

 SLIDING INTO BDOS

 THE SMOOTH AND EASY WAY

 by: Michael J. Karas

 2468 Hansen Court

 Simi Valley, CA 93065

 What is this thing everybody is talking about called BDOS?

This series will attempt to answer this question in some detail

but first we need a little basis to understand WHY in the first

place. Digital Research CP/M is an operating system for smaller

type micro processor computer systems that is designed to remove

much of the normal computer operation drudgery experienced by the

computer operator. The operating system software embodies a

"system philosophy" that structures and generalizes upon the

operating environment of a piece of electronics hardware. The

environment presented actually allows that piece of quiet,

transistorized machinery to be used at a much higher level. The

full impact of what this operating system provides to a computer

is most probably felt by the typical micro computer hacker that

worked the hard way to get a computer system up and running.

While building, debugging, and integrating the pieces, the

computer was just a whole bunch of parts interfaced together in

an organized manner. However, when the thing is finally a

"computer" how does it get used. The low level process of poking

data into memory from a front panel or even filling, dumping, or

block moving memory data with an EPROM based "monitor program"

hardly makes this computer "useful". The process of putting on

disks and bringing up CP/M lights the torch for computer

usability. In this case the hacker experiences an elated feeling

now "NOW I CAN DO SOMETHING!"

 Buried inside of the total operating system presentation is

the concept of generalization brought up in the previous

paragraph. One of the major requirements in order to make a

computer useful is that there has to be applications software

that performs the jobs intended for the computer. Jobs like

accounting, word processing, spread sheet data analysis, or

inventory control. Unfortunately the process of producing

applications software is very, very expensive. A good package may

take anywhere from one to ten man years of development effort to

make. If the process of making an applications package had to be

custom taylored to a specific hardware environment, then there

would not be affordable software available for use upon a given

XYZ computer. Generalization in the operation of a computer

environment solves this problem however. With the understanding

that at a certain level "all microprocessor computer systems are

alike" it is possible, with minimum constraints, to define a set

of logical type operations that make a computer useful.

 This logical set of operations, for the Digital Research

CP/M operating system, is defined within the BDOS portion of the

operating system. Here in about 3 1/2 K bytes of tightly written

assembly language is the "generalization converter" that takes

I/O requests for hardware independant applications programs and

turns them into a lower level set of simplistic hardware oriented

functions that are then processed through the BIOS. This

conversion process is beneficial in the light that CP/M Ver 2.2

can be setup to run on a typical brand XYZ computer for about one

half of the effort needed to convert even one of the simplest

application packages had that application been written in a

hardware dependant manner. Conclusion; software developers can

make better, more sophisticated applications available for lower

cost and computer users find a competitive software market place

where there are many times multiple packages available that

perform similar functions.

 The thrust of this presentation is to show the prospective

applications programmer how to use most of the generalized set

of "BDOS System Calls" within Digital Researches CP/M Ver 2.2.

The presentation scheme will be to describe all of the functions

and use simple examples. The reader is assumed to be modistly

familiar with 8080 Assembly Language Programming as all of the

examples will be given in machine language. Likewise, in this

environment it is assumed by default that the prospective

programmer is planning to code in assembly language. If a CP/M

compatible high level language is used for programming, such as

Digital Research PL/I-80 or Microsoft BASIC-80, then of course

the program interface at the "System Call" level becomes

transparent to the programmer. Run time subroutines make the high

level coded application get converted through yet another step.

(One major reason applications code in a high level language runs

slower than the equivalent function written in assembly

language).

SUMMARY OF CP/M SYSTEM CALLS

 The set of system or "BDOS" I/O entry points available to

the CP/M programmer is complete yet simple. The primary beauty of

the CP/M system is this small world of completeness. Many

programmers familair with other operating systems complain that

the CP/M system is weak, unflexible, and incomplete. However, in

a microprocessor type computer world, the generalization level

defined for the CP/M system allows 85% of all microprocessor type

appliciation jobs to be programmed with relative ease. Also, in

my opinion, 8-bit microprocessor hardware is easily capable of

performing about 90 percent of the typical tasks targeted for

microcomputers. So what is this set of functions? The chart of

Figure 1 summarizes, in function number order, all of the system

operations specific to CP/M Version 2.2 that will be covered in

this presentation. In the subsequent sections that follow the

functions will be grouped into categories so that related

operations may become familiar with reference to one another.

 FIGURE 1. DETAILED SUMMARY OF CP/M 2.2 SYSTEM CALLS

Function Entry Value to Return Value from

 Number BDOS Passed in BDOS Passed in

DEC HEX Function (DE) or (E) regs (HL) or (A) register

 0 00 | System Reset | **** | **** |

 1 01 | Console Input | **** | (A)=character |

 2 02 | Console Output | (E)=character | **** |

 3 03 | Reader Input | **** | (A)=character |

 4 04 | Punch Output | (E)=character | **** |

 5 05 | Printer Output | (E)=character | **** |

 6 06 | Direct Console I/O | (E)=0FFH is input| (A)=character |

 | | (E)=chr is output| **** |

 7 07 | Get IOBYTE | **** | (A)=IOBYTE |

 8 08 | Set IOBYTE | (E)=IOBYTE | **** |

 9 09 | Display Console String | (DE)=string addr | **** |

10 0A | Input Console String | (DE)=string addr | (A)=# chr input |

11 0B | Get Console Status | **** | (A)=000H idle |

 | | | (A)=0FFH ready |

12 0C | Get CP/M Version Number| **** | (HL)=Version # |

13 0D | Reset Disk Subsystem | **** | **** |

14 0E | Select Disk Drive | (E)=disk number | **** |

15 0F | Open a File | (DE)=FCB address | (A)=dir code |

16 10 | Close a File | (DE)=FCB address | (A)=dir code |

17 11 | Search for File | (DE)=FCB address | (A)=dir code |

18 12 | Search for Next | **** | (A)=dir code |

19 13 | Delete File | (DE)=FCB address | (A)=dir code |

20 14 | Read next Record | (DE)=FCB address | (A)=error code |

21 15 | Write next Record | (DE)=FCB address | (A)=error code |

22 16 | Create New File | (DE)=FCB address | (A)=dir code |

23 17 | Rename File | (DE)=FCB address | (A)=dir code |

24 18 | Get Login Vector | **** | (HL)=login vector|

25 19 | Get Logged Disk Number | **** | (A)=logged disk |

26 1A | Set R/W Data Buff Addr | (DE)=buffer addr | **** |

27 1B | Get Allocation Vector | **** | (HL)=alloc vector|

 | | | address |

28 1C | Write Protect Disk | (E)=disk number | **** |

29 1D | Get Read Only Vector | **** | (HL)=R/O vector |

30 1E | Set File Attributes | (DE)=FCB address | (A)=dir code |

31 1F | Get Addr of Disk Parms | **** | (HL)=parm addr |

32 20 | Get/Set User Select | (E)=0FFH get | (A)=current user |

33 21 | Read Random Record | (DE)=long FCB adr| (A)=error code |

34 22 | Write Random Record | (DE)=long FCB adr| (A)=error code |

35 23 | Get Size of File | (DE)=long FCB adr| (r0-2=rec cnt) |

36 24 | Set Random Record Num | (DE)=long FCB adr| (r0-2=rec numb) |

37 25 | Reset Drive | (DE)=drive vector| **** |

38 26 | Not used | | |

39 27 | Not used | | |

40 28 | Write Random with | (DE)=long FCB adr| (A)=error code |

 The technical means required to "use" or interface to the

CP/M system for each function contains a certain common structure

that will be discussed here. The base memory page of a CP/M

system memory map includes, at a specific memory address, a JUMP

instruction to the CP/M BDOS entry point. For most CP/M systems

this is address 00005H. To accomplish BDOS I/O the number of the

function is placed into the (C) register. If the parameter

requires input parameters, then they are passed in the (DE)

register pair or the individual (E) register depending upon

whether the parameter is a word or byte value. Result information

returned by some functions is sent back to the users program in

either the (A) register or the (HL) register pair depending upon

if the value is a byte or word. The following simple program

segment demonstrates the scheme used to output the 26 characters

A-Z to the console screen through the use of function number 2.

BDOS EQU 0005H ;SYSTEM ENTRY

CONOUT EQU 2 ;OUTPUT FUNCTION

 ORG 0100H ;TPA BASE

 MVI B,26 ;PRINT 26 COUNTER

 MVI C,'A' ;START WITH 'A'

;

LOOP:

 PUSH B ;SAVE COUNTER & LETTER

 MOV E,C ;LETTER TO (E) FOR OUTPUT

 MVI C,CONOUT ;BDOS FUNC TO (C)

 CALL BDOS ;GO GO OUTPUT

 POP B

 INR C ;SEQUENCE TO NEXT CHAR

 DCR B ;DECREASE CHR COUNTER

 JNZ LOOP ;MORE TO DO IF NOT TO ZERO

 RET ;IMMEDIATE CCP RETURN

SYSTEM CALLS FOR OPERATOR CONSOLE INPUT AND OUTPUT

 Intrinsic to the operation of any computer system,

especially of the CP/M gender, is the operator console. The

device provides the human interface to the machine and as such

the BDOS includes a generalized set of operator communication

functions to perform I/O with the console device. The various

options available will each be presented with a brief example.

INPUT FROM CONSOLE KEYBOARD: Function 1.

 This function waits for and reads in a character from the

console device keyboard. The operator typed character is echoed

automatically back to the console display if the character is an

ASCII printable character (020H to 07EH) or it is a carriage

return, line feed, back space, or tab. Note that the BDOS

automatically expands tabs to columns of eight characters. Upon

outputting the character for the echo, a check is made for

console start/stop, CTL-S, and if so the console input routine

does not return to the users program until another arbitrary key

is depressed.

;CONSOLE INPUT EXAMPLE

;

CONIN EQU 001H ;FUNC # 1

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 MVI C,CONIN ;FUNCTION

 CALL BDOS ;GO GET CHARACTER

 STA INCHAR ;SAVE FOR WHATEVER REASON

 RET ;IMMEDIATE CCP RETURN

;

INCHAR:

 DS 1 ;PLACE TO STORE INPUT CHAR

;

 END

OUTPUT TO CONSOLE DISPLAY: Function 2.

 The ASCII character in the (E) register is sent to the

console display device. The output may be any byte value but many

times the hardware driver BIOS routines automatically strip off

the upper bit of the byte. Upon output the printer echo flag

within BDOS is checked (CTL-P) and if set the character is also

sent to the printer peripheral device. Note that the BDOS

automatically expands output tabs to columns of eight characters.

Upon outputting the character a check is made for input of

console start/stop, CTL-S, and if so the console output routine

does not return to the users program until another arbitrary key

is depressed.

;CONSOLE OUTPUT EXAMPLE

;

CONOUT EQU 002H ;FUNC # 2

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LDA OUTCHAR ;GET CHARACTER TO OUTPUT

 MOV E,A

 MVI C,CONOUT ;FUNCTION

 CALL BDOS ;GO SEND CHARACTER

 RET ;IMMEDIATE CCP RETURN

;

OUTCHAR:

 DB 'X' ;PLACE TO GET OUTPUT CHAR

;

 END

DIRECT USER INTERFACE TO CONSOLE: Function 6.

 Some programming applications require that the BDOS not

monitor the input/output character stream as is done with

functions 1 & 2. To allow for these functions the direct I/O

function is supported. The following example shows how it is used

to input values and echo them until an input control-Z character

is typed.

;DIRECT CONSOLE I/O EXAMPLE

;

DIRCIO EQU 006H ;FUNCTION NUMBER

BDOS EQU 0005H ;SYSTEM ENTRY POINT

CTLZ EQU 'Z'-040H ;ASCII CTL-Z CHARACTER

INPUT EQU 0FFH ;DIRECT INPUT FLAG

 ORG 0100H ;CONSOLE INPUT

;

LOOP:

 MVI E,INPUT ;SET FOR INPUT

 MVI C,DIRCIO ;FUNCTION

 CALL BDOS ;GET INPUT OR STATUS

 ORA A ;IF (A)=0 NO CHAR WAS READY

 JZ LOOP ;CONTINUE TO WAIT FOR INPUT

 CPI CTLZ ;IF INPUT WAS CTL Z THEN END

 RZ ;CCP RETURN ON END

 MOV E,A ;CHARACTER TO (E) FOR OUTPUT

 MVI C,DIRCIO ;SAME FUNCTION NUMBER AGAIN

 CALL BDOS ;GO OUTPUT IT

 JMP LOOP ;NEXT CHARACTER INPUT LOOP

;

 END

PRINTING STRINGS OF CHARACTERS TO THE CONSOLE: Function 9.

 Message string sequences of characters to be sent to the

console are quite common in applications programming. Typical

uses may be for user prompt messages, program sign-on messages

etc. The BDOS provides a convenient mechanism to allow the

programmer to output a whole string of characters rather than

having to loop with single character outputs. The string is

intended to be stored in consecutive memory locations and end

with the ASCII '$' character. The (DE) registers are used to

point to the start of the string. The '$' signals the end of the

string to display and is not sent to the console. The output

bytes may be any 8-bit value but many times the hardware driver

BIOS routines automatically strip off the upper bit of the byte.

Upon output of each character the printer echo flag within BDOS

is checked (CTL-P) and if set the character is also sent to the

printer peripheral device. Note that the BDOS automatically

expands output tabs to columns of eight characters. Upon

outputting each character a check is made for input of console

start/stop, CTL-S, and if so the console string output routine

does not return to the users program until another arbitrary key

is depressed.

;CONSOLE STRING PRINT EXAMPLE

;

CONSTR EQU 009H ;FUNC # 9

BDOS EQU 0005H ;SYSTEM ENTRY

CR EQU 0DH ;ASCII CARRIAGE RETURN

LF EQU 0AH ;ASCII LINE FEED

 ORG 0100H ;START

 LXI D,MESSAGE ;POINT AT STRING TO SEND

 MVI C,CONSTR ;FUNCTION

 CALL BDOS ;GO SEND STRING

 RET ;IMMEDIATE CCP RETURN

;

MESSAGE:

 DB CR,LF,'Hello Operator',CR,LF,'$'

;

 END

READING A STRING OF CHARACTERS IN FROM KEYBOARD: Function 10.

 The CP/M console command processor (CCP) assumed to be vary

familiar to most CP/M system operators allows buffered command

input with editing features. It turns out that this operation is

a much needed function for getting in strings of text from the

operator console. Use of this function allows standardization of

the command input functions so that the operator can easily learn

the editing key functions. It also removes the pain of writing

the same function over and over again by the applications

programmer. The read string command inputs the edited text to a

buffer pointerd to by the (DE) register pair. The caller

specifies the maximum length desired and the BDOS returns the

actual length of string entered if carriage return is entered

prior to exceeding the maximum input length. The input length is

returned in both the (A) register and as part of the buffer.

Bytes in the string buffer past the end of the entered text are

uninitialized. The example shown below gives an assembly language

view point of the buffer structure and how to program an input

function.

 The editing functions supported are the following control

and/or special characters:

 rub/del removes and echos the last entered char

 ctl-C initiates system reboot if first char

 ctl-E echos a CR & LF to console without

 putting them into buffer

 ctl-H (or back space key) back spaces one char

 removing last entered character

 ctl-J (or line feed key) terminates line input

 ctl-M (or carriage return) terminates input

 ctl-R retypes currently entered characters

 under current line

 ctl-U deletes all of currently entered data

 and restarts buffer input on new line

 ctl-X deletes all of currently entered data

 and restarts buffer input on same line

;CONSOLE INPUT BUFFER EXAMPLE

;

CONBUF EQU 00AH ;STRING INPUT FUNCTION

BDOS EQU 0005H ;SYSTEM ENTRY POINT

LENGTH EQU 32 ;DESIRED MAXIMUM CHARACTERS

 ORG 0100H ;START POINT

 LXI D,STRING ;POINT AT BUFFER AREA

 MVI C,CONBUF ;FUNCTION NUMBER

 CALL BDOS ;GO GET STRING

 RET ;RETURN TO CCP WITHOUT

 ;...DOING ANYTHING WITH DATA

;

;

;CONSOLE INPUT BUFFER LAYOUT

;

STRING:

 DB LENGTH ;MAXIMUM DESIRED INPUT LENGTH

AMOUNT:

 DS 1 ;BYTE WHERE BDOS RETURNS

 ;..ACTUAL BYTE COUNT

STRBF:

 DS LENGTH ;RESERVED STORAGE FOR UP TO

 ;"LENGTH" NUMBER OF CHARACTERS

;

 END

DETERMINING IF THERE IS PENDING KEYBOARD INPUT: Function 11.

