
 NL7-1

 N E W S L E T T E R # 7

 September 1982

 Aloha from Hawaii! The Soft Warehouse Newsle tter provides you
with information on new Soft Warehouse product s, and software
extensions or corrections to existing products. In addition, the
newsletter is a medium for the exchange of ideas and application
programs within the growing community of muMATH and muLISP users.

 If you would like to subscribe, or extend you r subscription to
the Newsletter for three issues beyond the expirati on number on your
mailing label, please send $6 ($10 for orders from outside the U.S.
or Canada) by check, VISA, or Master Card to The Soft Warehouse,
P.O. Box 11174, Honolulu, Hawaii, 96828, U.S.A. A complete set of
back issues is available on request for $15.

 muMATH AND muLISP FOR 8086 AND 8088 BASED MICROCOMPUTERS

 The power provided by the 16 bit, INTEL 8086 and 8088
microprocessors makes it possible to provide a greatly enhanced
version of muLISP and muSIMP for these machines. A much larger work
space is available for the storage of user pro grams and data.
Naturally, execution speed has also been greatly enhanced. New
features include powerful string processing functi ons and infinite
precision integer arithmetic now limited only by a vailable memory.
Microsoft will soon be distributing muMATH and muLISP for the IBM
Personal Computer . Contact The Soft Warehouse for details on
availability for other computers and operating syst ems.

 muMATH ARTICLE IN 80 MICROCOMPUTING

 Bruce Douglass of A-Priori Software & Technical Writing
Services writes a regular column for 80 Microco mputing entitled
"Copernica Mathematica". In the June/July 1982 i ssue Bruce writes
at length describing some application programs he h as developed for
muMATH. These include an integer factoring routine , a function plot
routine, a cubic equation solver, and a knowledg e-based system he
calls "Fruit-World". It is an article well worth r eading.

 SOFTWARE CONTEST WINNERS

 We are pleased to announce the winners of our Software Contest.
Winston Cope wins the muMATH prize for his polynomial synth etic
division program. Stanley Schwartz wins the muLISP prize for his
SNOMED diagnostic coding program. Abstracts are printed later in
this newsletter. Congratulations, Winston and St anley. Your $100
checks are in the mail!

 NL7-2

 * * * * * * * T h e m u M A T H e m a t i c i a n * * * * * *

 Solving Simultaneous Linear Algebraic Equations

 Several users have wished for a function that directly solves
simultaneous linear algebraic equations, thus avo iding the need to
extract coefficients manually, then use matrix divi sion. The source
file LINSOLVE.MAT, as listed on page 3, accomplish es this task. It
requires MATRIX.ARR and EQN.ALG as prerequisites . The function
LINSOLVE is called as follows:

 LINSOLVE (row or column of equations, row or col umn of variables)

 As a convenience, any of the equations can h ave the "==" and
right side omitted, implying a right side of 0 . A consistent
singular set of equations yields an answer containi ng forms such as
ARB(1), ARB(2), etc. An inconsistent singular set of equations
yields a zero-divide message and forms such as ?(1/ 0) in the answer.
FALSE is returned if either argument is not an arra y, if the arrays
do not have the same number of elements, or if t he equations are
non-linear in the specified variables. Otherwise, the solution is
returned in the form

 [var 1 == expression 1, var 2 == expression 2 ...],

where var 1 etc. are the specified variables.

 For example, a typical interaction using LINSO LVE is

 ? LINSOLVE ({X + SIN(C)*Y == 3, X-2*Y}, { X, Y});

 @: [X==3/(1+SIN(C)/2), Y==3/(2+SIN(C))]

 ABSolutely Simple!

 The ABS function defined in file ARITH.MUS simplifies only
numeric arguments, but it is often desirable to s implify absolute
values of non-numeric expressions. For example, it would be nice to
have

 ABS(ABS(4+#PI)) + ABS(-#E*X) + ABS(ATAN(X^2)) + AB S(Y^3) - ABS(Y)^3

simplify to

 4 + #PI + #E*ABS(X) + ATAN(X^2)

Such simplifications and others are implemented in the source file
ABS.ALG listed on page 4. The simplifications p resume that all
variables take on only real values, and arguments containing the
constant #I are left as is.

