muMATHematician * * * * * * * * * * *

 Errors in the Matrix Package

 Two bugs were found in the 12/27/79 and 7/16/7 9 version of the
muMATH-79 source file MATRIX.ARR. If you have either of these
versions, the errors can be corrected using your sy stems text editor
as follows:

 1. The 5th line of the function INPROD (i.e. the line numbered
335) should be changed to read:

 WHEN EMPTY (LEX2), EX1 EXIT

 2. The other bug only occurs when RAGGED is FALSE during
matrix division. In order to locally set RAGGED to TRUE in \ and
IDMAT, make the following two changes:

 FUNCTION IDMAT (EX1, EX2, FUNCTION \ (EX1, EX2, RAGGED, EX3
 RAGGED), EX4, LEX1, LEX 2, LEX3, LEX4),
 RAGGED: TRUE, RAGGED: TRUE,
 EX2: LIST (1), WHEN ARRAY (EX 1)

 NL2-3

 The DEAR ALGy Column

DEAR ALGY: I really like your recursive and ragged arrays, which
 make those of other languages seem square. Ho wever, I have one
 assigning request to make: Please provide a means of changing
 the value of an individual element in an array . -- Harray

DEAR HARRAY: Here is a solution which also provides the conve nience
 of initializing unassigned elements to zero:

 PROPERTY INFIX, :, COND (
 WHEN NAME (EX1), LIST (':, EX1, PARSE (SCAN, 20)) EXIT,
 WHEN FIRST(EX1) = 'SUBSCR,
 LIST (UPDATE, SECOND(EX1), RREST(EX1), PAR SE(SCAN,20)) EXIT,
 WHEN SYNTAX () EXIT) $

 SUBROUTINE UPDATE (EX1, LEX1, EX2),
 ASSIGN (EX1, UPDATE1 (EVAL(EX1), LEX1)),
 ENDSUB $

 FUNCTION UPDATE1 (EX3, LEX1),
 WHEN ATOM (LEX1), EVAL (EX2) EXIT,
 WHEN ARRAY (EX3) AND POSITIVE (FIRST(LEX1)),
 ADJOIN (FIRST(EX3), UPDATE2(REST(EX3),FIRS T(LEX1))) EXIT,
 ? (LIST ('_, EX1, EX2)),
 ENDFUN $

 FUNCTION UPDATE2 (LEX2, EX4),
 BLOCK
 WHEN ATOM (LEX2), LEX2: LIST(0) EXIT,
 ENDBLOCK,
 WHEN EX4 = 1,
 ADJOIN (UPDATE1(FIRST(LEX2),REST(LEX1)), R EST(LEX2)) EXIT,
 ADJOIN (FIRST(LEX2), UPDATE2 (REST(LEX2), EX 4-1)),
 ENDFUN $

DEAR ALGY: I tried making "=" work for both equatio ns and
 predicates as suggested in Newsletter 1, but it is not totally
 satisfactory. -- Egalitarian.

DEAR EGALITARIAN : Yes, it was greedy of me to attempt reading the
 user's mind to determine what kind of "=" is i ntended. We now
 recommend the use of == without the d ouble quotes to
 designate equations. To do this change all o ccurrences of " =
 " to "==" in the files EQN.ALG, SOLVE.EQN, and ARRAY.ARI;
 change the date in all three files to 03/31/8 0; and make the
 following addition to EQN.ALG:

 PROPERTY INFIX, =, EQPARSE (SCAN) $

 FUNCTION EQPARSE (EX2),
 WHEN EQ (EX2, '=), LIST ('"==", EX1, PARSE (SCAN(), 80)) EXIT,
 LIST ('=, EX1, PARSE (SCAN, 80))
 ENDFUN $