 Some computer programs are designed to spend large amounts

of time processing inside of the computer or manipulating data

within disk files without stopping to ask the user if he/she

desires to stop the processing sequence. Also it is many times

desirable to have a "terminate" capability for application

programs without waiting for the operator to answer a character

input request. If the normal console input function is used the

user computer is not resumed until a character is already input.

The console input status check function may be used to poll the

user keyboard to determine if a character input is pending. If no

input is ready then the user program is immediately resumed with

an indication of if there was a pending input. If a character is

pending a 0FFH is returned in the (A) register. Otherwise a 000H

value is returned. The following example illustrates the use of

console status to terminate a normally endless loop that prints

the same string over and over.

;CONSOLE STATUS USAGE EXAMPLE

;

CONSTAT EQU 00BH ;FUNC # 11

CONSTR EQU 009H ;PRINT STRING FUNCTION

BDOS EQU 0005H ;SYSTEM ENTRY

CR EQU 0DH ;ASCII CARRIAGE RETURN

LF EQU 0AH ;ASCII LINE FEED

 ORG 0100H ;START

LOOP:

 LXI D,MESSAGE ;POINT AT STRING TO SEND

 MVI C,CONSTR ;FUNCTION

 CALL BDOS ;GO SEND STRING

 MVI C,CONSTAT ;GET ABORT STATUS

 CALL BDOS

 ORA A ;CHECK STATUS

 JZ LOOP ;NO KEY SO CONTINUE LOOP

 RET ;IMMEDIATE CCP RETURN IF ABORT

;

MESSAGE:

 DB CR,LF,'Depress any Key to STOP','$'

;

 END

AUXILLIARY PERIPHERAL CHARACTER INPUT AND OUTPUT FUNCTIONS

 The generalized CP/M BDOS provides the capability for three

character by character logical I/O devices to be atteched to the

computer system. This requirement stems from the fact that most

computers are designed to interface to the real world in more

ways than just a console device. The three devices are classified

as:

 a) A lister type device that is generally expected to be a

printer of some sort. This classification is an output only

device.

 b) An input device supporting character input from a source

other than the console. The device is specifcally an input type

unit. CP/M jargon refers to this device as the "READER" for no

particular reason.

 c) A generalized character output only device used as a

specific data destination other than the console or standard list

device. Some computer systems use this device, often times

referred to as the "PUNCH" device as a second printer output.

 The three following examples illustrate the programming

techniques used to talk to each of these three devices.

;LIST DEVICE OUTPUT EXAMPLE

;

LIST EQU 005H ;FUNC # 5

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LDA LSTCHAR ;GET CHARACTER TO OUTPUT

 MOV E,A

 MVI C,LIST ;FUNCTION

 CALL BDOS ;GO SEND CHARACTER

 RET ;IMMEDIATE CCP RETURN

;

LSTCHAR:

 DB 'L' ;PLACE TO GET OUTPUT CHAR

;

 END

;READER DEVICE INPUT EXAMPLE

;

READER EQU 003H ;FUNC # 3

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 MVI C,READER ;FUNCTION

 CALL BDOS ;GO GET CHARACTER

 STA RDRCHR ;SAVE FOR WHATEVER REASON

 RET ;IMMEDIATE CCP RETURN

;

RDRCHR:

 DS 1 ;PLACE TO STORE INPUT CHAR

;

 END

;PUNCH DEVICE OUTPUT EXAMPLE

;

PUNCH EQU 004H ;FUNC # 4

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LDA PNCHCHR ;GET CHARACTER TO OUTPUT

 MOV E,A

 MVI C,PUNCH ;FUNCTION

 CALL BDOS ;GO SEND CHARACTER

 RET ;IMMEDIATE CCP RETURN

;

PNCHCHR:

 DB 'P' ;PLACE TO GET OUTPUT CHAR

;

 END

SYSTEM CONTROL BDOS FUNCTIONS

 This family of system calls supported by the CP/M BDOS are

designed to allow the programmer a degree of flexibility in

manipulating the operation of general CP/M environment. Each

function here will generally be discussed individually due to the

unique nature of each operation.

SYSTEM RESET: Function 0.

 The system reset function is designed to allow restart of

the CP/M system command processor after a user application

completes execution or is aborted. The system reset function is

equivalent to a JMP to address 0000H or a CTL-C which forces a

system WARM Reboot. The reboot operation de-activates all active

drives except drive A: which is re-logged. Operation is extremely

simple as:

RESET EQU 000H ;SYSTEM RESET FUNC

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H

 MVI C,RESET

 JMP BDOS ;CALL ALSO PERMISSABLE

 ;EXCEPT THAT FUNCTION

 ;DOES NOT RETURN TO USER

 ;PROGRAM

GET AND SET IOBYTE: Functions 7 & 8.

 The generalized CP/M operating system environment

communicates via I/O to "logical" type devices. This means that

the console, lister, "reader", and "punch" are just treated as a

generic device classsifications. The CP/M system allows for and

supports, to a degree, the capability for the hardware to contain

multiple physical devices (peripherals and/or real I/O devices)

within each of the generic logical device classifications. The

means to support the assignment of multiple physical devices to a

given classification is done through the IOBYTE, normally stored

at address 00003H of the base page of the CP/M memory. The BIOS

hardware I/O software may thusly be written to easily know which

one of two printers to talk to when the BDOS requires output to

one of two printers. A "default standard" IOBYTE format has been

adopted based upon an 8-bit microprocessor system convention

developed by Intel Corp as follows:

 (lister) (punch) (reader) (console)

 Logical Devices => LST: PUN: RDR: CON:

 IOBYTE bits => 7 6 5 4 3 2 1 0

 Bit pattern

 dec binary

 0 00 TTY: TTY: TTY: TTY:

 1 01 CRT: PTP: PTR: CRT:

 2 10 LPT: UP1: UR1: BAT:

 3 11 UL1: UP2: UR2: UC1:

 The designators in the table specify the "standard types of

physical devices and are defined as follows:

 TTY: A teletype console with keyboard, hard copy display and

 possibly an integral tape reader/punch

 CRT: An interactive cathode ray type terminal with keyboard

 input and display screen

 BAT: A batch processor workstation with a card reader type

 input device and a hard copy display/output device

 UC1: A user defined alternate "console" unit

 LPT: Line printer

 UL1: A user defined list device

 PTR: Paper Tape Reader

 UR1: User defined "reader" character input device

 UR2: User defined "reader" character input device

 PTP: Paper Tape Punch

 UP1: User defined "punch" character output device

 UP2: User defined "punch" character output device

 The BDOS support for the I/O device assignment is a standard

mechanism to access the IOBYTE's current value and switch it to

some other value. Suppose a CP/M computer had two printers

connected as LST: and UL1:. If the applications program needs to

switch printing output to another printer, the process could be

handeled as follows:

;GET AND SET IOBYTE EXAMPLE

;

SETIOB EQU 008H ;SET IOBYTE FUNCTION

GETIOB EQU 007H ;GET IOBYTE FUNCTION

BDOS EQU 00005H ;SYSTEM ENTRY POINT

LSTMASK EQU 11$00$00$00B ;IOBYTE MASK FOR LIST

 ;..DEVICE

LPT EQU 10$00$00$00B ;BIT VALUE FOR LPT #1

UL1 EQU 11$00$00$00B ;BIT VALUE FOR LPT #2

 ORG 0100H ;PROGRAM START

 MVI C,GETIOB ;GO GET CURRENT IOBYTE VAL

 CALL BDOS

 ANI (NOT LSTMASK) AND 0FFH ;KEEP ALL OTHER BITS

 ORI UL1 AND LSTMASK ;SET IOBYTE FOR PRINTER #2

 MOV E,A

 MVI C,SETIOB ;FUNCTION TO RESET THE IOBYTE

 CALL BDOS

 RET ;IMMEDIATE CCP RETURN

;

 END

GET CP/M VERSION NUMBER: Function 12.

 Sometimes it is necessary for an applications program to

"know" what version of CP/M the program is running under. Version

2.0 and above support a feature to tell the application program

what the version number is. One reason is to permit version

dependant functions such as random record file I/O to be used if

it is supported by the version of CP/M being used. The system

call to get the version number returns a two byte value split

into two parts as follows:

 if (H)=0 then this is a CP/M System

 (H)=1 then this is an MP/M System

 (L)=version number in hex

 if (L)=00 then older than CP/M 2.0

 (L)=20 then version CP/M 2.0

 (L)=21 then version CP/M 2.1

 (L)=22 then version CP/M 2.2

 A program to read the CP/M version number is as follows:

;VERSION NUMBER EXAMPLE

;

GETVERS EQU 00CH ;FUNCTION 12

BDOS EQU 00005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROGRAM START

 MVI C,GETVERS ;FETCH VERSION NUMBER

 CALL BDOS

 MOV A,L ;SAVE CP/M VERSION NUMBER

 STA CURVERS

 RET ;BACK TO CCP

;

CURVERS:

 DS 1 ;STORE THE VERSION NUM HERE

 END

RESETTING THE CP/M DISK SYSTEM: Function 13.

 The CP/M operating system contains features to control

access to files upon the disk drives. A directory checksum

scheme, beyond the scope of this presentation, permits the

operating system to determine when a disk has been changed in a

drive thus preventing the a wrong disk from being written upon.

This is neat except that in many cases an appliciations program

may require disk changes as functions are changed or new files

are required. This system control function permits the

application to force read/write status to be set for all drives,

drive A: to be logged, and reset of the default disk record

buffer address to its default value of 080H within the CP/M base

page. The following program sequence shows how to reset the disk

system.

;RESET DISK SYSTEM EXAMPLE

;

RESET EQU 0DH ;FUNCTION 13

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROGRAM START

 MVI C,RESET ;SET UP FUNCTION

 CALL BDOS ;GO RESET THE DRIVES

 RET ;BACK TO THE CCP

;

 END

GET AND SET OF CURRENT USER CODE: Function 32.

 CP/M Version 2.2 permits the file system on a given drive to

be partitioned into up to 15 individual directory areas so that

usage areas can be setup. For instance, the system operator could

put all assembly language development programs in one user area

while having disk utility programs in another. The BDOS allows

the application programmer to determine the currently logged user

number and to modify it if necessary. The following example sets

the current user number up by one. If the highest user number is

currently logged then the user 0 area is selected.

;GET/SET USER EXAMPLE

;

GSUSR EQU 020H ;FUNCTION 20

GET EQU 0FFH ;GET FLAG

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;START UP POINT

 MVI E,SET ;MAKE THIS A FETCH NUM RQST

 MVI C,GSUSR

 CALL BDOS ;GET THE CURRENT USER #

 INR A ;BUMP RETURNED USER UP 1

 ANI 00FH ;MASK TO MOD(15)

 MOV E,A ;MOVE FOR SET TO NEW USER

 MVI C,GSUSR

 CALL BDOS

 RET ;CCP GETS US BACK

;

 END

SYSTEM FUNCTIONS THAT CONTROL THE DISKS

 The data storage files for applications programs are stored

upon the disk drives attached to the CP/M computer. The BDOS

supports a number of functions that allow the state and selection

status of the drives to be controlled.

SELECT DISK: Function 14.

 The simplest control function is to select the current disk

with which to refer to as the logged or default disk. The

function is equivalent to the console CCP command:

 A>B:<cr>

 B>

Which changed the currently logged disk to drive B:. A BDOS

program to affect the same thing is given in the example program

of the next section below. Drive numbers correspond to the

console displayed drive designators as follows:

 A: = Drive # 0

 B: = Drive # 1

 P: = Drive # 15

Once a drive has been selected it has its directory "activated"

and is maintained in a logged in status until the next warm boot,

cold boot, or disk reset BDOS function.

DETERMINE LOGGED DISK: Function 25.

 An applications program can determine which disk drive is

the currently logged or default drive through use of this

function. The BDOS will return in the (A) register the number of

the currently selected drive according to the table given above.

 The program segment below shows a sequence of BDOS interface

code that first determines if drive B: is selected, and if not

then does a BDOS call to change it.

;SELECT AND POLL LOGGED DISK DRIVE EXAMPLE

;

SELECT EQU 0EH ;FUNCTION 14

ASKDRV EQU 19H ;FUNCTION 25

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H ;PROG START

 MVI C,ASKDRV ;FIND OUT IF B: IS SELECTED

 CALL BDOS

 CPI 'B'-'A'

 RZ ;DONT SELECT IF ALREADY

 ;..LOGGED

 MVI E,'B'-'A' ;SET TO LOG AND SELECT B:

 MVI C,SELECT

 CALL BDOS

 RET ;FINISHED WITH ANOTHER PROG

;

 END

DRIVE STATUS SET AND RESET: Functions 28 & 37.

 Drive status may be individually controlled by these

functions. Operation 28 allows a the currently selected drive to

be write protected (set to read/only). The process is simply:

WPDSK EQU 01CH

BDOS EQU 0005H

 MVI C,WPDSK ;WRITE PROTECT DISK

 CALL BDOS

The write protect status of a specific disk may be removed by

function 37 which deactivates the directories of each drive

specified at call time. Each drive by default then becomes

read/write again but requires reactivation through reselection.

The reset drive vector is a 16-bit value passed to the BDOS with

a "1" bit in each bit position for a drive that equires

resetting. The most significant bit of the 16 bit quanity

corresponds to drive P: and the LSB to drive A:. The code

sequence to reset drive B: would be:

RESDSK EQU 025H

BDOS EQU 0005H

 MVI C,RESDSK ;FUNCTION CODE

 LXI D,0000$0000$0000$0010B ;DRIVE B: BIT SET

 CALL BDOS

GET DRIVE LOGIN AND READ?ONLY VECTORS: Function 24 & 29.

 The BDOS keeps track of all drives that have been selected

since the last boot or disk reset functions. These drives are

considered in a online status in that the system knows

immediately what the space allocation map of the drive is and

whether the drive is in read/only status or not. Function 24

allows the application program to determine what subset of the

current drive complement are in this online logged status. The

vector returned in the (HL) register pair is a bit map like above

where a "1" bit means the drive is active. The most significant

bit of the 16-bit number corresponds to drive P:. The code below

fetches the vector and saves it in a local data area.

;LOGIN VECTOR EXAMPLE

;

LOGIN EQU 018H ;FUNCTION 24

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H

 MVI C,LOGIN ;FUNCTION

 CALL BDOS

 SHLD LOCLOG ;SAVE VECTOR HERE

 RET ;TO CCP

;

LOCLOG:

 DS 2

 END

 In a similar manner the BDOS allows determination of which

drives are in the write protected read/only status. A "1" bit in

the returned vector indicates read/only status for a specific

drive. The code here shows how to fetch it.

;READ/ONLY VECTOR EXAMPLE

;

ROVEC EQU 01DH ;FUNCTION 29

BDOS EQU 0005H ;SYSTEM ENTRY POINT

 ORG 0100H

 MVI C,ROVEC ;FUNCTION

 CALL BDOS

 SHLD LOCROV ;SAVE VECTOR HERE

 RET ;TO CCP

;

LOCROV:

 DS 2

 END

GET ALLOCATION VECTOR AND DISK PARM POINTER: Function 27 & 31.

 Two more miscellaneous disk drive interface functions are

provided that permit several special types of functions to be

performed. The first, function 27 returns an address in the (HL)

registers that points to a bit string in memory that corresponds

to the data block allocation map of the currently selected drive.

The map contains one bits in each position where a block

allocated, starting with the MSB of the forst byte in the string.

The length of the bit string depends upon the total capacity of

the drive in allocatable blocks. Function 31 permits an

application to determine the characteristics of the currently

selected drive. The BDOS returns an address in the (HL) registers

that points to a table of 33 bytes that describe the current

drive. Data in the table includes such data as number of

possible directory entries on the disk, number of allocatable

blocks on the disk, and, indirectly, the size of each disk block.

The program below is a comprehensive example of how these

functions can be used to determine the remaining space left on a

the selected drive. The program stores the available space of the

drive specified in the first byte of the default FCB into memory

location "KPDISK" and then exits to the CCP. The reader can adapt

the code as desired.