 NL7-3

% File: LINSOLVE.MAT (c) 08/21/82 The Soft Warehouse %

% * * * Simultaneous Linear Equations Solve r * * * %

FUNCTION LINSOLVE (EQNS, VARS,
 % Local: % NUMNUM, DENDEN, DENNUM, PWREXPD, VARSC OPY, EQN, ROW,
 VAR, ALLVARS, TERM, RS, CF),
 WHEN ARRAY (EQNS) AND ARRAY (VARS) AND LENGTH(EQN S) EQ LENGTH(VARS),
 NUMNUM:DENDEN:DENNUM: 30,
 PWREXPD:6,
 POP (EQNS),
 POP (VARS),
 WHEN
 LOOP
 VARSCOPY: VARS,
 BLOCK
 WHEN FIRST (EQN: EVAL (POP (EQNS))) EQ '" ==",
 EQN: SECOND(EQN) - THIRD(EQN) EXIT,
 ENDBLOCK,
 WHEN
 LOOP
 EQN: EQN - (TERM: EQN - EVSUB (EQN, VAR :POP(VARSCOPY), 0)),
 ALLVARS: VARS,
 TERM: TERM/VAR,
 WHEN
 LOOP
 WHEN NOT FREE (TERM, POP(ALLVARS)) EXIT,
 WHEN EMPTY (ALLVARS), FALSE EXIT,
 ENDLOOP EXIT,
 PUSH (TERM, ROW),
 WHEN EMPTY (VARSCOPY),
 PUSH (-EQN, RS),
 PUSH (ADJOIN ('[, ROW), CF),
 FALSE EXIT,
 ENDLOOP, FALSE EXIT,
 WHEN EMPTY (EQNS) EXIT,
 ROW: FALSE,
 ENDLOOP,
 ROW: REST (ADJOIN ('{, CF) \ ADJOIN ('{, RS)),
 VARS: REVERSE (VARS),
 LOOP
 EQNS: PUSH (POP(VARS) == POP(ROW), EQNS),
 WHEN EMPTY (ROW), ADJOIN ('[, EQNS) EXIT,
 ENDLOOP EXIT EXIT,
ENDFUN $

RDS () $

 NL7-4

% File: ABS.ALG (c) 08/24/82 The Soft Warehouse %

% * * * Absolute Value Package * * * %

PROPERTY #E, NONNEG, TRUE $
PROPERTY #PI, NONNEG, TRUE $

FUNCTION ABS (EX1),
 WHEN NUMBER (EX1),
 WHEN 0<EX1, EX1 EXIT,
 -EX1 EXIT,
 WHEN ATOM (EX1),
 WHEN GET (EX1, 'NONNEG), EX1 EXIT,
 WHEN GET (EX1, 'NONPOS), -EX1 EXIT,
 LIST ('ABS, EX1) EXIT,
 WHEN FREE (EX1, #I), SIMPU ('ABS, EX1) EXIT,
 LIST ('ABS, EX1),
ENDFUN $

PROPERTY ABS, ABS, FUNCTION (EX1), ABS(EX1), ENDFUN $

PROPERTY ABS, ATAN, FUNCTION (EX1), ATAN (ABS (EX1)), ENDFUN $

PROPERTY ABS, ASIN, FUNCTION (EX1), ASIN (ABS (EX1)), ENDFUN $

PROPERTY ABS, ERF, FUNCTION (EX1), ERF (ABS (EX1)), ENDFUN $

PROPERTY ABS, +, FUNCTION (EX1, EX2,
 % Local: % EX3, EX4),
 EX4: ABS(EX2),
 WHEN (EX3:ABS(EX1)) = EX1 AND EX4 = EX2
 OR ZERO (EX1+EX3) AND ZERO (EX2+EX4), EX3 + EX4 EXIT,
ENDFUN $

PROPERTY ABS, *, FUNCTION (EX1, EX2),
 ABS(EX1) * ABS(EX2),
ENDFUN $

PROPERTY ABS, ^, FUNCTION (EX1, EX2),
 WHEN INTEGER (EX2),
 WHEN EVEN (EX2), EX1^EX2 EXIT,
 ABS(EX1) ^ EX2 EXIT,
 WHEN EX1 EQ #E, #E ^ EX2 EXIT,
ENDFUN $

PROPERTY BASE, ABS, FUNCTION (EX1, EX2),
 WHEN EVEN (EX1), EX2^EX1 EXIT,
ENDFUN $

RDS () $

 NL7-5

 Winner of the muMATH Software Contest:

 Synthetic Division of Polynomials

 AUTHOR: Winston Cope, M.D.
 ADDRESS: 415 7th St. South, St. Petersburg, FL , 33701
 ACCESS: Public Domain

 SYNDIV is a file of four functions which allow synthetic
division of polynomials, written to supplement t he ALGEBRA file.
SYNDIV is the primary function, and its process fol lows the commonly
used manual algorithm. Its input consists of two polynomials and
their independent variable. The output is an expr ession consisting
of the polynomial quotient plus any remainder. The name of the
primary function is the same as the name of the fil e.