 NL2-4

 A Summation Package

 The source file SIGMA.ALG computes the close d-form represen-
tation for the sums and products of series. Giv en an expression
EXPN, containing an indeterminate J, the summatio n of EXPN from J
equal M to N is given by: SIGMA (EXPN, J, M, N). For example, the
closed-form representation for

 n
 (cj 2 + 2 j)
 j=1

in terms of c and f, courtesy of file SIGMA.ALG, is :

 cn/6 + cn 2/2 + cn 3/3 + 2 (1+n) - 2

% File: SIGMA.ALG (c) 03/01/82 The Soft Warehous e %

FUNCTION LINCF (EX1, INDET),
 EX1: (EX1 - EVSUB (EX1, INDET, 0)) / INDET,
 WHEN FREE (EX1, INDET), EX1 EXIT
ENDFUN$

FUNCTION FREE (EX1, EX2),
 WHEN EX1 = EX2, FALSE EXIT,
 WHEN ATOM (EX1) EXIT,
 LOOP
 WHEN NOT FREE (FIRST (EX1), EX2), FALSE EXIT,
 EX1: REST (EX1),
 WHEN ATOM (EX1) EXIT,
 ENDLOOP,
ENDFUN$

FUNCTION SIGMA (EX1, INDET, EX2, EX3,
 % Local: % EX4, NUMNUM, DENDEN, DENNUM, NUMDEN, P WREXPD, LOGEXPD),
 WHEN INTEGER(EX2) AND INTEGER(EX3),
 EX4: 0,
 LOOP
 WHEN EX2 > EX3, EX4 EXIT,
 EX4: EX4 + EVSUB(EX1,INDET,EX2),
 EX2: EX2 + 1
 ENDLOOP EXIT,
 NUMNUM: DENDEN: 30, DENNUM: -30, NUMDEN: 0, PWREX PD: LOGEXPD: 6,
 WHEN FREE (EX4:ANTIDF(EX1), ANTIDF),
 BLOCK
 WHEN INTEGER(#LIM) AND EX2 EQ MINF,
 EX1: LIM (EX4, INDET, EX2) EXIT,
 EX1: EVSUB (EX4, INDET, EX2) ENDBLOCK,
 BLOCK
 WHEN INTEGER(#LIM) AND EX3 EQ PINF, EX4: LIM(EX4,INDET,EX3) EXIT,
 EX4: EVSUB (EX4, INDET, EX3+1) ENDBLOCK,
 WHEN INTEGER(#LIM) AND (EX2 EQ MINF OR EX3 EQ P INF),

 NL2-5

 LIM (EX4-EX1) EXIT,
 EX4-EX1 EXIT,
 WHEN APPLY(GET('SIGMA,FIRST(EX1)), ARGEX(EX1)) EX IT,
 LIST('SIGMA, EX1,INDET,EX2,EX3),
ENDFUN$

FUNCTION ANTIDF (EX1),
 WHEN EX1 = INDET, EX1*(-1+EX1)/2 EXIT,
 WHEN FREE(EX1,INDET), INDET*EX1 EXIT,
 SIMPU(ANTIDF,EX1)
ENDFUN$

PROPERTY ANTIDF, +, FUNCTION (EX1, EX2),
 WHEN ZERO (EVSUB(EX1,INDET,INDET+1) + EX2), -EX1 EXIT,
 WHEN ZERO (EVSUB(EX2,INDET,INDET+1) + EX1), -EX2 EXIT,
 ANTIDF(EX1) + ANTIDF(EX2),
ENDFUN$

PROPERTY ANTIDF, *, FUNCTION (EX1, EX2),
 WHEN FREE(EX1,INDET), EX1*ANTIDF(EX2) EXIT,
 WHEN FREE(EX2,INDET), EX2*ANTIDF(EX1) EXIT,
ENDFUN$

PROPERTY ANTIDF, ^, FUNCTION (EX1, EX2, EX3),
 WHEN EX1 = INDET AND POSITIVE(EX2),
 (EX3:PROD(INDET-'##,'##,0,EX2-1)) * (INDET-EX2) /(1+EX2)
 + ANTIDF(EX1^EX2-EX3) EXIT,
 WHEN FREE(EX1,INDET) AND (EX3: LINCF(EX2,INDET)),
 EX1^EX2/(EX1^EX3 - 1) EXIT,
ENDFUN$