;

;CP/M BDOS INTERFACE EQUATES

;

BASE EQU 0000H ;BASE OF CP/M SYSTEM

LOGDRIV EQU 0004H+BASE ;LOCATION OF CURRENTLY LOGGED DRIVE

BDOS EQU 0005H+BASE ;THE BDOS I/O VECTOR

SLCTDSK EQU 14 ;SELECT DISK DRIVE

GALVEC EQU 27 ;GET ADDRESS ALLOCATION VECTOR

GDSKP EQU 31 ;GET ADDRESS OF DISK PARAMETER TABLE

;

;

 ORG 0100H

;

;

;PROGRAM TO FETCH REMAINING DISK SPACE IN KBYTES

;

SPCGET:

 LDA LOGDRIV ;GET CURRENTLY LOGGED DRIVE AND SAVE

 ANI 0FH ;STRIP OUT USER NUMBER

 STA SAVDRIV ;SAVE CODE

;

 LDA FCB ;CHECK IF SAME AS SELECT

 DCR A ;ADJUST FCB DRIVE TO MATCH SELECT DRIVE

 MOV E,A ;..SELECT IN BDOS

 MVI C,SLCTDSK ;SELECT DISK FUNCTION

 CALL BDOS

;

 MVI C,GDSKP ;FIND ADDRESS OF DISK PARAMETER HEADER

 CALL BDOS

 LXI B,0002H ;INDEX TO BLOCK SHIFT FACTOR

 DAD B

 MOV B,M ;(B) = BYTE BLOCK SHIFT FACTOR

 INX H

 INX H

 INX H

 MOV E,M ;(DE) = WORD DISK BLOCK COUNT

 INX H

 MOV D,M

 INX D

;

 MOV A,B ;ADJUST SHIFT FOR KBYTE SIZE

 SUI 03H

 LXI H,0001H ;CALCULATE BLOCK SIZE

SPCCAL:

 ORA A ;KNOW KBYTES PER BLOCK?

 JZ SPCKNW

 DAD H ;DOUBLE # SECTORS PER TRACK

 DCR A ;DECREMENT BLOCK SHIFT

 JMP SPCCAL

;

SPCKNW:

 MOV C,L ;(BC)=KBYTES PER BLOCK

 MOV B,H

 LXI H,0 ;INITIALIZE KPDISK

 SHLD KPDISK

 PUSH B ;SAVE KBYTES/BLOCK

 PUSH D ;SAVE NUMBER OF BLOCKS

 MVI C,GALVEC ;NOW POINT TO THE ALLOCATION VECTOR

 CALL BDOS ;(HL)=ALLOCATION VECTOR ADDRESS

 POP D

 POP B

;

 SHLD ALLSAVE ;SAVE ALLOCATION POINTER

 MVI H,1 ;SET MINIMUM START BIT COUNT

;

UALLOC:

 DCR H ;DEC BIT COUNT

 JNZ STACT ;STILL ACTIVE BYTE

;

 LHLD ALLSAVE ;GET POINTER

 MOV A,M

 INX H

 SHLD ALLSAVE ;SAVE NEW POINTER

 MVI H,08H ;SET BIT COUNTER TO MAX

;

STACT:

 RLC ;GET ALLOCATION BIT TO CARRY

 JC ALLOC ;DONT COUNT ALLOCATED BLOCKS

 PUSH H

 LHLD KPDISK ;GET KBYTES LEFT COUNT

 DAD B ;ADD IN ONE MORE BLOCK COUNT

 SHLD KPDISK

 POP H

;

ALLOC:

 DCX D ;DEC TOTAL BLOCK COUNT

 MOV L,A

 MOV A,D

 ORA E ;ALL BLOCKS SCANNED YET

 MOV A,L ;RESTORE ALLOC BIT PATTERN

 JNZ UALLOC ;MORE TO COUNT

;

 LDA SAVDRIV ;RETURN DISK SELECT TO PREVIOUS

 MOV E,A ;..SELECT IN BDOS

 MVI C,SLCTDSK ;SELECT DISK FUNCTION

 CALL BDOS

 RET ;BACK TO THE CCP

;

;

;PROGRAM DATA STORAGE ALLOCATIONS

;

BLKSIZ:

 DS 2 ;STORAGE FOR ALLOCATION BLOCK SIZE

ALLSAVE:

 DS 2 ;STORAGE FOR ALLOCATION PNT SAVE

SAVDRIV:

 DS 1 ;SAVE CURRENT DISK SELECT DURING RELOG

KPDISK:

 DS 2 ;STORAGE FOR KBYTES PER DRIVE LEFT

;

 END

 The next part in this series will present the the CP/M file

system as viewed from the BDOS interface aspect. The FILE CONTROL

BLOCK (FCB) will be presented. In addition the procedures to

prepare files for I/O and then the actual I/O procedures will be

presented. The series will round out to a conclusion with a

comprehensive programming example that presents a sequential file

I/O set of subroutines that permit character by character I/O

with a file to be done.

 SLIDING INTO BDOS (Part II)

 WITH FILES MADE EASY

 by:

 Michael J. Karas

 2468 Hansen Court

 Simi Valley, CA 93065

 (805) 527-7922

 Since I know that all devoted Life Lines readers have

anxiously been waiting for this "second in a series" tutorial on

using files with the CP/M BDOS, I will not go on a long time

telling you why this thing about CP/M BDOS file interface is

so important. Nor will I try to justify why the turorial should

be valuable. You wouldn't be reading here at this time if you had

any inclination to find my work disinteresting. If you are new on

the scene and have some questions about what this is all about I

would like to direct your attention to the November 1982 issue of

Life Lines where the first part of this tutorial series was

presented. There the purpose of the BDOS and the general

interface concepts were presented. The article went on to include

a description of the physical device system calls and other

miscellaneous system control type functions.

THIS TIME IT'S FILES

 This month the tutorial continues with a description of the

sequential file I/O system supported within the BDOS. The con-

cepts of CP/M file storage are to be described along with

appropiate CP/M directory structure definition as it relates to

the access of the files stored upon a CP/M disk. The FILE CONTROL

BLOCK (FCB) will be described in terms of its functions as

related the a file to be accessed upon a disk. I have also

included a comprehensive programming example that allows a

sequential file to be accessed character by character.

HOW FILES ARE STORED UPON THE DISK

 The CP/M operating system manages the available space on a

disk by dividing the total available space up into a number of

relatively small data block storage areas called "GROUPS". A

group size is usually described as the minimum allocatable space

that a file can occupy. What this means is that the operating

system, in its disk space management scheme, lumps sets of the

normal 128 byte logical records of a file together into these

things called groups. The number of groups that may be contained

on a disk depends upon the total file storage space of the disk

in logical 128 byte records divided by the number of 128 byte

logical records lumped together into a group. (A note to the less

casual reader is that the number of groups on a disk is limited

by design to 65K groups. Secondly a group is always an integral

power of two number of 128 byte logical records with a minimum

size of 8 records (1K byte). Group size is necessarily limited to

16K bytes due to the extent system described below).

 As a file is stored upon a CP/M disk it consumes disk space

in 128 byte logical records. Each time a group becomes filled

with records the operating system allocates another group to the

file. Hence the term "minimum allocatable size". If, as the file

grows in size, the last allocated group assigned to a file is not

completely filled the remaining space in the group is "burned" in

that it is not usable by other files. The CP/M system keeps track

of the group assignments made to the various files on a disk,

the files names, and the total number of 128 byte logical records

in each file through a stored directory. The first portion of the

disk is reserved for the file directory. A fixed number of

directory entries, determined by the system's BIOS design, are

available, usually a number like 64, 128, or 256, depending upon

the size of the disk.

 Each file has a unique directory entry "set" that describes

the file location upon the disk. A "set" of directory entries is

specified because each entry is designed to "point to" or store

the group allocation numbers for that file. Each directory entry

has a number slots where group numbers can be stored. The system

design allows each directory entry to specify the storage for 16K

bytes of storage space. For files larger than 16K bytes a

seperate directory entry is used for each 16k bytes (or remainder

portion thereof). Each such piece of a file is referred to as an

"EXTENT" of the file. The directory entry "set" for a file

contains a byte in each extent directory entry that stores the

extent number of the file. Extent numbers start with 0 and may

increase to a theoretical limit of 255 or the size of the disk in

16K byte pieces, whichever is smaller.

 The chart below describes the functions of all bytes in a

typical directory entry. Each entry is 32 bytes long and they are

packed four to a logical sector with the number of logical

sectors filled up with directory entries limited to the

predetermined number of directory entries divided by four.

 Figure 1. DISK DIRECTORY ENTRY DEFINITION

 byte 00 byte 01 byte 02 byte 03 byte 04 byte 05 byte 06 byte 07

+-------+-------+-------+-------+-------+-------+-------+-------+

|Active | |

|

|Entry | Eight Character ASCII File Name Bytes 01 to 08 |

|& User | |

|Flag | |

+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 08 byte 09 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15

+-------+-------+-------+-------+-------+-------+-------+-------+

|Last | | | |Record |

|

|File | Three character ASCII |Extent | Two Bytes |Count |

|Name | File Name extension |Number | Reserved |of this|

|Char | | | |Extent |

+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 16 byte 17 byte 18 byte 19 byte 20 byte 21 byte 22 byte 23

+-------+-------+-------+-------+-------+-------+-------+-------+

| |

| Group Number storage for groups attached to this file |

| One byte used per group number if disk contains less |

| 255 groups. Two bytes if greater than 256. |

+-------+-------+-------+-------+-------+-------+-------+-------+

 byte 24 byte 25 byte 26 byte 27 byte 28 byte 29 byte 30 byte 31

+-------+-------+-------+-------+-------+-------+-------+-------+

| Additional Group Number storage. |

| Group Number storage for groups attached to this file |

| One byte used per group number if disk contains less |

| 255 groups. Two bytes if greater than 256. |

+-------+-------+-------+-------+-------+-------+-------+-------+

 The bytes of the disk directory entry are each described in

the following paragraphs. The first byte stored in an entry is

set to indicate if this slot in the predetermined directory area

is empty or if it describes an active file extent. A value of

0E5H indicates an empty slot. This value was chosen presumably

due to that a freshly formatted diskette contains all 0E5H bytes

in the empty sectors, thus making such disk appear to have no

files contained thereon. If the byte value is non 0E5H, then the

slot contains a valid file extent descriptor. The CP/M user

number area to which an active file is associated is stored in

the first directory entry byte. User number values range from 0

to 15.

 The next eight bytes contain the primary name of the file

in ASCII characters. If the name is shorter than 8 characters

then the name is padded to the right with spaces. Following the

name field is a three byte file name extension field in ASCII

characters. The extension field, if shorter than 3 characters is

padded to the right with spaces. For CP/M version 2.2, the upper

bits (bit 7) of the extent name bytes are used to describe

certain attributes about the file. If the upper bit of the first

extent name character is set, then the file is described as a

read-only file. The upper bit of the second extent name

character, if set, indicates that the file name should not be

displayed in directory listings.

 Each directory entry, as a file descriptor extent, has the

next byte set to a number that specifies which 16K byte chunk of

the file that this entry describes. Two bytes after the extent

byte are not used within the directory and are normally set to

zero by default. The number of records stored in the extent,

described by this directory entry, is recorded in the byte 15

position. The maximum value for the record count is 128 (080H)

which if equal to (128 * 128) or 16K bytes, the maximum size of

an extent.

 Byte positions 16 to 31 contain the group numbers upon the

disk that contain the data belonging to the file named in the

directory entry. The number of bytes within the total 16

available that are used for group number storage is dependant

upon the amount of file data described by this extent and by the

group size of the disk. The group numbers are single byte

numbers, up to 16 total, if the number of groups upon the disk is

less than or equal to 255. If the number of groups upon the disk

is more than 255 then byte positions 16 to 31 contain two byte

group numbers, stored in low byte/high byte order. The group

numbers contained within a directory entry do not have to be in

increasing sequential order nor do they have to be consecutive.

 The figure below shows two logical records of the directory

from a single sided double density disk with 2K byte groups. The

total number of groups available is 243 so the group numbers are

single byte numbers. Note that only one half of the 16 byte space

for group numbers is used due to the fact that 8 entries for 2K

byte groups is all that is needed to describe the storage for one

full 16K byte extent.

 Figure 2. EXAMPLE HEX/ASCII DIRECTORY RECORD DISPLAY

00 00414449 52202020 20434F4D 0000000B .ADIR COM....

10 07000000 00000000 00000000 00000000

20 004D4552 47505249 4E4F5652 0000003C .MERGPRINOVR...<

30 16171819 00000000 00000000 00000000

40 00434F50 59202020 20434F4D 0000000E .COPY COM....

50 0C000000 00000000 00000000 00000000

60 00435243 4B202020 20434F4D 0000000A .CRCK COM....

70 0D000000 00000000 00000000 00000000

00 E5555345 52202020 204C4F47 00000030 eUSER LOG...0

10 04050600 00000000 00000000 00000000

20 00444454 20202020 20434F4D 00000026 .DDT COM...&

30 0F101100 00000000 00000000 00000000

40 0044552D 56373520 20434F4D 0000002E .DU-V75 COM....

50 12131400 00000000 00000000 00000000

60 00464F52 4D415420 20434F4D 0000000C .FORMAT COM....

70 15000000 00000000 00000000 00000000

 The above examlpes all show files that are less than 16K

bytes each. Note also the display showing the erased "USER.LOG"

file.

HOW FILES ARE ACCESSED

 The files upon a disk are accessed through a user

description block called a File Control Block (FCB for short).

The file control block, used by virtually all file access BDOS

system calls, has the structure as shown in Figure 3. This chart

is taken from a Digital Research CP/M manual and is included here

for quick educational reference.

 Note that the structure of a file control block is much the

same as that of a directory entry with a few minor changes. The

changes and/or differences are as follows, otherwise the byte

descriptions are the same as for the disk directory entry.

 The first byte of an FCB allows the programmer to specify

which drive should be used for the file access. Drive A: to P:

are specified as 1 to 16 respectively while a value of zero

indicates that the currently logged default drive should be used

for the access.

 An FCB contains four additional bytes that are used as

pointers for file access position. The "cr", current record

number, indicates the sequential record number of this extent

that will be accessed upon the next file read or file write

system call. The user normally sets the "cr" byte to zero to

begin file access at the first logical record of the file. Each

time a read or write is performed the current record number is

incremented. When the "cr" byte attains a value of 080H during a

sequential file operation the BDOS automatically realizes that

the current extent of the file has been fully accessed and

performs the necessary disk directory accesses to setup the FCB

to allow file access to the next extent. For reading this simply

means that the next extent descriptor directory entry from the

disk, for this file, is read into memory (ie. the group

allocation numbers from the disk are copied into the d0-dn bytes

of the FCB, the extent number becomes one greater, the record

count from the disk for the new extent is copied into the "rc"

byte and the cr byte is zeroed). During a writing operation the

"cr" byte attaining a value of 080H indicates that the current

extent of the file is full and so the BDOS automatically finds

the appropiate directory entry spot on the disk to write in the

newly assigned group allocation bytes, record count value and

extent number. The BDOS will then create another directory entry

on the disk for the new extent of the file. In this case the d0-

dn bytes of the FCB are zeroed to indicate that storage has not

yet been allocated for this extent.

 Figure 3. FILE CONTROL BLOCK DESCRIPTION

 --

 |dr|f1|f2|/ /|f8|t1|t2|t3|ex|s1|s2|rc|d0|/ /|dn|cr|r0|r1|r2|

 --

 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 where:

 dr drive code (0 - 16)

 0 => use default drive for file access

 1 => select drive A: for file access

 2 => select drive B: for file access

 ...

 16=> select drive P: for file access

 f1...f8 contain the files name in ASCII upper case

 with high bits equal to zero.

 t1,t2,t3 contain the file type in ASCII upper case

 with high bits normally equal zero. tn' denotes

 the high bit of these bit positions.

 t1' = 1 => Read/Only file

 t2' = 1 => SYS file, no DIR list

 ex contains the current extent number,

 normally set to 00 by the user, but is

 in the range 0 - 31 during file I/O.

 s1 reserved for internal system use

 s2 reserved for internal system use, set to

 zero on call to OPEN, MAKE, SEARCH system

 calls.

 rc record count for extent "ex," takes on values

 0 to 128.

 d0...dn filled-in by BDOS to indicate file group numbers

 for this extent.

 cr current record to read or write in a sequential

 file operation. Normally set to zero by the user

 upon initial access to a file.

 r0,r1,r2 optional random record number in the range of 0 to

 65535, with overflow to r2. r0/r1 are a 16 bit value

 in low/high byte order.