 DVD, DVR, and X are passed to SYNDIV by the fu nction call. The
other names in the parameter list are local variabl es. QT is a list
which eventually becomes the answer. QTTERM is one term of QT.
FDVR is the highest-degree term of the divisor, w hich is constant
throughout the computation. FDVD is the highest order term of the
dividend, whose value changes as the computation p roceeds. MD and
MR are integers designating the dividend and divisor degrees
respectively.

 SYNDIV begins by checking for some kinds of un acceptable input.
Real work begins by determining FDVR, and then a loop is entered.
The exit test is performed to see if the calculatio n is complete, in
which case the answer is given. Otherwise th e function uses
FINDTERM to isolate FDVD from the dividend. FDVD /FDVR then yields
QTTERM, which is adjoined to QT. An updated va lue for DVD is
calculated next, so the iteration can continue.

 The helper functions are fairly straightf orward. TERMPWR
yields a number which is the degree of one term of a polynomial in
X. MAXPWR yields a number which is the degree o f a polynomial.
FINDTERM extracts a term of specified degree from a polynomial.

 This file is in the public domain. The author would appreciate
notice and constructive criticism from anyone using it.

 Judge's Comments : This is a nice package that helps fill in
one of the most important limitations of muMATH. In order to give
correct results, the inputs to SYNDIV must be i n the form of a
polynomial in the variable of interest, with all s imilar powers of
that variable collected together into a single ter m. For example,
use SYNDIV ((C^2-1)*X^2+X+1), (C+1)*X+1, X) rat her than SYNDIV
(C^2*X^2-X^2+X+1, C*X+X+1, X). It is not alway s easy to force
muMATH expressions into this form, but successive u se of EXPAND then
FCTR might help.

 Note too that SYNDIV is not automatically app lied recursively
to coefficients that are not numbers. For example, the leading term
of the quotient resulting from the first example above is (C^2-
1)*X/(C+1) rather than the equivalent but more comp act (C-1)*X.

 NL7-6

% File: SYNDIV.ALG 08/17/82 Winston Cope %

% * * * Synthetic Division Package * * * %

FUNCTION SYNDIV (DVD, DVR, X,
 % Local: % QT, QTTERM, FR, FDVD, MD, MR),
 MD: MAXPWR (DVD, X),
 MR: MAXPWR (DVR, X),
 WHEN ZERO (MD) OR ZERO (MR) OR NOT (MR < MD), DVD / DVR EXIT,
 FDVR: FINDTERM (DVR, X, MR),
 LOOP
 WHEN MAXPWR (DVD, X) < MR, MKSUM (QT) + DVD/DVR E XIT,
 FDVD: FINDTERM (DVD, X, MAXPWR (DVD, X)),
 QTTERM: FDVD / FDVR,
 QT: ADJOIN (QTTERM, QT),
 DVD: DVD - QTTERM*DVR,
 ENDLOOP,
ENDFUN $

FUNCTION TERMPWR (EX1, X),
 BLOCK
 WHEN POWER (SECOND(EX1)),
 EX1: LIST (FIRST(EX1), THIRD(EX1), SECOND(EX1)) EXIT,
 ENDBLOCK,
 WHEN POWER (THIRD(EX1)) AND SECOND (THIRD(EX1)) = X,
 THIRD (THIRD(EX1)) EXIT,
 WHEN POWER (EX1) AND SECOND (EX1) = X, THIRD (EX1) EXIT,
 WHEN FIRST (EX1) EQ '* AND (SECOND(EX1)=X OR THIRD (EX1)=X)
 OR EX1 = X, 1 EXIT,
 0,
ENDFUN $

FUNCTION MAXPWR (EX1, X, EX2, K, KMAX),
 EX1: EX1 + 1,
 KMAX: 0,
 LOOP
 EX2: POP (EX1),
 WHEN EMPTY (EX2), KMAX EXIT,
 K: TERMPWR (EX2, X),
 BLOCK
 WHEN K>KMAX, KMAX: K EXIT,
 ENDBLOCK,
 ENDLOOP,
ENDFUN $

FUNCTION FINDTERM (EX1, X, K, EX2),
 WHEN TERMPWR (EX1, X) EQ K, EX1 EXIT,
 LOOP
 EX2: POP (EX1),
 WHEN EMPTY (EX2), FALSE EXIT,
 WHEN TERMPWR (EX2, X) EQ K AND NOT (EX2 EQ '+), E X2 EXIT,
 ENDLOOP,
ENDFUN $