FUNCTION PROD (EX1, INDET, EX2, EX3,
 % Local: % EX4, LOGEXPD),
 WHEN INTEGER(EX2) AND INTEGER(EX3),
 EX4: 1,
 LOOP
 WHEN EX2 > EX3, EX4 EXIT,
 EX4: EX4 * EVSUB(EX1,INDET,EX2),
 EX2: EX2 + 1,
 ENDLOOP EXIT,
 WHEN FREE (EX4:ANTIDV(EX1), ANTIDV),
 WHEN INTEGER(#LIM), LIM(EX4,INDET,EX3+1) / LIM(EX4,INDET,EX2) EXIT,
 EVSUB(EX4,INDET,EX3+1) / EVSUB(EX4,INDET,EX2) E XIT,
 WHEN APPLY(GET('PROD,FIRST(EX1)), ARGEX(EX1)) EXI T,
 LIST ('PROD, EX1, INDET, EX2, EX3)
ENDFUN$

RDS()$

 NL2-6

 A muMATH Function Deparser and Pretty Printer

 The attached muMATH function definition pre tty printer was
contri-buted by T. B. Robinson of Research Machin es Ltd., Oxford,
England. The basic user level functions are DISPF UN and WRITEFILE.
DISPFUN outputs a formatted definition of its argument on the
console. WRITEFILE ([fname,ftype,drive], fun1, fu n2, ...) not only
writes out the definition of fun i on the given file, but any values
and/or properties associated with fun i .

% File: UNPARSE.MUS 02/12/82 The Soft Warehouse %

% This muSIMP function unparser and pretty-print pa ckage was written
by T. B. Robinson of Research Machines Ltd., Oxford , England. %

FUNCTION DISPFUN (F#U#N#, LEX1),
 NEWLINE (2),
 UNPARSE (0, FALSE, LIST (GETD(F#U#N#))),
 PRINT (""),
ENDFUN$

F#U#N#: ""$

FUNCTION PRTARGS (INDENT, LEX1),
 SPACES (1),
 WHEN EMPTY (LEX1), PRINT ("()") EXIT,
 WHEN ATOM (LEX1),
 QUOTEPRINT (LEX1) EXIT,
 WHEN DPAIR (LEX1),
 PRINTDPAIR (LEX1) EXIT,
 PRINT (LPAR),
 LOOP
 UNPARSE (INDENT, FALSE, LIST (FIRST (LEX1))),
 POP (LEX1),
 WHEN EMPTY (LEX1) EXIT,
 PRINT (COMMA),
 SPACES (1),
 ENDLOOP,
 PRINT (RPAR),
ENDFUN$

PROPERTY UNPARSE, ', FUNCTION (INDENT, LEX1),
 PRINT (''),
 PRTARGS (INDENT, FIRST(LEX1)),
 TRUE,
ENDFUN$

PROPERTY UNPARSE, NOT, FUNCTION (INDENT, LEX1),
 PRINT ('NOT),
 SPACES (1),
 UNPARSE (INDENT, FALSE, LEX1),
 TRUE,
ENDFUN$

 NL2-7

PROPERTY UNPARSE, FUNCTION, FUNCTION (INDENT, LEX1) ,
 PRINT ('FUNCTION),
 SPACES (1),
 PRINT (F#U#N#),
 F#U#N#: "",
 PRTARGS (INDENT, FIRST (LEX1)),
 UNPARSE (INDENT+2, TRUE, REST(LEX1)),
 PRNTLINE (INDENT),
 PRINT ('ENDFUN),
ENDFUN$

PROPERTY UNPARSE, SUBROUTINE, FUNCTION (INDENT, LEX 1),
 PRINT ('SUBROUTINE),
 SPACES (1),
 PRINT (F#U#N#),
 F#U#N#: "",
 PRTARGS (INDENT, FIRST(LEX1)),
 UNPARSE (INDENT+2, TRUE, REST(LEX1)),
 PRNTLINE (INDENT),
 PRINT ('ENDSUB),
ENDFUN$