 The last three bytes of the FCB, r0,r1, & r2 are used for

random record file I/O and will be covered in the third and final

part of this turorial. For simpler sequential I/O the FCB in fact

does not even need to be setup for the 36 bytes of storage. 33

bytes suffice for all sequential file I/O FCB operations.

FILE ACCESS SETUP SYSTEM FUNCTIONS

 The procedure for the programmer to use in accessing a file

generally starts in one of two ways. The first senario starts

with, "Lets see if our file exists on the disk?" There are two

BDOS system calls related to the functions of searching the disk

directory for a file name match against the FCB specified by the

user. These operations allow for the programmer to find out if a

specific file name already exists upon the disk. In addition it

provides a mechanism to scan a directory to determine all file

names that exist in the directory. The second situation comes

into being if the programmer is already aware of the file status

with respect to "presence" on the disk or as the logical sequence

of events following the first senario. These latter functions are

used to work with specific files for opening, closing, creating,

renaming and deleting.

SEARCH FIRST AND SEARCH NEXT: Functions 17 and 18.

 The search functions scan the directory for match of a file

name that compares with the user specified FCB pointed to by the

(DE) register pair. The match is made on the basis of comparing

the f1-f8, t1-t3, and ex bytes of the FCB to the corresponding

bytes of the disk directory entries. Any FCB position that

contains an ASCII question mark "?" (03FH) is specified as a

"match any character" from the disk directory. The function calls

return a value of 0FFH in the (A) register if no more matched

directory entries can be found. The search functions cause the

currently valid disk buffer address and the following 128 bytes

to be filled with a copy of the directory record containing the

matched entry, if one is found. The (A) register is returned with

a 0 to 3 value to indicate which one of the four possible 32 byte

chuncks of the directory record contain the matched entry.

 Search first means to find the first occurrance of a matched

entry to the FCB. The search next function scans the directory

from the current search position instead of from the beginning.

Note that it is not normally valid to perform the search next

functon without first performing the search first function. Also

it is not valid to perform other directory or file operations

between the search first and search next functions.

 The program example below shows a technique for reading all

directory entries from the disk drive specified by the first FCB

byte into a memory resident list. The list starts at the LIST

label with the total matched file count stored in the FILECNT

variable. The LISTPOS label stores the next available list load

point during the directory scan operation. The search FCB uses

the CP/M default FCB location at address 05CH and specifies a

total wild card (*.*) match. The "ex" byte is zeroed before the

search first call so that only the zero extents of the files are

returned. The file names are stored in the list in character

strings of 16 bytes each with a preceeding drive designator byte

and padded to the right with 4 zero bytes. Please note that this

program is a segment only and will not directly assemble and run

as a CP/M .COM file without a little added lead in and error exit

coding.

 Listing 1. A DIRECTORY SCANNING PROGRAM

BUFR EQU 80H+BASE ;DEFAULT CP/M BUFFER

BDOS EQU 0005H ;ENTRY POINT FOR BDOS OPERATIONS

;

SRCHF EQU 17 ;SEARCH DIR FOR FIRST OCCUR.

SRCHN EQU 18 ;SEARCH DIR FOR NEXT OCCUR.

STDMA EQU 26 ;SET DMA ADDRESS

;

FCB EQU 5CH+BASE ;DEFAULT FILE CONTROL BLOCK

FCBEXT EQU FCB+12 ;EXTENT BYTE IN FCB

FCBRNO EQU FCB+32 ;RECORD NUMBER IN FCB

;

;

;SETUP SIZE OF ELEMENTS IN THE FILE NAME LIST

;

ITEMSZ EQU 16 ;EACH LIST ITEM IS 16 BYTES

;

;

;SETUP WILD CARD FILE IMAGE LIKE *.*

;

 LXI H,FCB+1 ;PLACE TO PUT WILD CARD IMAGE

 MVI B,11 ;SIZE TO SET

ALFN:

 MVI M,'?' ;PUT IN A JOKER CHAR

 INX H ;BUMP FILL POINTER

 DCR B ;DCR BYTE COUNTER

 JNZ ALFN

;

;

;ZERO INITIAL TOTAL FILE COUNT

;

 LXI H,0000H

 SHLD FILECNT

;

;

;HERE IF NAME PROPERLY POSITIONED IN THE DEFAULT FCB AREA FOR LIST BUILD

;

NAMEPRES:

 MVI C,STDMA ;INITIALIZE DMA ADDRESS TO DEFAULT BUFFER

 LXI D,BUFR

 CALL BDOS

;

 XRA A ;CLEAR APPROPIATE FIELDS OF SEARCH FCB

 STA FCBEXT ;EXTENT BYTE

 STA FCBRNO ;AND RECORD NUMBER

;

 LXI D,FCB ;USE DEFAULT FCB FOR SEARCH

 MVI C,SRCHF ;SEARCH FOR FIRST OCCURRANCE

 CALL BDOS

 CPI 0FFH ;SEE IF FOUND

 JNZ LOADLIST ;IF SOME FOUND THEN GO BUILD LIST

;

;

;PUT INSTRUCTIONS HERE TO HANDLE A SITUATION WHERE NO FILES

;MATCHING THE FCB WILD CARD IMAGE ARE FOUND.

;

 JMP ERROR$EXIT ;TO USER SUPPLIED ROUTINE

;

;

;BUILD UP LIST WITH ALL FOUND ENTRIES

;

LOADLIST:

 LXI H,LIST ;INITIALIZE LIST POINTER PARAMETERS

 SHLD LISTPOS ;START = CURRENT POS OF LIST

;

;

;PUT CURRENTLY FOUND NAME TO LIST

;(A) = OFFSET IN DEFAULT BUFFER OF NAME

;

;

NM2LST:

 ANI 3 ;ZERO BASED TWO BIT INDEX

 ADD A ;TIMES 32 TO MAKE POSITION INDEX

 ADD A

 ADD A

 ADD A

 ADD A

 MOV C,A ;PUT IN BC

 XRA B ;CLEAR HIGH ORDER

 LXI H,BUFR ;TO NAME POSITION IN DEFAULT BUFFER

 DAD B ;(HL) = CURRENT FOUND NAME POINTER

 LDA FCB ;PUT DISK DRIVE NUMBER INTO NAME PLACE

 MOV M,A ;INTO BUFFER

 XCHG

 LHLD LISTPOS ;POINTER TO CURRENT LOAD POINT IN LIST

 XCHG

 MVI B,12 ;MOVE DRIVE DESIGNATOR AND NAME TO LIST

MOVLP:

 MOV A,M ;GET NAME BYTE FROM DEFAULT BUFFER

 STAX D ;PLACE INTO LIST

 INX H ;BUMP POINTERS

 INX D

 DCR B ;CHECK MOVE BYTE COUNT

 JNZ MOVLP

 XCHG ;(DE) WAS LEFT WITH LEXT LOAD POINT ADDRESS

;

 MVI B,ITEMSZ-12 ;REMAINING LIST ITEM SPACES TO ZERO OUT

FILZRO:

 MVI M,00H ;PUT IN A ZERO BYTE

 INX H

 DCR B ;ALL REST FILLED YET

 JNZ FILZRO

;

 SHLD LISTPOS ;KEEP NEXT LOAD POINT IN SAFE PLACE

 LHLD FILECNT ;INCREASE FILE COUNT FOR EACH FILE

 INX H

 SHLD FILECNT

;

;

;SEARCH FOR NEXT OCCURANCE OF SPECIFIED FILE NAME

;

 MVI C,SRCHN ;SEARCH NEXT FUNCTION CODE

 LXI D,FCB ;FILE NAME SPECIFICATION FIELD

 CALL BDOS

 CPI 0FFH ;SEE IF ALL THROUGH DIRECTORY YET

 JNZ NM2LST ;IF NOT GO PUT NAME INTO LIST

;

;

;PROGRAM EXECUTION TO HERE IF THE LIST CONTAINS SOME FILE NAMES

;FROM THE DISKETTE

;

;USER DOES HIS OWN THING FROM HERE

;

;

;DIRECTORY NAME LIST FOR STORAGE OF INPUT NAMES

;

FILECNT:

 DS 2 ;COUNTER FOR NUMBER OF FILES

LISTPOS:

 DS 2 ;STORAGE FOR CURRENT LIST

 ;LOAD POINTER

;

LIST:

 DS 1 ;START POINT FOR FILE NAME LIST

;

;+++...END OF LISTING 1.

OPEN FILE: Function 15.

 An existing file on a disk may not be read until the user

FCB contains the information about where the file is stored upon

the diskette. Function 15 provides a means where the user fills

in the file name and then calls the operating system to get the

d1-dn bytes of the FCB filled in. Once the file is OPEN then it

may be read because subsequent calls to the BDOS to READ will

"know where" the file is located. The OPEN function returns a

value of 0FFH if the file cannot be found, otherwise the (A)

register contains a value of 0 to 3 to indicate that the file was

successfully opened. To open a file the programming procedure is

simply:

;

;OPEN FILE EXAMPLE

;

OPEN EQU 15 ;OPEN FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,FCB ;POINT AT FILE CONTROL BLOCK

 MVI C,OPEN ;FUNCTION

 CALL BDOS

 CPI 0FFH ;CHECK IF NOT FOUND

 JZ ERROR

 RET ;IF OPEN GO TO CCP

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'FILE NOT FOUND','$'

;

;

;FILE ACCESS FILE CONTROL BLOCK

;

FCB:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

 DB 0 ;CURRENT RECORD BYTE

;

 END

CLOSE FILE: Function 16.

 Whenever a file is accessed for writing new space is

allocated for that file on the disk. This implies that the user

FCB contains disk group numbers that are not stored upon the

diskette in the directory entry for the file. Function 16

provides a means where the user completes the file writing

operation and then calls the operating system to set the

directory entry group allocation bytes, the rc byte and the

extent byte from the corresponding bytes of the FCB. A file that

has been opened for reading only need not be closed because there

is no change in the stored disk directory information. The CLOSE

function returns a value of 0FFH if the file cannot be found,

otherwise the (A) register contains a value of 0 to 3 to indicate

that the file was successfully closed. To close a file the

programming procedure is simply:

;

;CLOSE FILE EXAMPLE

;

CLOSE EQU 16 ;CLOSE FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,FCB ;POINT AT FILE CONTROL BLOCK

 MVI C,CLOSE ;FUNCTION

 CALL BDOS

 CPI 0FFH ;CHECK IF NOT FOUND

 JZ ERROR

 RET ;IF CLOSED GO TO CCP

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'FILE NOT FOUND','$'

;

;

;FILE ACCESS FILE CONTROL BLOCK

;

FCB:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

 DB 0 ;CURRENT RECORD BYTE

;

 END

DELETE FILE: Function 19.

 Often time the programmer will create and write files which

will subsequently not be needed. The file or files may be deleted

through use of function 19. The user sets an FCB to the

appropiate file name in the f1-f8, and t1-t3 bytes. The BDOS

function then removes the specified file from the directory of

the appropiate disk. The user specified file name in the FCB may

contain ASCII question marks in which case the delete function

may delete multiple files if the file name matches more than one

file on the disk with the name. The "?" matches any character at

the position of its occurrance in the name. The DELETE function

returns a value of 0FFH if the file(s) cannot be found, otherwise

the (A) register contains a value of 0 to 3 to indicate that the

file was successfully deleted. To delete a file the programming

procedure is simply:

;

;DELETE FILE EXAMPLE

;

DELETE EQU 19 ;CLOSE FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,FCB ;POINT AT FILE CONTROL BLOCK

 MVI C,DELETE ;FUNCTION

 CALL BDOS

 CPI 0FFH ;CHECK IF NOT FOUND

 JZ ERROR

 RET ;IF CLOSED GO TO CCP

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'FILE NOT FOUND','$'

;

;

;FILE ACCESS FILE CONTROL BLOCK

;

FCB:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

 DB 0 ;CURRENT RECORD BYTE

;

 END

CREATE FILE: Function 22.

 Whenever a new file is desired it must first be created so

that there is a spot in the directory to later save the file

allocation information (see close function above). The BDOS

assumes that the programmer has specified a file name that does

not exist upon the disk. If there is a chance that a new file is

desired that may duplicate the name of one already upon the disk

the peviously described delete function should be used to erase

the old file before creating the new file. Otherwise the

directory may contain two files by the same name. The CREATE

function returns a value of 0FFH if there is no room in the

directory to store the freshly created directory entry, otherwise

the (A) register contains a value of 0 to 3 to indicate that the

file was successfully created. A newly created file may be

immediately written since the BDOS prepares the user FCB to look

like an empty file. To create a file the programming procedure is

simply:

;

;CREATE FILE EXAMPLE

;

CREATE EQU 22 ;CREATE FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,FCB ;POINT AT FILE CONTROL BLOCK

 MVI C,CREATE ;FUNCTION

 CALL BDOS

 CPI 0FFH ;CHECK IF DIRECTORY FULL

 JZ ERROR

 RET ;IF CLOSED GO TO CCP

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'DIRECTORY FULL','$'

;

;

;FILE ACCESS FILE CONTROL BLOCK

;

FCB:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

 DB 0 ;CURRENT RECORD BYTE

;

 END

RENAME FILE: Function 23.

 Sometimes it is necessary to change the name of a disk file

from that already existing in the disk directory. With function

23 the user specifies the name of an existing file on the disk

with a standard FCB format except that on calling the BDOS the

d1-dn byte area of the FCB are set to the new name desired for

the file. All occurrances of the existing file name (ie. all

extents) are changed to match the new name. The drive select byte

specifies the drive upon which the rename operation should be

done. The first byte of the second 16 bytes of the FCB (d0) is

expected to be zero. The RENAME function returns a value of 0FFH

if the old name file could not be found, otherwise the (A)

register contains a value of 0 to 3 to indicate that the file was

successfully renamed. To rename a file the programming procedure

is simply:

;

;RENAME FILE EXAMPLE

;

RENAME EQU 23 ;RENAME FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,FCB ;POINT AT FILE CONTROL BLOCK

 MVI C,RENAME ;FUNCTION

 CALL BDOS

 CPI 0FFH ;CHECK IF DIRECTORY FULL

 JZ ERROR

 RET ;IF CLOSED GO TO CCP

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'FILE NOT FOUND','$'

;

;

;FILE ACCESS FILE CONTROL BLOCK

;

FCB:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0 ;OLD NAME

 DB 00H ;BYTE ASSUMED TO BE ZERO

 DB 'NEWNAME DAT',0,0,0,0 ;NEW NAME

 DB 0 ;CURRENT RECORD BYTE

;

 END

ACCESSING FILE DATA

 The previous section showed the reader how to find and setup

files for subsequent I/O. Other file/directory handling functions

were also presented. This has all led up to the big moment when

the users program is finally ready to read or write data from/to

a disk file. So here it is at last...

 CP/M disk file data is moved between the disk and memory in

blocks of 128 bytes called logical records or "sectors" in older

fashioned CP/M lingo. Two functions to be presented here are

included in the CP/M BDOS function code to allow sequential

access to blocks of data in a file. The READ function starts at

the beginning of a file and reads data blocks till the end of the

file. The opposing WRITE operation moves data blocks to a new

disk file and writes till the end of the users data when the file

is closed (or the disk is full if the programmer has too much

data). The BDOS includes one other function that allows the user

to specify the area in his program where the 128 byte disk record

buffer is to be located. These three functions will each be

individually described below.

SET DISK BUFFER ADDRESS: Function 26.

 The 128 byte data buffer that is to be used by the BDOS for

file I/O is based at an address commonly referred to as the "DMA

ADDRESS". This address or "buffer pointer" is passed to the BDOS

in the (DE) registers when performing function 26. The program

below simply sets the buffer address to "DATBF", a storage area

after the end of the short program.