RDS () $

 NL7-7

 Those Darn Bugs

 We and some of our vigilant users have disco vered some bugs
and/or limitations in some of the higher level muMA TH source files.
The following is a list of the affected files, th e revised version
date, and a description of how to make the necessar y changes:

1. ARRAY.ARI - 03/26/82 - The index in subscripted assignments are
 not evaluated, making commands like A[N]: 4 n ot work correctly
 even if N has a positive integer value. Chan ge the definition
 of the subroutine UPDATE to

 SUBROUTINE UPDATE (EX1, LEX1, EX2),
 ASSIGN (EX1, UPDATE1 (EVAL(EX1), MAPFUN ('EVAL, LEX1))),
 EX2,
 ENDSUB$

2. MATRIX.ARR - 08/21/82 - The function IDMAT(N) generates an
 identity matrix of dimension N. If you feel it necessary to
 ensure that N is a positive integer, insert the line

 WHEN NOT POSITIVE (EX1), FALSE EXIT,

 before the line

 EX2: LIST (1),

 in the definition of IDMAT.

3. LIM.DIF - 03/25/82 - When using LIM with a sing le argument (see
 muMATH Reference Manual) on a function whose limit properties
 are unknown to the system, such as LIM(F(X)), an unnecessarily
 complicated answer results. Replace the line o f LIM1 that reads

 LIST ('LIM, EX1, INDET, 0),

 to

 WHEN INDET, LIST ('LIM, EX1, INDET, 0) EX IT,
 LIST ('LIM, EX1),

4. INT.DIF - 08/23/82 - In order to improve the efficiency and
 robustness of the "derivative divides" algorith m embodied in the
 function DRVDIV, change the fourth line of the definition from

 EX5: EX1/EX4,

 to

 EX5: FCTR (LIST ('/, EX1, EX4)),

 NL7-8

* * * * * * * * * * T h e m u L I S P e r * * * * * * * * * *

 Winner of the muLISP Software Contest:

 SNOMED Diagnostic Coding Program

 AUTHOR: Stanley Schwartz, M.D.
 ADDRESS: Department of Pathology, The Memorial Hospital,
 Pawtucket, RI, 02860
 ACCESS: Public Domain

 SNOMED is a program to aid the Pathologist or medical secretary
in coding diagnoses from the Anatomic Pathology Lab oratory according
to the Systematized Nomenclature of Medicine (S NOMED) which is
published by the College of American Pathologists. SNOMED and its
predecessor SNOP are used in many hospitals arou nd the world in
medical record departments and Pathology departmen ts for diagnostic
coding. Accurate and complete coding is necessary for valid statis-
tics and for the retrieval of groups of cases for later scientific
study.

 The SNOMED.SYS program builds a dictionary of SNOMED diagnostic
codes and uses that dictionary for accurate, complete, and
reproducible coding. The program is written in mu LISP and requires
48K to 64K of memory and one or more disk drives. You will also
need a set of SNOMED code books. (Systematized Nomenclature of
Medicine (SNOMED), ed 2, Skokie, IL, College of American Patholo-
gists, 1979.)

 The program works by the method of inverted d ictionaries, and
with minor modification it can be used as a genera l filing system
with key-word retrieval.

 SNOMED is a multiaxial and hierarchical codin g system. Each
diagnosis is specified by numbers along multiple axes, which are
named "Topography", "Morphology", "Etiology", "Func tion", "Disease",
"Procedure", and "Occupation". The axes are rel ated according to
the following scheme:

Topography + Morphology + Etiology + Functio n = Disease

 Lung + Granuloma + M. tuberculosis + Fever = Tuberculosis

 T-28000 + M-44060 + E-2001 + F-0300 3 = D-0188

 Any given axis is optional, and for Surgica l Pathology the
Topography and Morphology are mostly used. The c ode numbers are
arranged in a logical manner, with additional detai l being specified
with more digits. For example the code T-32 is for HEART while
T-3332 is for ANTERIOR PAPILLARY MUSCLE OF RIGHT VE NTRICLE.

 NL7-9

 Automatically Specifying Definitions To Be Saved
 While Working With muSTAR

 In SWH Newsletter #6 we discussed how to manu ally specify the
functions that muSTAR will save as a pretty-printed source file when
the W (Write) command is issued. David Dunthorn of CF Systems
suggested a way to automate this process by fla gging functions,
variables, and properties for saving when they are defined or
redefined. Expanding on his idea, we came up wi th the following
scheme.