PROPERTY UNPARSE, LOOP, FUNCTION (INDENT, LEX1),
 PRINTLINE ('LOOP),
 SPACES (INDENT+2),
 UNPARSE (INDENT+2, FALSE, LEX1),
 PRNTLINE (INDENT),
 PRINT ('ENDLOOP)
ENDFUN$

FUNCTION UNPARSE (INDENT, EOL, LEX1, LEX2),
 WHEN EMPTY (LEX1) EXIT,
 LEX2: FIRST (LEX1),
 WHEN DPAIR (LEX2),
 PRINTDPAIR (LEX2) EXIT,
 WHEN ATOM (LEX2),
 BLOCK
 WHEN EOL,
 PRNTLINE (INDENT) EXIT,
 ENDBLOCK,
 QUOTEPRINT (LEX2) EXIT,
 BLOCK
 WHEN EOL, PRNTLINE (INDENT) EXIT,
 ENDBLOCK,
 WHEN ATOM (FIRST (LEX2)),
 UNPARSEFUN (INDENT, LEX2),
 UNPARSE (INDENT, TRUE, REST(LEX1)) EXIT,
 WHEN ATOM (FIRST (FIRST (LEX2))),
 UNPARSEWHEN (INDENT, LEX2),
 UNPARSE (INDENT, TRUE, REST(LEX1)) EXIT,
 UNPARSEBLOCK (INDENT, LEX2),
 UNPARSE (INDENT, TRUE, REST(LEX1)),
ENDFUN$

 NL2-8

FUNCTION UNPARSEFUN (INDENT, LEX1, LEX2),
 LEX2: FIRST (LEX1),
 WHEN INTEGER (LEX2),
 PRINT (''),
 PRTARGS (INDENT, LEX1) EXIT,
 WHEN APPLY (GET(UNPARSE,LEX2), LIST(INDENT,REST(LEX1))) EXIT,
 WHEN GET ('LBP, LEX2),
 WHEN EMPTY (RREST(LEX1)),
 PRINT (LEX2),
 SPACES (1),
 UNPARSE (INDENT, FALSE, REST(LEX1)) EXIT,
 UNPARSE (INDENT, FALSE, LIST(SECOND(LEX1))),
 SPACES (1),
 PRINT (LEX2),
 SPACES (1),
 UNPARSE (INDENT, FALSE, RREST(LEX1)) EXIT,
 PRINT (LEX2),
 PRTARGS (INDENT, REST(LEX1)),
ENDFUN$

FUNCTION UNPARSEWHEN (INDENT, LEX1),
 PRINT ('WHEN),
 SPACES (1),
 UNPARSE (INDENT+2, FALSE, LEX1),
 SPACES (1),
 PRINT ('EXIT),
ENDFUN$

FUNCTION UNPARSEBLOCK (INDENT, LEX1),
 PRINTLINE ('BLOCK),
 SPACES (INDENT+2),
 UNPARSE (INDENT+2, FALSE, LEX1),
 PRNTLINE (INDENT),
 PRINT ('ENDBLOCK),
ENDFUN$

FUNCTION DPAIR (LEX1),
 WHEN ATOM (LEX1), FALSE EXIT,
 WHEN EMPTY (REST (LEX1)), FALSE EXIT,
 ATOM (FIRST (LEX1)) AND ATOM (REST (LEX1)),
ENDFUN$

FUNCTION PRINTDPAIR (LEX1),
 PRINT (LPAR),
 QUOTEPRINT (FIRST (LEX1)),
 PRINT (". "),
 QUOTEPRINT (REST (LEX1)),
 PRINT (RPAR),
ENDFUN$

FUNCTION PRNTLINE (INDENT),
 PRINTLINE (COMMA),
 SPACES (INDENT),
ENDFUN$

 NL2-9

MOVD (PRINT,QUOTEPRINT)$

% The following is an optional print package for names which
contain separator and/or break characters. Such names must be
quoted in order to read then back in. This is ess ential if the
output is to be sent to a file and subsequently re ad back using
the RDS command. %