;

;SET BUFFER ADDRESS EXAMPLE

;

STDMA EQU 26 ;SET BUFFER ADDRESS FUNCTION CODE

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,DATBF ;POINT AT DATA BUFFER

 MVI C,STDMA ;FUNCTION

 CALL BDOS

 RET ;BACK TO CCP

;

DATBF:

 DS 128 ;SETUP 128 BYTE BUFFER

;

 END

READ AND WRITE DISK RECORDS: Functions 20 and 21.

 The disk read and write functions are very similar in

operation in that both move 128 bytes of data to/from the users

program. The READ assumes entry with (DE) pointing to an active

FCB setup by the open file function. The read sequential function

reads the 128 byte record specified by the "cr" field of the FCB

into the buffer pointer to by the current disk buffer address.

After each READ operation the "cr" field is incremented to the

next record number. If the "cr" field overflows past the end of

the extent without encountering the end of the file then the BDOS

automatically opens the next extent in preparation for the next

read operation. The READ function returns a 00H code in the (A)

register if the READ was performed successfully. If the end of

file is encountered a non zero value is returned in (A).

 The WRITE function assumes, on entry to the BDOS, that the

(DE) registers point at a validly opened of created FCB. The

WRITE will move 128 bytes of data from the buffer specified by

the current disk buffer address to the disk. The written record

is placed at the "cr" record position of the extent. As each

record is written the "cr" field is incremented in preparation

for the next write operation. Similar to the READ, if the "cr"

field overflows past the end of the current extent, the BDOS

automatically closes the current extent and creates a new extent

in preparation for the next write operation. The WRITE command

may be performed on an existing file. If the file currently

contains data at the "cr" record then the WRITE will overlay the

current data with the new 128 byte record. The WRITE function

returns a 00H value in the (A) register if the operation is

successful. A non-zero value is returned if the write function

was unsuccessful due to a full disk or directory.

 The small program below is designed to read the first record

of a file 'TEST.DAT', and write it into the small file

'ONEREC.DAT'. The program should be reasonably self documenting.

;

;READ AND WRITE FUNCTION EXAMPLES

;

READ EQU 20 ;READ FUNCTION CODE

WRITE EQU 21 ;WRITE FUNCTION CODE

OPEN EQU 15 ;OPEN FUNCTION CODE

CLOSE EQU 16 ;CLOSE FUNCTION CODE

DELETE EQU 19 ;DELETE FUNCTION CODE

CREATE EQU 22 ;CREATE NEW FILE

STDMA EQU 26 ;SET DISK BUFFER ADDRESS

BDOS EQU 0005H ;SYSTEM ENTRY

 ORG 0100H ;START

 LXI D,DATBF ;POINT AT DATA BUFFER

 MVI C,STDMA ;FUNCTION

 CALL BDOS

;

 LXI D,FCBIN ;POINT AT AND OPEN INPUT FILE

 MVI C,OPEN

 CALL BDOS

 CPI 0FFH ;CHECK FOR OPEN ERROR

 JZ ERROR

;

 LXI D,FCBOUT ;DEFAULT DELETE OF NEW FILE

 MVI C,DELETE ;..IN CASE IT EXISTS ALREADY

 CALL BDOS

 LXI D,FCBOUT ;POINT AT FILE CONTROL BLOCK

 MVI C,CREATE ;FUNCTION TO MAKE NEW FILE

 CALL BDOS

 CPI 0FFH ;CHECK IF DIRECTORY FULL

 JZ ERROR

 XRA A ;CLEAR THE INPUT CR FIELD TO READ

 STA INCR ;..FIRST RECORD

 LXI D,FCBIN ;READ FIRST FILE

 MVI C,READ

 CALL BDOS

 ORA A ;CHECK IF READ WAS O.K.

 JNZ ERROR

 LXI D,FCBOUT ;WRITE TO OUTPUT FILE

 MVI C,WRITE

 CALL BDOS

 ORA A ;CHECK THAT DISK WASNT FULL

 JNZ ERROR

;

 LXI D,FCBOUT ;CLOSE THE OUTPUT FILE

 MVI C,CLOSE

 CALL BDOS

 CPI 0FFH ;CHECK CLOSE STATUS

 RNZ ;BACK TO CCP IF NO ERROR

;

ERROR:

 MVI C,9 ;PRINT ERROR MESSAGE

 LXI D,ERRMS

 CALL BDOS

 RET

;

ERRMS:

 DB 'PROGRAM FILE ERROR','$'

;

;

;FILE ACCESS FILE CONTROL BLOCKS

;

FCBIN:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'TEST DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

INCR:

 DB 0 ;CURRENT RECORD BYTE

;

FCBOUT:

 DB 00H ;SET TO USE DEFAULT DRIVE

 DB 'ONEREC DAT',0,0,0,0

 DS 16 ;STORAGE FOR D1 TO DN BYTES

 DB 0 ;CURRENT RECORD BYTE

;

DATBF:

 DS 128 ;SETUP 128 BYTE BUFFER

;

 END

SEQUENTIAL FILE I/O PROGRAMMING EXAMPLE

 The assembly language code of Listing 2 presents a

comprehensive set of I/O routines that allow either an input or

output sequential file to be processed on a byte by byte basis.

The routines perform all necessary sector buffering. The reader

is encouraged to fully study the code and gain an understanding

of how it all works. The program uses most of the BDOS functions

presented in this turorial.

 Listing 2. CHARACTER BY CHARACTER DISK I/O ROUTINES

;**

;

; DEMONSTRATION SEQUENTIAL CP/M FILE CHARACTER BY

; CHARACTER I/O ROUTINES. NOTE THAT THE MAIN BODY

; OF THIS PROGRAM IS NOT DESIGNED TO RUN AS IS IN

; ANY NORMAL MANNER.

;

; MANY THANKS ARE DUE TO WARD CHRISTENSEN WHO PREPARED THE

; ORIGINAL SET OF SIMILAR I/O ROUTINES BURIED INSIDE OF

; THE CP/M USERS GROUP MODEM PROGRAM THAT HAS BECOME SO

; VERY POPULAR. THANKS AGAIN WARD.

;

;**

;

;

;CP/M BDOS EQUATES

;

RDCON EQU 1

WRCON EQU 2

PRINT EQU 9

OPEN EQU 15 ;OPEN FILE

CLOSE EQU 16 ;CLOSE FILE

SRCHF EQU 17 ;SEARCH FOR FIRST

ERASE EQU 19 ;DELETE FILE

READ EQU 20 ;READ FILE RECORD

WRITE EQU 21 ;WRITE FILE RECORD

MAKE EQU 22 ;CREATE NEW FILE

STDMA EQU 26 ;SET DATA BUFFER POINTER

BDOS EQU 0005H ;SYSTEM I/O ENTRY POINT

FCB EQU 5CH ;SYSTEM FCB

FCBEXT EQU FCB+12 ;FILE EXTENT

FCBSNO EQU FCB+32 ;SECTOR #

FCB2 EQU 6CH ;SECOND FCB

DSKBUF EQU 080H ;DEFAULT DISK BUFFER ADDRESS

SECSIZ EQU 080H ;CP/M SECTOR SIZE

;

WBOOT EQU 00 ;CP/M WARM BOOT ENTRY ADDRESS

;

;

;DEFINE ASCII CHARACTERS USED

;

LF EQU 10 ;LINEFEED

CR EQU 13 ;CARRIAGE RETURN

EOFCHR EQU 01AH ;CP/M END OF FILE CHAR

;

;

;START OF EXECUTABLE CODE

;

 ORG 100H

 LXI SP,STACK ;SETUP A STACK TO USE

;

;

;SEQUENTIAL I/O WRITE OF CP/M FILE ENABLED BY USING THIS SEQUENCE

;OF SUBROUTINE CALLS. THE FILE CONTROL BLOCK IS ASSUMED TO BE

;STORED AT THE DEFAULT LOCATION AT 05CH IN THE BASE PAGE OF

;CP/M MEMORY MAP.

;

SIOWR:

 CALL ERASFIL ;ERASE RECIEVED FILE

 CALL MAKEFIL ;ESTABLISH NEW FILE

 CALL INITWR ;INITIALIZE FILE WRITE PARAMETERS

;

;

;MAKE FOLLOWING CALL TO PLACE A CHARACTER FROM THE (A) REGISTER

;INTO THE CP/M FILE. LOOP DOING THIS TILL YOU HAVE ALL IN FILE THAT

;IS NEEDED.

;

 CALL WRCHAR ;PUT CHAR IN FILE

;

 CALL WREOF ;FLUSH LAST SECTOR TO CP/M FILE

 CALL CLOSFIL ;CLOSE IT UP

;

;

;SEQUENCE OF COMMAND CALLS TO OPEN AND USE A SEQUENTIAL CHARACTER

;FILE FOR READING. THE FILE CONTROL BLOCK IS ASSUMED TO BE LOCATED

;AT THE DEFAUT LOCATION OF 05CH IN THE BASE CP/M PAGE.

;ONCE THE FILE IS INITIALIZED THE CHARACTERS CAN BE READ ONE BY

;ONE UNTIL THE RDCHAR SUBROUTINE RETURNS A SET CARRY FLAG

;INDICATING A END OF PHYSICAL FILE CONDITION. EOF IS SENSED AS

;PHYSICAL END OR 01AH CHARACTER WHICHEVER COMES FIRST

;

SIORD:

 CALL OPENFIL ;OPEN THE CP/M FILE

 CALL INITRD ;GO INIT FOR FILE READ

 CALL RDCHAR ;GET CHAR FROM CP/M FILE

 JC EOF ;CHECK FOR EOF

;

EOF:

; PLACE CODE HERE FOR END OF FILE HANDLING

;

;I/O HANDLING SUBROUTINES

;

;

;

;>--> ERASFIL: ERASE THE INCOMING FILE.

;

;IF IT EXISTS, ASK IF IT MAY BE ERASED.

;

ERASFIL:

 LXI D,FCB ;POINT TO CTL BLOCK

 MVI C,SRCHF ;SEE IF IT..

 CALL BDOS ;..EXISTS

 INR A ;FOUND?

 RZ ;..NO, RETURN

 CALL ILPRT ;PRINT:

 DB '++CP/M FILE EXISTS, TYPE Y TO ERASE: ',0

 CALL KEYIN ;GET A CHARACTER FROM CONSOLE

 ANI 5FH ;MAKE UPPER CASE

 CPI 'Y' ;WANT ERASED?

 JNZ EXIT ;QUIT IF NOT ERASE

 CALL CRLF ;BACK TO START OF LINE

;

;

;ERASE OLD FILE

;

 LXI D,FCB ;POINT TO FCB

 MVI C,ERASE ;GET BDOS FNC

 CALL BDOS ;DO THE ERASE

 RET ;FROM "ERASFIL"

;

;

;>--> MAKEFIL: MAKES THE FILE TO BE RECEIVED

;

MAKEFIL:

 LXI D,FCB ;POINT TO FCB

 MVI C,MAKE ;GET BDOS FNC

 CALL BDOS ;TO THE MAKE

 INR A ;FF=BAD?

 RNZ ;OPEN OK

;

;

;DIRECTORY FULL - CAN'T MAKE FILE

;

 CALL ERXIT

 DB '++ERROR - CANNOT MAKE FILE',CR,LF

 DB '++DIRECTORY MUST BE FULL',CR,LF,'$'

;

;

;>--> OPENFIL: OPENS THE FILE TO BE SENT

;

OPENFIL:

 LXI D,FCB ;POINT TO FILE

 MVI C,OPEN ;GET FUNCTION

 CALL BDOS ;OPEN IT

 INR A ;OPEN OK?

 RNZ ;FILE OPENED OK

 CALL ERXIT ;..NO, ABORT

 DB '++CANNOT OPEN CP/M FILE','$'

;

;

;>--> CLOSFIL: CLOSES THE RECEIVED FILE

;

CLOSFIL:

 LXI D,FCB ;POINT TO FILE

 MVI C,CLOSE ;GET FUNCTION

 CALL BDOS ;CLOSE IT

 INR A ;CLOSE OK?

 RNZ ;..YES, RETURN

 CALL ERXIT ;..NO, ABORT

 DB '++CANNOT CLOSE CP/M FILE','$'

;

;

;>--> INITRD: INITIALIZES FILE READ PARAMETERS

;

INITRD:

 MVI A,00H ;SET THE BUF CNT TO EMPTY

 STA CHRINBF

 LXI D,DSKBUF ;SET THE DMA BUFFER POINTER

 PUSH D

 MVI C,STDMA

 CALL BDOS

 POP D

 XCHG ;SET SECTOR POINTER

 SHLD SECPTR

 RET

;

;

;>--> RDCHAR: READS A CHARACTER FROM FILE

;

;RETURN IS WITH DESIRED CHARACTER IN

;THE A REGISTER. IF EOF, THEN

;RETURN IS WITH THE CARRY FLAG SET.

;

RDCHAR:

 LDA CHRINBF ;GET NUMBER OF CHAR IN BUF

 ORA A ;CHECK IF BUFFER EMPTY

 JZ RDBLOCK ;GO GET A SECTOR IF EMPTY

 DCR A ;DECREMENT

 STA CHRINBF

 LHLD SECPTR ;GET BUFFER POINTER

 MOV A,M ;GET CHARACTER FOR CALLER

 INX H ;INCREMENT POINTER

 SHLD SECPTR

 CPI EOFCHR ;CHECK FOR LOGICAL CP/M EOF

 STC

 RZ ;RETURN EXIT FOR LOGICAL EOF

 CMC ;CLEAR CARRY SO EOF NOT INDICATED

 ;ON NORMAL RETURN

 RET ;FROM "RDCHAR"

;

;

;BUFFER IS EMPTY - READ IN ANOTHER SECTOR

;

RDBLOCK:

 LXI D,FCB

 MVI C,READ

 CALL BDOS

 ORA A ;READ OK?

 JZ RDBFULL ;YES

 DCR A ;EOF?

 JZ REOF ;GOT EOF

;

;

;READ ERROR

;

 CALL ERXIT

 DB '++CP/M FILE READ ERROR','$'

;

REOF:

 STC ;SET CARRY FLAG FOR EOF EXIT

 RET

;

;

;BUFFER IS FULL

;

RDBFULL:

 MVI A,SECSIZ ;INIT BUF CHAR COUNT

 STA CHRINBF

 LXI H,DSKBUF ;INIT BUFFER..

 SHLD SECPTR ;..POINTER

 JMP RDCHAR ;PASS CHAR TO CALLER

;

;

;>--> INITWR: INITIALIZES FILE WRITE PARAMETERS

;

INITWR:

 MVI A,00H ;SET THE BUF CNT TO EMPTY

 STA CHRINBF

 LXI D,DSKBUF ;SET THE DMA BUFFER POINTER

 PUSH D

 MVI C,STDMA

 CALL BDOS

 POP D

 XCHG ;SET SECTOR POINTER

 SHLD SECPTR

 RET

;

;

;>--> WRCHAR: WRITE A CHARACTER TO FILE

;

;ENTRY IS WITH CHARACTER IN A

;ENTRY AT WREOF FILLS REMAINING BYTES

;OF SECTOR WITH 01AH PER CP/M CONVENTION.

;

WRCHAR:

 LHLD SECPTR ;PUT CHAR IN BUFFER

 MOV M,A

 INX H ;BUMP POINTER

 SHLD SECPTR

 LDA CHRINBF ;INCR CHAR COUNT

 INR A

 STA CHRINBF

 CPI SECSIZ ;CHECK IF SECTOR FULL

 RNZ ;GO BACK IF OK

;

WRBLOCK:

 LXI D,FCB ;IF FULL THEN WRITE

 MVI C,WRITE ;..THE..

 CALL BDOS ;..BLOCK

 ORA A

 JNZ WRERR ;OOPS, ERROR

 MVI A,00H ;RESET THE CHAR CNT

 STA CHRINBF

 LXI H,DSKBUF ;RESET BUFFER..

 SHLD SECPTR ;..POINTER

 RET

;

WRERR:

 CALL ERXIT ;EXIT W/MSG:

 DB '++ERROR WRITING CP/M FILE',CR,LF,'$'

;

WREOF:

 LDA CHRINBF ;FILL REST OF SECTOR WITH 01AH

 LHLD SECPTR

 MVI B,EOFCHR

WREND:

 MOV M,B ;PUT IN THE CP/M EOF CODE

 INX H

 INR A ;INC THE CHAR CNT

 CPI SECSIZ ;BUFFER FULL YET

 JNZ WREND

 JMP WRBLOCK ;GO PUT FILLED BLOCK ON DISK

;

;

;>--> KEYIN: GETS A KEY CODE IN FROM CONSOLE

;

KEYIN:

 PUSH B ;SAVE..