 The muSTAR Write command is modified to use the value of the
global variable SAVELIST to specify the items to be saved. Each
element of SAVELIST consists of a dotted pair: th e left element is
an indicator (one of the names FUNCTION, VARIABL E, PROPERTY, or
FLAGGED) of the type of the item to be saved; the right element is
the name of the item. This scheme allows the flex ibility of having
function definitions, property values, etc. in termixed in the
resulting source file.

 If and only if the control variable SAVE is "T", an item is
automatically included on SAVELIST when one of the functions DEFUN,
SETQQ, PUTQQ, or FLAGQQ is used to define funct ion or assign a
value. This is accomplished by calls to the functi on SAVELIST which
adds the item to the end of SAVELIST if SAVE is "T " and the item is
not already a member of SAVELIST.

 The file SAVELIST.LIB gives definitions for the muSTAR
functions that must be changed or added to implem ent the SAVELIST
feature. The file can be produced using an extern al editor or the
changes can be made interactively using the muSTA R editor itself.
Once the muSTAR system has been modified, the syste m can be saved as
a SYS file using a muLISP SAVE command.

% File: SAVELIST.LIB (c) 08/31/82 The Soft Warehouse %

(DEFUN SAVELIST (LAMBDA (NAM$ EXP$)
 ((EQ SAVE T)
 ((MEMBER (CONS NAM$ EXP$) SAVELIST))
 (SETQ SAVELIST (NCONC SAVELIST (LIST (CONS NAM$ EXP$)))))))

(SETQ SAVELIST NIL)

(PUTD DEFUN (QUOTE (NLAMBDA (FUN$ EXP$)
 ((EQUAL (GETD FUN$) EXP$))
 (((NULL (GETD FUN$)))
 (PRIN1 "REDEFINED ")
 (PRINT FUN$))
 (SAVELIST FUNCTION FUN$)
 (PUTD FUN$ EXP$)
 FUN$))))

 NL7-10

 (DEFUN SETQQ (NLAMBDA (NAM$ EXP$)
 (SAVELIST VARIABLE NAM$)
 (SET NAM$ EXP$)
 NAM$))

(DEFUN PUTQQ (NLAMBDA (NAM$ ATM$ EXP$)
 (SAVELIST PROPERTY (CONS NAM$ ATM$))
 (PUT NAM$ ATM$ EXP$)
 NAM$))

(DEFUN FLAGQQ (NLAMBDA (NAM$ ATM$)
 (SAVELIST FLAGGED (CONS NAM$ ATM$))
 (FLAG NAM$ ATM$)
 NAM$))

(DEFUN W-EXEC (LAMBDA (
 NAM$ ECHO)
 ((NULL (SETQ NAM$ (QUERY$ "FILE NAME"))))
 ((NULL (WRS (CAR NAM$) (QUOTE LIB) *DRIVE*)))
 (PRIN1 "(PUTD DEFUN ")
 (PRT-TXT (EXP-TO-TXT (GETD DEFUN) (LIST (QUOTE QU OTE))))
 (PRIN1 ")")
 (TERPRI 2)
 (PRT-TXT (DEF-TO-TXT (QUOTE (SETQQ PUTQQ FLAGQQ))))
 (TERPRI)
 (MAPC SAVELIST (QUOTE (LAMBDA (EXP$)
 (TERPRI)
 (SETQ NAM$ (POP EXP$))
 (((EQ NAM$ FUNCTION)
 ((TRACED EXP$)
 (UNTRACE (LIST EXP$))
 (PRT-TXT (DEF-TO-TXT (LIST EXP$)))
 (TRACE (LIST EXP$)))
 (PRT-TXT (DEF-TO-TXT (LIST EXP$))))
 ((EQ NAM$ VARIABLE)
 ((EQ EXP$ (EVAL EXP$)))
 (PRT-TXT (SET-TO-TXT (LIST EXP$))))
 ((EQ NAM$ PROPERTY)
 ((GET (CAR EXP$) (CDR EXP$))
 (PRT-TXT (PUT-TO-TXT (CAR EXP$) (CDR EXP$)))))
 ((EQ NAM$ FLAGGED)
 ((FLAGP (CAR EXP$) (CDR EXP$))
 (PRIN2 (LIST (QUOTE FLAGQQ) (CAR EXP$) (CDR EXP$)))
 (TERPRI)))))))
 (TERPRI)
 (PRINT "(RDS)")
 (WRS)))

(SETQ SAVE T)

(RDS)