FUNCTION QUOTEPRINT (EX1, EX2, LEX1, LEX2),
 WHEN INTEGER (EX1),
 PRINT (EX1) EXIT,
 WHEN LENGTH(EX1) = 0,
 PRINT ("""""") EXIT,
 LEX1: EXPLODE (EX1),
 BLOCK
 WHEN DIGIT (FIRST (LEX1)),
 EX2: TRUE EXIT,
 LEX2: LEX1,
 LOOP
 WHEN WILDCHAR (POP (LEX2)),
 EX2: TRUE EXIT,
 WHEN EMPTY (LEX2) EXIT,
 ENDLOOP,
 ENDBLOCK,
 WHEN NOT EX2, PRINT (EX1) EXIT,
 PRINT(""""),
 LOOP
 BLOCK
 WHEN PRINT (POP(LEX1)) = """",
 PRINT("""") EXIT,
 ENDBLOCK,
 WHEN EMPTY (LEX1) EXIT,
 ENDLOOP,
 PRINT(""""),
ENDFUN$

FUNCTION WILDCHAR (EX1),
 MEMBER (EX1, LIST ('" ", '!, '"""", '$, '"%", '& , '', LPAR,
 RPAR, '*, '+, COMMA, '-, '., '/, ':, ';, '<, ' =, '>, '?,
 '[, '\, '], '^, '{, '|, '}, '~)),
ENDFUN$

FUNCTION DIGIT (EX1),
 MEMBER (EX1, '("0","1","2","3","4","5","6","7"," 8","9")),
ENDFUN$

% Optional WRITEFILE to save FUNCTIONs and SUBROU TINEs on disk. %

PROPERTY PREFIX, [, MATCH (])$

SUBROUTINE WRITEFILE LEX1
 WRITEFILE1 (FIRST(LEX1), REST(LEX1)),
ENDSUB$

FUNCTION WRITEFILE1 (LEX1, LEX2),

 NL2-10

 WRS (FIRST(LEX1), SECOND(LEX1), THIRD(LEX1)),
 LOOP
 WHEN EMPTY (LEX2) EXIT,
 PRINTFUN (FIRST (LEX2)),
 PRINTVAL (FIRST (LEX2)),
 PRINTPROPS (POP (LEX2)),
 ENDLOOP,
 NEWLINE (2),
 PRINT ("RDS ()$"),
 WRS (),
 FIRST (LEX1),
ENDFUN$

FUNCTION PRINTFUN (EX1),
 WHEN ATOM (GETD (EX1)) EXIT,
 DISPFUN (EX1),
 PRINT ('$),
ENDFUN$

FUNCTION PRINTVAL (EX1),
 WHEN FIRST (EX1) = EX1 EXIT,
 NEWLINE (2),
 QUOTEPRINT (EX1),
 PRINT (" : "),
 UNPARSE (2, FALSE, LIST(FIRST(EX1))),
 PRINTLINE ('$),
ENDFUN$

FUNCTION PRINTPROPS (EX1,
 % Locals % EX2, LEX1),
 LEX1: REST (EX1), % LEX1: PROPERTY LIST OF EX1 %
 LOOP
 WHEN ATOM (LEX1) EXIT,
 EX2: POP (LEX1), % EX2: A PROPERTY OF EX1 %
 NEWLINE (2),
 PRINT ('PROPERTY),
 SPACES (1),
 QUOTEPRINT (EX1),
 PRINT (", "),
 PRINT (FIRST(EX2)),
 BLOCK
 WHEN REST(EX2) EQ COMPRESS (LIST (EX1, FIRST (EX2))),
 UNPARSE (2, TRUE, LIST (GETD(REST(EX2)))) EXIT,
 UNPARSE (2, TRUE, LIST (REST(EX2))),
 ENDBLOCK,
 PRINTLINE ('$),
 ENDLOOP,
ENDFUN$

RDS ()$

 NL2-11

* * * * * * * * * * * * * The muLISPer * * * * * * * * * * * * *

 A More Efficient DEPTH Function

 Robert England of Mississauga, Ontario, Canad a has pointed out
that our UTILITY library definition of DEPTH is ridiculously
inefficient. The definition of DEPTH given in the 8/6/79 version of
UTILITY.LIB unnecessarily recomputes the depths of subtrees. This
results in an exponential growth problem, as is cl early revealed by
use of the TRACE facility. The following is an alternative
definition which in addition to being efficient is an elegant
example of the use of helper functions.