 PUSH D ;..ALL..

 PUSH H ;..REGS

 MVI C,RDCON ;GET CON CHAR FUNCTION CODE

 CALL BDOS ;GET CHARACTER

 MOV A,E

 POP H ;RESTORE..

 POP D ;..ALL..

 POP B ;..REGS

 RET

;

;

;>--> CTYPE: TYPES VIA CP/M SO TABS ARE EXPANDED

;

CTYPE:

 PUSH B ;SAVE..

 PUSH D ;..ALL..

 PUSH H ;..REGS

 MOV E,A ;CHAR TO E

 MVI C,WRCON ;GET BDOS FNC

 CALL BDOS ;PRIN THE CHR

 POP H ;RESTORE..

 POP D ;..ALL..

 POP B ;..REGS

 RET ;FROM "CTYPE"

;

;

;>--> CRLF: TYPE A CARRAGE RETURN LINE FEED PAIR AT CONSOLE

;

CRLF:

 MVI A,CR

 CALL CTYPE

 MVI A,LF

 CALL CTYPE

 RET

;

;

;>--> ILPRT: INLINE PRINT OF MSG

;

;THE CALL TO ILPRT IS FOLLOWED BY A MESSAGE,

;BINARY 0 AS THE END. BINARY 1 MAY BE USED TO

;PAUSE (MESSAGE 'PRESS RETURN TO CONTINUE')

;

ILPRT:

 XTHL ;SAVE HL, GET HL=MSG

ILPLP:

 MOV A,M ;GET CHAR

 ORA A ;END OF MSG?

 JZ ILPRET ;..YES, RETURN

 CPI 1 ;PAUSE?

 JZ ILPAUSE ;..YES

 CALL CTYPE ;TYPE THE CHARACTER OF MESSAGE

ILPNEXT:

 INX H ;TO NEXT CHAR

 JMP ILPLP ;LOOP

;

;

;PAUSE WHILE TYPING HELP SO INFO DOESN'T

; SCROLL OFF OF VIDEO SCREENS

;

ILPAUSE:

 CALL ILPRT ;PRINT:

 DB CR,LF,'PRESS RETURN TO CONTINUE OR ^C TO EXIT'

 DB CR,LF,0

 CALL KEYIN ;GET ANY CHAR

 CPI 'C'-40H ;REBOOT?

 JZ EXIT ;YES.

 JMP ILPNEXT ;LOOP

;

ILPRET:

 XTHL ;RESTORE HL

 RET ; & RETURN ADDR PAST MESSAGE

;

;

;>--> PRTMSG: PRINTS MSG POINTED TO BY (DE)

;

;A '$' IS THE ENDING DELIMITER FOR THE PRINT.

;NO REGISTERS SAVED.

;

PRTMSG:

 MVI C,PRINT ;GET BDOS FNC

 JMP BDOS ;PRINT MESSAGE, RETURN

;

;

;>--> ERXIT: EXIT PRINTING MSG FOLLOWING CALL

;

ERXIT:

 POP D ;GET MESSAGE

 CALL PRTMSG ;PRINT IT

;

EXIT:

 LXI D,080H ;RESET DEFAULT DMA ADDRESS FOR EXIT

 MVI C,STDMA

 CALL BDOS

 LHLD STACK ;GET ORIGINAL STACK

 SPHL ;RESTORE IT

 JMP WBOOT ;GO DO A WARM BOOT OF CP/M TO BRING

 ;BACK IN CCP

;

;

;FOLLOWING 2 USED BY THE CP/M DISK BUFFERING ROUTINES

;

SECPTR DW DSKBUF ;POINTER TO DISK BUFFER POS

CHRINBF DB 0 ;# OF CHARACTERS IN BUFFER

;

;

;SETUP A STACK AREA

;

 DS 38 ;STACK AREA

STACK DS 2 ;STACK POINTER

;

; --------------

;

 END

;

;+++...END OF LISTING 2

 The reader is invited to be with us again next month when

the tutorial continues into its third and final part. The

functions of random record file I/O will be presented with

complete programming examples to show how random I/O works.

Several special file I/O tricks will be shown that permit unique

problems to be solved under the CP/M operating system. One of

these will be a program that does "update" on an exisiting file

without the use of the random record I/O capabilities. So long

till January and I hope that all Life Lines readers have a joyous

holiday season.

 SLIDING INTO BDOS (Part III)

 UNDERSTANDING RANDOM FILES

 by:

 Michael J. Karas

 2468 Hansen Court

 Simi Valley, CA 93065

 (805) 527-7922

 The time has arrived to complete the third and final part of

this series on the operation of the CP/M BDOS as viewed from the

assembly language programmers perspective. Presently we will

build upon the extensive treatment of sequential files presented

in Part II of the series to provide a basis for understanding the

CP/M 2.2 random file I/O capability. Please note that functions

of the BDOS presented here are specific to CP/M Versions 2.2 and

3.0. Older CP/M systems using Version 1.4 do not directly support

random access file I/O and as such are not compatible with the

programming examples presented below.

WHY RANDOM FILE I/O ANYWAY

 In the beginning of the CP/M era, sometime around the

release of Version 1.3 by Digital Research, small inexpensive

single-user micro processor systems were typically used for

simple-minded data processing applications. Most computing

operations were linear with respect to the data handling by the

CPU. Data entered from paper tape, cassette, card readers, or

human entry from a keyboard tended to be limited to a sequential

processing from start to finish. The usage of such data by the

computer in data analysis, program compilation, or logging

applications was also largely sequential. Finally the data output

operations based upon the needs of hard copy, backup, and

transmission from micro to micro were relegated to sequential

processing applications.

 Anticipated applications of micro type computer hardware by

operating system designers, at that time, seemed to dictate that

the disk file structures of the operating systems should be

sequential in nature. This was true for the earliest releases of

CP/M and Intel's ISIS II operating system. Other simple floppy

disk operating systems like PERTEC's FDOS and MITS' Disk Extended

Basic operating systems were also strictly sequential in the

treatment of the disk file allocation and storage. However, these

two systems permitted random record I/O within the bounds of an

already existng file provided the space to store the records was

previously pre-allocated as contiguous disk space in the file

structure. The process of random I/O was then easy as a relative

offset between the beginning record number for the file and the

offset desired within the file.

 As the micro processor applications market opened up in the

late 1970's it seemed that new uses for computers were being

found weekly. It has gotton to the point that micro processor

computer users have a large array of very sophisticated software

packages to choose from and utilize in their business and hobby

activities. The main thing that can be pointed out about many of

these packages is that the processes they perform are hardly

linear with respect to the handling of data. Interactive programs

like word processors, data base managers, spelling checkers, and

spread sheet analysis programs may very well need to be able to

store or access data to/from a disk file in a manner that cannot

be handled in the old sequential manner. The sequential

philosophy generally limited file update to appending to the end

of the file and read access to a particular record had to read N-

1 records from the beginning of the file prior to being able to

read record N.

 Random access file I/O within an operating system

anticipates the requirements of non-sequential I/O by permitting

access to various records directly. Any record that was

previously written may be read upon demand. Likewise the

user/programmer may write any record desired. The Digital

Research CP/M operating system supports this type of I/O in a

powerful yet elegantly simple manner through a set of four BDOS

system functions. These calls allow random access disk files to

be implemented within the standard CP/M compatible file

structure.

RANDOM FILE STRUCTURE UNDER CP/M 2.2

 The structure of random files under the CP/M operating

system is much the same as that for sequential files. Part II of

this series (Lifelines, January 1982) described and illustrated

the sequential structure in detail. The reader will recall that

CP/M treats disk data in fixed records of 128 bytes. These

records are collected together into "groups" that are stored on

the disk as an allocated group. The disk space reserved for a

given file, in its directory entry, is always marked, identified,

and allocated in the even multiples of the "allocation group

size".

 I previously mentioned two older operating systems that

supported random file I/O within the confines of a pre-allocated

file. This system requires that all of the space for an "N"

record file be reserved as contiguous disk space even if the file

only contains two records (#0 and #N). Making a random access

file bigger than the pre allocated size was virtually impossible.

The CP/M Ver 2.2 random file access system has overcome the

problems described above. A random file under CP/M contains only

the number of allocated groups required to hold the stored

records. The holes between the defined records do not consume

unused disk space.

 If a file under CP/M is created with only random record 0 of

the file written then that file contains 128 bytes of real data

and consumes one allocation group of disk space. The allocation

group consumed also may contain other adjacent random records to

fill out the size of the group. For instance, on single density

8" disks with a 1024 byte allocation group size, a one record

(#0) file would be able to be written with additional record

numbers 1 to 7 within the same allocation group. Likewise if a

single record file was created with only record number 9 written,

that file would consume only one allocation group of disk space.

Additional record numbers 8, and 10 to 15 could then be written

without requiring additional disk space.

RANDOM FILE I/O SYSTEM CALLS

 Let us next investigate the five BDOS system calls that CP/M

supports for random I/O within files. The chart of Figure 1 on

the following page details the look of a random access file

control block. Note that the file control block contains three

bytes at the end that are used to store the random record number

that will currently be accessed. The random access system calls

all utilize this field to determine the portion of the file to

access at read/write time.

 A CP/M random file may contain up to 64K records of 128

bytes numbered from 0 to 65535. Two bytes of the file control

block hold this record number, r0 as the low byte and r1 as the

high byte. This provides accessability to records up to a maximum

file size of 8 megabytes. The r2 byte of the file control block

is not used except as the overflow or carry out of the r1 byte.

If byte r2 ever contains a value that is non-zero the record

number is beyond the end of the 8 megabyte limit for the file.

 To access a random file, it must first be opened in the

normal manner with the "open" BDOS function call. In the case of

creating a new random file the make file BDOS call is sufficient

in that the the results of the make operation are equivalent to

the open function on a zero length file.

READ RANDOM RECORD: Function 33.

 This system call is made with the (DE) register pair

pointing to a 36 byte file control block. Bytes r0-r2 are set up

with the random record to read. The BDOS then fetches the

addressed record from the file and places it in the callers

record buffer pointed to by the last set buffer address function

 Figure 1. FILE CONTROL BLOCK DESCRIPTION

 --

 |dr|f1|f2|/ /|f8|t1|t2|t3|ex|s1|s2|rc|d0|/ /|dn|cr|r0|r1|r2|

 --

 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

 where:

 dr drive code (0 - 16)

 0 => use default drive for file access

 1 => select drive A: for file access

 2 => select drive B: for file access

 ...

 16=> select drive P: for file access

 f1...f8 contain the files name in ASCII upper case

 with high bits equal to zero.

 t1,t2,t3 contain the file type in ASCII upper case

 with high bits normally equal zero. tn' denotes

 the high bit of these bit positions.

 t1' = 1 => Read/Only file

 t2' = 1 => SYS file, no DIR list

 ex contains the current extent number,

 normally set to 00 by the user, but is

 in the range 0 - 31 during file I/O.

 s1 reserved for internal system use

 s2 reserved for internal system use, set to

 zero on call to OPEN, MAKE, SEARCH system

 calls.

 rc record count for extent "ex," takes on values

 0 to 128.

 d0...dn filled in by BDOS to indicate file group numbers

 for this extent.

 cr current record to read or write in a sequential

 file operation. Normally set to zero by the user

 upon initial access to a file.

 r0,r1,r2 optional random record number in the range of 0 to

 65535, with overflow to r2. r0/r1 are a 16 bit value

 in low/high byte order.

call. The r0-r2 fields of the file control block are not changed

as a result of the random read function such that a subsequent

random read operation would read the same record. The random read

function may return a number of error codes as described below:

 Error Code 00 - The random read function worked without

 error and the user buffer contains the desired data.

 Error Code 01 - The random read operation addresses a record

 that is contained in a disk allocation group not

 allocated to the file. This means that the group field

 number slot of the appropriate extent of the file that

 should contain the record is equal to 0.

 Error Code 03 - The random read operation just requested

 required that a different extent descriptor directory

 entry had to be open for the impending operation,

 however prior to opening the new extent the current

 extent could not be closed due to disk read/only status

 or a disk change.

 Error Code 04 - The random read operation just requested

 required access to an extent of the file that does not

 exist on the disk.

 Error Code 06 - The random read operation just requested

 required access to a record number beyond the bounds of

 the disk drive, ie the disk drive is less than 8

 megabytes and the record requested is within an

 allocation group beyond the end of the disk.

WRITE RANDOM RECORD: Function 34.

 This system call is made with the (DE) register pair

pointing to a 36 byte file control block. Bytes r0-r2 are set up

with the random record to write. The BDOS then moves the data in

the callers record buffer pointed to by the last set buffer

address function call to the addressed record in the file. The

r0-r2 fields of the file control block are not changed as a

result of the random write function such that a subsequent random

write operation would write the same record. The random write

function may return a number of error codes as described below:

 Error Code 00 - The random write function worked without

 error and the user buffer contains the desired data.

 Error Code 03 - The random write operation just requested

 required that a different extent descriptor directory

 entry had to be open for the impending operation,

 however prior to opening the new extent the current

 extent could not be closed due to disk read/only status

 or a disk change.

 Error Code 05 - The random write operation just requested

 required access to an extent of the file that does not

 exist on the disk. In the process of creating the new

 extent the disk directory was found to be full.

 Error Code 06 - The random write operation just requested

 required access to a record number beyond the bounds of

 the disk drive, ie the disk drive is less than 8

 megabytes and the record requested is within an

 allocation group beyond the end of the disk.

WRITE RANDOM RECORD WITH ZERO FILL: Function 40.

 This system call is made with the (DE) register pair

pointing to a 36 byte file control block. Bytes r0-r2 are set up

with the random record to write. The BDOS then moves the data in

the callers record buffer, pointed to by the last set buffer

address function call, to the addressed record in the file. The

r0-r2 fields of the file control block are not changed as a

result of the random write function such that a subsequent random

file operation would access the same record. If the random write

operation caused a new allocation group to be allocated to the

file the other records of the same block are filled with zeros.

The random write with zero fill function may return a number of

error codes identical to those described for function number 34

above.

COMPUTE FILE SIZE: Function 35.

 This system call determines the number of 128 byte records

in a file and sets the number of records into the r0 and r1 bytes

of the 36 byte file control block addressed by the (DE) register

pair. The returned size is a virtual size in that if the file was

created by random write operations and the file contains "holes"

the file size function does not take the holes into account.

Another way of looking at this is to think of this function as

returning a record number that is one greater than the maximum

record number currently in the file. If the file had no "holes"

or it had been written in the conventional sequential fashion,

then the file size reported by this function is the real file

size. This function provides a convenient function of positioning

a file at its end so that subsequent sequential or random update

could be performed.

SET RANDOM RECORD: Function 36:

 The (DE) register pair is set to point to a 36 byte file

control block that has previously been used to reference a file

in the sequential mode. Upon reference with this system call the

r0 to r2 fields are filled in with the random record number that

corresponds to the current file position, ie the BDOS simply

computes the real current record number as follows:

 The current extent number is multiplied by 128, the number

 of records per extent, and to this product is added the

 numerical value of the CR field, current record in this

 extent. The final result is placed into the r0-r2 fields of

 the FCB.

LOOKING AT SOME EXAMPLES

 The following simple assembly language program is designed

to write record numbers 0 and 143 into a file on the disk. The

write random function is used to write the first record with all

A's and the second record, # 143, with all B's.

;

;

;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

;

; THIS FIRST LEVEL DEMONSTRATION IS DESIGNED TO

; SHOW HOW TO INITIALLY SET UP A FILE TO BE A RANDOM FILE

; AND TO WRITE TWO RECORDS INTO THE FILE SUCH THAT THE

; FIRST RECORD (RECORD NUMBER 0) AND THE SEVENTEENTH

; RECORD OF THE SECOND EXTENT (RECORD NUMBER 143) BOTH

; CONTAIN DATA. THE PURPOSE IS TO DEMONSTRATE THE

; RESULTING DISK DIRECTORY ENTRIES THAT RESULT FROM

; AN INCOMPLETE FILE. THIS DEMO PROGRAM DOES NO RANDOM

; WRITE ERROR CHECKING.