 PUTD (MAX (LAMBDA (M N)
 ((GREATERP M N) M)
 N))

 PUTD (DEPTH (LAMBDA (EXPN)
 ((ATOM EXPN) 0)
 (PLUS 1 (MAX (DEPTH (CAR EXPN)) (DEPTH (CDR EXPN))))))

 A Function Definition Pretty Print Package

 As a service to those LISP users who are accu stomed to inter-
actively developing programs within LISP and then p ermanently saving
the program on disks, the accompanying source list ing for the file
PRTDEF.LIB is attached.

 Function PRETTYPRT prints a LAMBDA defined fu nction in an easy
to read format. It makes use of indentation and s pacing of paren-
theses to enhance the underlying structure of the definition. Its
first argument is a function name or list of name s. Its second,
third, and fourth give the desired output file Name, Type, and
Drive. If these parameters are omitted, the outp ut is directed to
the console instead. If the function definition u ses muLISP names
which contain break or separator characters, such a s blanks, commas,
parentheses, etc., double quotes will have to b e manually added
later by using your system's text editor.

 In addition PRTDEF.LIB illustrates severa l other useful
features. The function MAPC is a general purpose mapping function
which successively applies its second argument to the elements of
its first argument. The value it returns is NIL.

 Many LISP users prefer an EVAL type executive driver loop as
distinct from an EVALQUOTE loop. For such people the CBN function
DEFUN is a great convenience in defining functions . As listed in
PRTDEF.LIB, DEFUN's first argument is the functi on name and the
second is the function's definition. The defini tion is a list
including the LAMBDA or NLAMBDA identifier, the formal argument
list, and then the function body. The followin g definition of
APPEND is an example of its use:

 NL2-12

 (DEFUN APPEND (LAMBDA (LST1 LST2)
 ((NULL LST1) LST2)
 (CONS (CAR LST1) (APPEND (CDR LST1) LST 2))))

%File: PRTDEF.LIB 06/24/80 The Soft Warehouse %

(PUTD DEFUN (QUOTE (NLAMBDA (FUNC DEF)
 (PUTD FUNC DEF)
 FUNC)))

(DEFUN MAPC (LAMBDA (ALST FUNCT)
 (LOOP
 ((NULL ALST) NIL)
 (FUNCT (CAR ALST))
 (SETQ ALST (CDR ALST)))))

(DEFUN PRETTYPRT (NLAMBDA (DEFS FNAME FTYPE FDRIVE)
 (WRS FNAME FTYPE FDRIVE) % Open the file %
 (((AND (ATOM DEFS) (NOT (NULL DEFS)))
 (PRTDEF DEFS))
 (MAPC DEFS PRTDEF)) % Print the file %
 (TERPRI)
 (PRIN1 (QUOTE (RDS)))
 (WRS) % Close the file %
 T))

(DEFUN PRTDEF (LAMBDA (DEF
 LINELENGTH INDENT2)
 (TERPRI)
 ((ATOM (GETD DEF))
 (PRIN2 DEF)
 (PRINT " is not a LAMBDA defined function.")
 "")
 (SETQ LINELENGTH (LINELENGTH))
 (((PLUSP INDENT))
 ((LESSP LINELENGTH 60)
 (SETQ INDENT 1))
 (SETQ INDENT 2))
 (SETQ INDENT2 (TIMES INDENT 2))
 (PRIN1 "(DEFUN ")
 (PRIN2 DEF)
 (SETQ DEF (GETD DEF))
 (PRIN1 " (")
 (PRIN2 (CAR DEF))
 (SPACE-TAB 0)
 (PRTLST (CADR DEF) INDENT2)
 (PRTBDY (CDDR DEF) INDENT)
 (PRINT "))")
 ""))

(DEFUN PRTBDY (LAMBDA (BDY TAB)
 ((NULL BDY))

 NL2-13

 (TERPRI-TAB TAB)
 (PRTBDY1 BDY TAB)))

(DEFUN PRTBDY1 (LAMBDA (BDY TAB)
 (LOOP
 (PRTTSK (CAR BDY) TAB)
 (SETQ BDY (CDR BDY))
 ((NULL BDY)
 (SPACE-TAB TAB))
 (TERPRI-TAB TAB))))

(DEFUN PRTTSK (LAMBDA (TSK TAB)
 ((ATOM TSK)
 (PRIN2 TSK))
 ((ATOM (CAR TSK))
 ((MEMBER (CAR TSK) (QUOTE (LOOP COND PROGN PROG 1)))
 (PRIN1 "(")
 (PRTATM (CAR TSK) (PLUS TAB INDENT2))
 (PRTBDY (CDR TSK) (PLUS TAB INDENT))
 (PRTATM ")" (PLUS TAB INDENT) T))
 (PRTLST TSK (PLUS TAB INDENT2)))
 ((ATOM (CAAR TSK))
 (PRIN1 "(")
 (PRTLST (CAR TSK) (PLUS TAB INDENT2))
 (PRTBDY (CDR TSK) (PLUS TAB INDENT))
 (PRTATM ")" (PLUS TAB INDENT) T))
 (PRIN1 "(")
 (PRTBDY1 TSK (PLUS TAB INDENT))
 (PRTATM ")" (PLUS TAB INDENT) T)))

(DEFUN PRTLST (LAMBDA (LST TAB
 TSK NEWLINE)
 (PRIN1 "(")
 (LOOP
 ((ATOM LST)
 ((NOT NEWLINE)
 (PRTATM ")" TAB T))
 (PRTATM ")" TAB T))
 (SETQ TSK (CAR LST))
 (SETQ LST (CDR LST))
 (((FIT-PRT TSK)
 ((ATOM LST))
 (SPACE-TAB TAB))
 (SETQ NEWLINE T)
 ((ATOM TSK)
 (PRTATM TSK TAB)
 ((ATOM LST))
 (SPACE-TAB TAB))
 (TERPRI-TAB TAB)
 ((FIT-PRT TSK)
 ((ATOM LST))
 (SPACE-TAB TAB))
 (PRTLST TSK (PLUS TAB INDENT2))
 ((ATOM LST))
 (TERPRI-TAB TAB)))))

 NL2-14

(DEFUN PRTATM (LAMBDA (ATM TAB PRIN1)
 (((LESSP (PLUS (SPACES) (LENGTH ATM)) LINELENGTH))
 ((LESSP (PLUS TAB (LENGTH ATM)) LINELENGTH)
 (TERPRI-TAB TAB)))
 (PRIN1 ATM)))

(DEFUN SPACE-TAB (LAMBDA (TAB)
 ((ZEROP (SPACES 1))
 (SETQ NEWLINE T)
 (TERPRI-TAB))))

(DEFUN TERPRI-TAB (LAMBDA (TAB)
 (TERPRI)
 (SPACES TAB)))

(DEFUN FIT-PRT (LAMBDA (LST)
 ((LESSP (PLUS (SPACES) (PRTLEN LST)) LINELENGTH)
 (PRIN2 LST)
 T)))

(DEFUN PRTLEN (LAMBDA (TSK PRIN1
 LEN)
 ((ATOM TSK)
 (LENGTH TSK))
 (SETQ LEN 1)
 (LOOP
 (SETQ LEN (PLUS LEN (PLUS (PRTLEN (CAR TSK)) 1)))
 (SETQ TSK (CDR TSK))
 ((NULL TSK)
 LEN)
 ((ATOM TSK)
 (PLUS LEN (PLUS 3 (PRTLEN TSK)))))))

(DEFUN PRIN2 (LAMBDA (EXPN PRIN1)
 (PRIN1 EXPN)))

(RDS)