;

;

;SYSTEM LEVEL INTERFACE EQUATES

;

BDOS EQU 0005H ;SYSTEM INTERFACE VECTOR

MAKE EQU 22 ;MAKE NEW FILE FUNCTION

SBADDR EQU 26 ;SET DISK BUFFER ADDR

OPEN EQU 15 ;OPEN FILE FUNCTION

CLOSE EQU 16 ;FILE CLOSE FUNCTION

DELETE EQU 19 ;DELETE FILE FUNCTION

RRAND EQU 33 ;READ RANDOM FUNCTION

WRAND EQU 34 ;WRITE RANDOM FUNCTION

WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL

;

;

 ORG 0100H ;START OF A PROGRAM

;

 XRA A ;ZERO BYTES OF THE FCB

 STA EXT ;EXTENT FIELD

 STA CR ;CURRENT RECORD COUNT

 STA RR+2 ;AND THE R2 FIELD

 LXI H,0000H ;ALSO ZERO RANDOM RECORD FIELED

 SHLD RR

;

 LXI D,BUFFER ;SET DISK BUFFER ADDRESS

 MVI C,SBADDR

 CALL BDOS

;

 LXI D,RANDFCB ;POINT AT OUR FCB

 MVI C,DELETE ;ERASE TEST FILE IF IT ALREADY EXISTS

 CALL BDOS

;

 LXI D,RANDFCB ;MAKE A NEW FILE FOR TEST

 MVI C,MAKE

 CALL BDOS

;

 MVI A,'A' ;FILL FIRST RECORD WITH A'S

 CALL FILL ;GO FILL

 LXI H,0000H ;SET RECORD NUMBER TO WRITE A'S INTO

 SHLD RR

 LXI D,RANDFCB ;WRITE RECORD OF A'S

 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION

 CALL BDOS

;

 MVI A,'B' ;FILL NEXT RECORD WITH B'S

 CALL FILL ;GO FILL

 LXI H,143 ;SET RECORD NUMBER TO WRITE B'S INTO

 SHLD RR

 LXI D,RANDFCB ;WRITE RECORD OF B'S

 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION

 CALL BDOS

;

 LXI D,RANDFCB ;CLOSE JUST WRITTEN FILE

 MVI C,CLOSE

 CALL BDOS

;

;

 RET ;BACK TO CCP BY IMMEDIATE RETURN

;

;

;SUBROUTINE TO FILL BUFFER WITH A PATTERN

;

; ENTRY WITH (A) CONTAINING BYTE TO FILL BUFFER WITH

;

FILL:

 LXI H,BUFFER ;POINT AT BUFFER FOR FILL

 MVI B,128 ;FILL BYTE COUNTER

FILLP:

 MOV M,A ;PUT A BYTE INTO BUFFER

 INX H ;BUMP POINTER

 DCR B ;DECREMRNT BYTE COUNT

 JNZ FILLP ;CONTINUE TILL BUFFER FULL

 RET

;

;

;RANDOM FILE TEST DATA AREA

;

RANDFCB:

 DB 00 ;USE CURRENT LOGGED DRIVE FOR TEST

 DB 'RANDFILE' ;NAME OF FILE TO PLAY WITH

 DB 'TST' ;..AND THE EXTENSION NAME

EXT:

 DB 00,00,00,00 ;EXTENT, S1, S2, AND FCBSZ BYTES

 DS 16 ;STORAGE FOR THE ALLOCATION NUMBERS

CR:

 DS 1 ;CURRENT RECORD BYTE

RR:

 DS 2 ;RANDOM RECORD NUMBER (R0,R1)

 DS 1 ;RANDOM RECORD OVERFLOW BYTE (R2)

;

;

;RANDOM DISK I/O DATA BUFFER

;

BUFFER:

 DS 128 ;ONE RECORD BUFFER

;

 END

 The above program was assembled and caused to run on an

empty single density disk in the default disk drive. The

following display shows how the directory upon the disk looked

after running the program. Notice that the file only consumes two

allocated groups. Due to the fact that this was a single density

disk with 1024 byte allocation groups of 8 records each, then if

record number 8 was subsequently written the directory entries

would change to include an allocation block number in the second

group number slot of the first extent of the file.

G=00:00, T=2, S=1, PS=1

00 0052414E 4446494C 45545354 00000001 *.RANDFILETST....*

10 02000000 00000000 00000000 00000000 *................*

20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*

30 00030000 00000000 00000000 00000000 *................*

40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

 The following two sector displays off the single density

disk show the A's and B's written by the program above. All other

sectors in the group numbers 02 and 03 were empty, ie contained

whatever data that used to be there. This brings up the subject

of the write random with zero fill function. A small segment of

G=02:00, T=2, S=17, PS=20

00 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

10 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

20 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

30 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

40 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

50 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

60 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

70 41414141 41414141 41414141 41414141 *AAAAAAAAAAAAAAAA*

G=03:07, T=3, S=6, PS=5

00 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

10 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

20 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

30 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

40 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

50 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

60 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

70 42424242 42424242 42424242 42424242 *BBBBBBBBBBBBBBBB*

the first demonstration program was changed to cause the second

write operation to be done with zero fill. The changed portion of

the program is shown below:

 LXI D,RANDFCB ;WRITE RECORD OF A'S

 MVI C,WRAND ;NORMAL WRITE RANDOM FUNCTION

 CALL BDOS

;

 MVI A,'B' ;FILL NEXT RECORD WITH B'S

 CALL FILL ;GO FILL

 LXI H,143 ;SET RECORD NUMBER TO WRITE B'S INTO

 SHLD RR

 LXI D,RANDFCB ;WRITE RECORD OF B'S

 MVI C,WRANDF ;WRITE RANDOM ZERO FILL FUNCTION

 CALL BDOS

;

 LXI D,RANDFCB ;CLOSE JUST WRITTEN FILE

 Note from the directory display below that there is no

change in the appearance of the entries from the first example.

This time the only thing that changed was the data in allocation

group 3. Due to the second write this allocation group contains a

sector of B's at GROUP=03:07 with the other seven sectors of the

group now containing zeroes from the zero fill operation. The

function of zero fill is to leave a clean slate on records

numbers subsequently read from the same allocation block. The

BDOS is capable of reporting unwritten record information for

records that correspond to group number slots in the directory

entries that contain a '00' byte indicating unallocated. However

once a group is allocated for one record the BDOS cannot

determine if other sectors of that group have been written or

not. Thus ero function may be issued when creating a random

access file for the first time. The programmer may then use a

record of 128 zeroes to indicate that the record is not used as

opposed to accidentally mistaking the garbage data from un-

initialized sectors written without zero fill as real data.

G=00:00, T=2, S=1, PS=1

00 0052414E 4446494C 45545354 00000001 *.RANDFILETST....*

10 02000000 00000000 00000000 00000000 *................*

20 0052414E 4446494C 45545354 01000010 *.RANDFILETST....*

30 00030000 00000000 00000000 00000000 *................*

40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 *eeeeeeeeeeeeeeee*

 The next example program is included here to show a clever

means of implementing arbitrary record selection I/O within a

file without resorting to random file I/O. The intent is not to

indicate that the following scheme is the preferred method. The

program below was developed with the CP/M Ver 1.4 operating

system in mind. However the algorithm works fine with CP/M 2.2 as

well. The technique used to play with random records by using

sequential read and write operations is to manipulate the "cr"

field of a standard 33 byte file control block. The "cr" byte is

the only meand that the BDOS uses to indicate the next record to

access. The programmer may change this byte value to force the

BDOS to go to any record within the current extent.

 If the first extent of a file is opened, the group

allocation values for that extent lie in the file control block.

If the technique of performing "your own" random I/O is done, the

code must access record numbers not to excede 07fh without first

closing the current extent and opening the next. This can be done

with either the conventional open and close operations or the

programmer, when done working with the current extent may open

next automatically by performing a dummy read of record 080H of

the current extent. The programming example below uses the "roll

your own" technique but does not anticipate a file size greater

than 16K (one extent size).

 The program below is a skeleton structure of a .COM file

serialization procedure. The idea is to insert a six byte serial

number string into the target file PROG.COM on drive B:. The

serial number is inserted into the file at the places specified

by the labels in the table at the start of the listing. These

values are stripped out of the symbol table that is generated at

the assembly of the PROG.ASM file. If the assembler does not

generate a symbol table then the label values may be pulled off

the .PRN listing output. The insert points are places within the

"to be serialized" program where the programmer has determined

that he would like to place the serial number string. Within the

file itself, the labels point to the place where the string is to

be inserted with respect to run time load address. The real file

offset is 0100H bytes less. In addition, the scheme does not

insert all six bytes of the program serial number at each

location. The byte at each label address minus one contains a

value between 1 and 6 of thenumber of serial number bytes that

should actually be inserted at seralization time.

 The list of label values in the program below is used to

build, at assembly time, a table of record numbers where the

specific serial number strings are to be inserted. This table is

then used to fill in the "cr" byte of the file control block as

each serial number is to be inserted. The table also contains the

byte offset within the record where the insert point is to start.

As each serial number is to be inserted the appropriate record is

read, the number is inserted (with length specified by the value

from the file record just accessed), and the record is written

back to the disk. Sequentail read and write operations are used

for both operations. Logic within the code listing below also

provides for the occurrance that the serial number string may

cross the end of the first record and flow into the next record.

In this case the first is rewritten followed by reading of the

next with the remainder of the insert proceeding from the

beginning of the second record.

 Please note that the program example is given as a skeleton

only and the serial number entry process, increment process, and

the disk I/O error exit points are left for the reader/programmer

to fill in with code of his own choosing.

;

;

;PROGRAM SERIAL NUMBER INSERTION EQUATES

; EACH ADDRESS IS A VALUE INSIDE OF THE "PROG.COM"

; FILE THAT IS THE PLACE TO PUT THE SERIAL NUMBER.

;

SERA EQU 0132H

SERB EQU 01E9H

SERC EQU 0278H

SERD EQU 039AH

SERE EQU 06FFH

SERF EQU 0732H

SERG EQU 0BBCH

SERH EQU 0C08H

;

;

;CP/M BDOS SYSTEM CALLS FUNCTION NUMBERS

;

BOOT EQU 0000H ;REBOOT LOCATION ENTRY POINT

BDOS EQU 0005H ;BDOS FUNCTION ENTRY POINT

RESET EQU 13 ;RESET DISK SYSTEM

OPEN EQU 15 ;OPEN FILE FUNCTION

CLOSE EQU 16 ;CLOSE FILE FUNCTION

DMAADR EQU 26 ;SET DATA BUFFER ADDRESS

READ EQU 20 ;READ SEQUENTIAL

WRITE EQU 21 ;WRITE SEQUENTIAL

;

;

;DEFINE BASE EXECUTION AREA FOR THIS PROGRAM

;

START EQU 0100H

;

;

 ORG START ;BASE OF EXECUTION AREA

;

;

;START UP HERE WITH PROGRAM INITIALIZATION AND

;DEFINE PROCEDURE TO FETCH IN SERIAL NUMBER TO INSERT INTO

;THE FILE

;

SERASK:

;

;ENTER APPROPIATE CODE HERE TO PUT A SIX BYTE SERIAL NUMBER

;INTO VARIABLE "SERSTR"

;

;

;

;SERIAL NUMBER INSERT POINT PROCESSING

;

;

SERCOPY:

 MVI C,RESET ;RESET DISK SYSTEM UPON INSERT

 CALL BDOS

 LXI D,PROGFCB ;SET TO OPEN THE PROG.COM FILE

 MVI C,OPEN

 CALL BDOS

 INR A ;CHECK IF OPEN ERROR

 JNZ SERCP1 ;OPEN SO GO START WRITE

;

;PRINT ERROR MESSAGE HERE AS TO INDICATE THAT THE FILE

;"PROG.COM" IS NOT PRESENT ON DRIVE B:.

;

 JMP SERASK ;IF ERROR BACK TO GET A NEW SERIAL

 ;..NUMBER OR TO EXIT

SERCP1:

 MVI B,00H ;INDEX COUNTER FOR TABLE VALUES

SERIST:

 MOV L,B

 MVI H,00H

 DAD H ;DOUBLE TO WORDS

 LXI D,INSTAB ;INTO TABLE

 DAD D

 MOV A,M ;GET RECORD NUMBER FOR PLACE

 STA PROGFCB+32 ;SET TO READ THIS RECORD

 INX H

 MOV C,M ;GET BYTE LOCATION OF COUNTER

 PUSH B

 LXI D,PROGFCB ;USE PROG FCB TO READ

 MVI C,READ

 CALL BDOS ;GO READ SECTOR

 POP B ;INDEX TO LENGTH

 MOV L,C

 MVI H,0

 LXI D,080H ;BASE OF DEFAULT BUFFER

 DAD D

 MOV C,M ;GET LENGTH

 INX H ;POINT TO NEXT BUFFER BYTE

 LXI D,SERSTR ;POINT (DE) TO SERIAL LOCATION

;

MOVLP:

 MOV A,H ;SEE IF PAST THE END OF BUFFER

 CPI 01H

 JNZ SAMSEC ;STILL IN THE SAME SECTOR

;

 MVI H,0 ;RESET TO NEXT SECTOR BASE

 PUSH B

 PUSH H

 PUSH D

 LXI H,PROGFCB+32 ;DECREASE RECORD FOR WRITE

 DCR M

 LXI D,PROGFCB

 MVI C,WRITE ;WRITE LAST SECTOR

 CALL BDOS

 LXI D,PROGFCB

 MVI C,READ ;READ NEXT SECTOR

 CALL BDOS

 POP D

 POP H

 POP B

;

SAMSEC:

 PUSH B

 LDAX D ;GET A SERIAL NUMBER BYTE

 MOV M,A ;AND SLAM INTO BUFFER

 POP B

 INX H

 INX D

 DCR C ;DONE ALL BYTES HERE YET

 JNZ MOVLP

;

 PUSH B

 LXI H,PROGFCB+32 ;SET BACK CURRENT RECORD FOR WRITE

 DCR M

 LXI D,PROGFCB

 MVI C,WRITE ;REWRITE THIS SECTOR

 CALL BDOS

 POP B

 INR B ;BUMP TABLE SCAN INDEX

 LDA TABLEN ;CHECK FOR DONE

 CMP B

 JNC SERIST ;GO FOR NEXT TABLE ENTRY

;

;PUT IN LOGIC HERE TO SPECIFY THE NEXT OF SEQUENTIAL SERIAL NUMBERS

;OR TO GO BACK TO THE TOP OF THE PROGRAM TO GET A NEW SERIAL NUMBER.

;

;

;

;PARAMETER DATA AREA FOR SERAL NUMBER PROGRAM

;

;

;"PROG.COM" FILE ACCESS CONTROL BLOCK

;

PROGFCB:

 DB 'B'-040H ;DISK DRIVE B: ALL THE TIME

 DB 'PROG COM',0,0,0,0

 DS 17 ;ALLOCATION SPACE

;

;

;

;SERIAL NUMBER INSERTION POINT REFERENCE TABLE

;

INSTAB:

 DB ((SERA-0100H-1)/128) ;RECORD NUMBER

 DB ((SERA-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERB-0100H-1)/128) ;RECORD NUMBER

 DB ((SERB-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERC-0100H-1)/128) ;RECORD NUMBER

 DB ((SERC-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERD-0100H-1)/128) ;RECORD NUMBER

 DB ((SERD-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERE-0100H-1)/128) ;RECORD NUMBER

 DB ((SERE-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERF-0100H-1)/128) ;RECORD NUMBER

 DB ((SERF-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERG-0100H-1)/128) ;RECORD NUMBER

 DB ((SERG-0100H-1) AND 07FH) ;BYTE OFFSET

 DB ((SERH-0100H-1)/128) ;RECORD NUMBER

 DB ((SERH-0100H-1) AND 07FH) ;BYTE OFFSET

;

TABLEN:

 DB (($-INSTAB)/2)-1 ;NUMBER OF TABLE ENTRIES

; ;..MINUS 1 FOR LOOP EASE

SERSTR:

 DS 10H ;PLACE TO KEEP BINARY SERIAL NUMBER

;

;

 END

;

;

;...END OF SERIAL NUMBER INSERT PROGRAM

 The next and final example is a fully functional program

that uses random record I/O under CP/M 2.2 to perform a "useful"

function. The program mixes up the records of a file in an

ordered yet bizarre way in order that the file contents may be

encoded to prevent its use until such time that it is

unscrambled. The unmixing process is also performed by the

program below. The records or "sectors" of the file are mixed and

unmixed in place on the disk in that the disk file is not copied.

Random access file I/O is used to swap records directly. The

comment block at the beginning of the program listing contains an

explanation of the program "intent" and the record mixing

algorithm chosen. Operation of the program, should the reader

wish to utilize the encoding and decoding functions provided, is

also described in the listing.

 This example program is presented as a working example of

random file I/O in use. Detailed description of the internal

workings of the program are beyond the scope of this tutorial but

may be inferred by studying the listing and reading the rather

prolific comment statements. For readers that would like to avoid

the aggravation of typing in the source code for the program

below or for the other programs presented in this BDOS tutorial

series, Part I in Lifelines, November 1982 and Part II in

Lifelines, January 1983, a machine readable copy of the source

code files on an eight inch single density diskette may be

obtained from Michael J. Karas, 2468 Hansen Court, Simi Valley,

California 93065. Please send diskettes preformatted, labeled and

in a returnable mailer of some sort. Also include either stamps

or money for return postage (no postage meter tapes, those are

accepted on date of printing only) for your return package.

 LISTING FOR SECRET.ASM A RANDOM I/O PROGRAM EXAMPLE

;

;

;RANDOM RECORD I/O DEMONSTRATION FOR CP/M 2.2

;

; THIS THIRD LEVEL DEMONSTRATION PROGRAM IS DESIGNED TO

; DEMONSTRATE RANDOM FILES BY DEVELOPING A 'NOT NECESSARILY

; PRACTICAL' ALGORITHM FOR ENCODING A PROGRAM FILE ON A DISK.

; THE INTENT IS TO MAKE THE TRANSMISSION OF AN OBJECT FILE

; ARBITRARILY SCRAMBLED ON A 128 BYTE BY 128 BYTE RECORD BASIS

; SUCH THAT IF THE TRANSMITTED FILE, EITHER ON FLOPPY DISKETTE

; OR ON THE PHONE LINE WERE INTERCEPTED BY AN ILLICIT THIRD

; PARTY, THEN THE THIRD PARTY WOULD RECEIVE GARBAGE UNLESS

; HE HAD POSSESSION OF THE DECODING ALGORITHM.

;

; THIS PROGRAM WILL IMPLEMENT SUCH AN ALGORITHM IN BOTH AN

; ENCODING AND DECODING FORMAT. HERE IS THE ALGORITHM USED.

; (OBVIOUSLY DUE TO THE FACT THAT THIS APPEARS IN THE

; PUBLIC IMAGE AS A MAGAZINE ARTICLE WILL PREVENT THE FOLLOWING

; ALGORITHM TO BE OF 'SECRET' USE).

;

; THE OPERATOR ENTERS THE COMMAND TO RUN THE PROGRAM AS:

;

; A>SECRET filename.typ E<cr>

;

; where filename.typ is the

; file to encode. And "E"

; indicates to encode the file

;

; or:

;

; A>SECRET filename.typ D<cr>

;

; where filename.typ is the

; file to decode. And "D"

; indicates to decode the file

;

; THE ENCODING PROCESS WRITES THE ENCODED FILE RIGHT IN PLACE

; WITHIN THE USER SPECIFIED FILE. NO MEANS IS USED TO SPECIFY

; IN THE ENCODED FILE THAT IT IS ENCODED.

;

; THE DECODE PROCESS READS AND DECODES THE FILE RIGHT IN PLACE

; WITHIN THE USER SPECIFIED FILE NAME.

;

; THE ALGORITHM LEAVES THE FIRST RECORD OF THE FILE INTACT AND

; DOES NOT ENCODE THE PART OF A FILE BEYOND 128 RECORDS IN SIZE.

; FOR FILES LARGER THAN 128 RECORDS THE FINAL RECORDS BEYOND THE

; 128'TH ARE LEFT UNTOUCHED. THE BDOS IS CALLED TO DETERMINE THE

; SIZE OF THE FILE SO THE NUMBER OF RECORDS IN THE FILE ARE

; KNOWN. THIS NUMBER OF RECORDS WILL BE REFERRED TO HERE AS "NR".

; IF "NR" IS GREATER THAN 128 THEN "NR" IS SET TO 128. THEN THE

; FIRST "NR-1" BYTES OF THE FIRST RECORD ARE READ SEQUENTIALLY

; TO MAKE A LIST OF ONE BYTE BINARY NUMBERS WITH A NUMBER OF

; ENTRIES EQUAL TO THE NUMBER OF RECORDS IN THE FILE MINUS ONE,

; UP TO A MAXIMUM OF 127 NUMBERS.

;

; THIS LIST IS THEN PROCESSED TO CONVERT ALL OF THE NUMBERS IN THE

; LIST TO BE WITHIN THE RANGE OF 1 TO "NR-1". THIS CONVERSION IS

; DONE BY FIRST "ANDING" EACH OF THE BYTES IN THE LIST WITH A MASK.

; THE MASK HAS A NUMERICAL VALUE EQUAL TO "NR-1" ROUNDED UP TO

; THE NEXT BIGGEST [(2 ^ N) - 1] VALUE, IE IF THE FILE HAS 5

; RECORDS THE MASK IS 07H. IF THE FILE HAS 59 RECORDS THE MASK

; HAS A VALUE OF 3FH. THE LIST IS THEN SCANNED FOR VALUES THAT

; ARE GREATER THAN "NR-2". EACH VALUE THAT IS GREATER THAN

; "NR-2" IS DIVIDED BY TWO IGNORING THE REMAINDER. FINALLY EACH

; LIST VALUE IS INCREMENTED BY ONE TO MAKE A REAL FILE READABLE

; RECORD NUMBER.

;

; THE LIST IS THEN USED AS A RECORD SCRAMBLE/UNSCRAMBLE LIST.

; FOR SCRAMBLING IT IS SCANNED FROM THE BEGINNING WHILE

; UNSCRAMBLING SCANS THE LIST FROM THE END. SCRAMBLING PROCEDES

; AS FOLLOWS (THE UNSCRAMBLE PROCESS IS THE REVERSE):

;

; THE SECOND FILE RECORD IS NOW INTERCHANGED IN

; POSITION WITH THE RECORD POINTED BY THE FIRST

; NUMBER IN THE LIST. THE THIRD FILE RECORD IS

; INTERCHANGED WITH THE RECORD POINTED TO BY THE

; SECOND LIST VALUE. THIS PROCESS CONTINUES UNTIL

; THE END OF THE LIST. DURING THE PROCESS OF

; INTERCHANGING THE FILE SECTORS IN THIS RATHER

; BIZARRE MANNER, EACH TIME A LIST VALUE IS FOUND

; TO HAVE A LEAST SIGNIFICANT BIT THAT IS EQUAL

; TO "1" THEN THAT RECORD HAS EACH BYTE XOR'ED

; WITH THE RECORD NUMBER.

;

; WRITTEN BY:

; MICHAEL J. KARAS

; 2468 HANSEN COURT

; SIMI VALLEY, CA 93065

; (805) 527-7922

;

;

;

;SYSTEM LEVEL INTERFACE EQUATES

;

BDOS EQU 0005H ;SYSTEM INTERFACE VECTOR

MAKE EQU 22 ;MAKE NEW FILE FUNCTION

SBADDR EQU 26 ;SET DISK BUFFER ADDR

OPEN EQU 15 ;OPEN FILE FUNCTION

CLOSE EQU 16 ;FILE CLOSE FUNCTION

DELETE EQU 19 ;DELETE FILE FUNCTION

RRAND EQU 33 ;READ RANDOM FUNCTION

WRAND EQU 34 ;WRITE RANDOM FUNCTION

WRANDF EQU 40 ;WRITE RANDOM WITH 00 FILL

PRINT EQU 9 ;PRINT STRING TILL $

FSIZE EQU 35 ;COMPUTE FILE SIZE FUNCTION

DEFCB EQU 05CH ;DEFAULT FILE CONTROL BLOCK

DEFBUF EQU 080H ;DEFAULT BUFFER LOCATION

;

EXEC EQU 08000H ;EXECUTE SPOT FOR SMALL PROGRAM

BOOT EQU 00000H ;SYSTEM REBOOT ENTRY POINT

;

;

;ASCII CHARACTER DEFINITIONS

;

CR EQU 0DH ;CARRIAGE RETURN

LF EQU 0AH ;LINE FEED

;

;

 ORG 0100H ;START OF A PROGRAM

 LXI SP,STACK ;SETUP A STACK FOR EXECUTION

 LXI D,SNGMSG ;PRINT SIGNON MESSAGE

 MVI C,PRINT

 CALL BDOS

;

;

;CHECK IF THERE WAS A COMMAND LINE FILE NAME

;

 LDA DEFCB+1 ;IF FIRST BYTE 20 THEN NO NAME

 CPI ' '

 JZ CMDERR ;IF NO FILE NAME PRINT ERROR

 LDA DEFCB+17 ;GET OPTION CHARACTER

 CPI 'E' ;CHECK FOR ENCODE

 JZ PROCESS ;GO TO PROCESS IF ENCODE

 CPI 'D' ;CHECK IF DECODE

 JZ PROCESS ;GO PROCESS OF DECODE

;

CMDERR:

 LXI D,ERRM1 ;PRINT ERROR MESSAGE

 MVI C,PRINT

 CALL BDOS

 JMP BOOT ;EXIT IF NO FILE NAME OR OPTION

;

;

;HERE IF AN ENTRY FILE NAME AND A VALID OPTION

;

PROCESS:

 STA OPTION ;SAVE OPTION CHAR FOR LATER

 ;...REFERENCE

 XRA A ;SETUP FCB FOR OPEN

 STA DEFCB+12 ;ZERO EXTENT BYTE

 STA DEFCB+32 ;ZERO CURRENT RECORD BYTE

 STA DEFCB+35 ;ZERO R2 BYTE

 LXI H,0000H

 SHLD DEFCB+33 ;ZERO RANDOM RECORD NUMBER

;

 MVI C,OPEN ;OPEN FILE USER SPECIFIED

 LXI D,DEFCB ;USE DEFAULT FCB BUILT BY CCP

 CALL BDOS ;GO ATTEMPT OPEN

 INR A ;CHECK IF FOUND

 JNZ FOUND

;

 MVI C,PRINT ;PRINT NOT FOUND ERROR

 LXI D,ERRM2

 CALL BDOS

 JMP BOOT ;EXIT

;

;

;FOUND FILE SO LETS NEXT COMPUTE ITS FILE SIZE

;

FOUND:

 LXI D,DEFCB ;THAT SAME FCB AGAIN

 MVI C,FSIZE

 CALL BDOS ;GET THE FILES SIZE IN RECORDS

 LHLD DEFCB+33 ;GET SIZE OF THE FILE

 MOV A,H ;CHECK IF GREATER THAN 128 RECORDS

 ORA A

 JNZ TOBIG

 MOV A,L

 ORA A ;CHECJ IF FILE EMPTY OR ONLY ONE RECORD

 JZ TOSMALL

 CPI 1

 JZ TOSMALL

 CPI 129

 JC SIZINA ;WE HAVE SIZE IN (A)

TOBIG:

 MVI A,128 ;SET SIZE TO 128 DEFAULT

SIZINA:

 STA NR ;SAVE NUMBER OF RECORDS

 JMP READFST

;

TOSMALL:

 MVI C,PRINT ;PRINT FILE SIZE ERROR MESSAGE

 LXI D,ERRM3

 CALL BDOS

 JMP BOOT

;

;

;READ FIRST RECORD INTO LIST BUFFER

;

READFST:

 LXI D,LIST ;SET DMA ADDRESS TO LIST BUFFER

 MVI C,SBADDR

 CALL BDOS

 LXI H,0000H ;SET FIRST RECORD

 SHLD DEFCB+33

 XRA A

 STA DEFCB+35 ;CLEAR R2 BYTE

 MVI C,RRAND ;READ RANDOM FIRST RECORD

 LXI D,DEFCB

 CALL BDOS ;NO NEED TO CHECK READ ERROR BECAUSE

 ;..WE KNOW THAT THESE RECORDS EXIST

;

;

;HERE TO PROCESS LIST INTO A SET OF NUMBERS THAT FIT OUT FILE

;RECORD COUNT RANGE.

;

 LDA NR ;FETCH NUMBER OF RECORDS

 DCR A ;SET NR-1

;

 MVI B,0FFH ;INITIAL MASK VALUE

 MVI C,07H ;NUMBER OF TIMES TO ROTATE FOR MASK

;

MKLP:

 RAL ;CHECK FOR ZERO BIT IN NR-1

 JC HMSK ;EXIT WE HAVE OUR MASK ONE BIT FROM (A)

 PUSH PSW

 MOV A,B ;PUT A ZERO BIT INTO MASK

 ORA A ;CLEAR CARRY

 RAR ;PUT ZERO IN

 MOV B,A

 POP PSW

 DCR C ;DEBUMP SHIFT COUNT

 JNZ MKLP

;

HMSK: ;HERE IF (B) HAS LIST MASK VALUE

 LDA NR ;GET NUMBER OF VALUES IN LIST

 DCR A

 MOV C,A ;PUT LOOP COUNTER INTO (C)

 MOV D,A ;SAVE NR-1 IN (D)

 LXI H,LIST ;POINT AT LIST

LSTPROC:

 MOV A,M ;GET A LIST BYTE

 ANA B ;MASK IT

 CMP D ;IS RESULT GREATER THAN NR-2

 JC VALOK ;VALUE IS OK

 ORA A ;DIVIDE BY TWO IF TOO BIG

 RAR

VALOK:

 INR A ;SET VALUES TP FOR REAL RECORD NUMBERS

 MOV M,A ;PUT CONVERTED NUMBER INTO LIST AGAIN

 INX H ;BUMP LIST POINTER

 DCR C ;DEC LOOP COUNTER

 JNZ LSTPROC ;DO ALL BYTES OF LIST

;

;

;ENCODE/DECODE THE FILE HERE

;

ENCODE:

 LXI H,LIST ;KEEP A POINTER TO THE LIST

 LDA OPTION ;IF OPTION IS 'E' WE GO FORWARD

 CPI 'E'

 MVI A,1 ;DEFAULT FORWARD CURRENT RECORD

 JZ FORWA ;GO FORWARD

 LDA NR ;INDEX TO END OF LIST FOR DECODE

 DCR A ;SET START RECORD FOR DECODE

 MOV E,A

 DCR E ;ZERO BASE INDEX

 MVI D,0

 DAD D

;

FORWA:

 SHLD LISTP ;SAVE LIST POINTER

 STA CURR ;SET CURRENT RECORD NUMBER TO START

 LDA NR

 DCR A

 STA CNTR ;SET NUMBER OF SWAPS

;

ENCLP:

 LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS

 MVI C,SBADDR

 CALL BDOS

 LDA CURR ;READ CURRENT RECORD

 MOV L,A

 MVI H,00

 SHLD DEFCB+33 ;SET RECORD NUMBER

 LXI D,DEFCB

 MVI C,RRAND ;READ THAT RECORD

 CALL BDOS

 ORA A ;CHECK ERROR

 JNZ DSKERR

;

 LXI D,BUF2 ;SET BUFFER 2 AS DMA ADDRESS

 MVI C,SBADDR

 CALL BDOS

 LHLD LISTP ;GET SWAP POSITION

 MOV L,M

 MVI H,00

 SHLD DEFCB+33 ;SET SWAP RECORD NUMBER

 LXI D,DEFCB

 MVI C,RRAND ;READ SWAP RECORD

 CALL BDOS

 ORA A ;CHECK ERROR

 JNZ DSKERR

;

 LHLD LISTP ;IS SWAP RECORD AN ODD NUMB

 MOV B,M ;SABE XOR PATTERN IN (B)

 MOV A,M

 RAR

 JNC SWRT ;GO DO SWAP WRITE DIRECTLY IF EVEN

 LDA OPTION ;WHICH BUFFER TO XOR

 LXI H,BUF2 ;DEFAULT FOR 'E'

 CPI 'E'

 JZ INB2 ;USE BUFFER 2

 LXI H,BUF1 ;IF DECODE USE BUFFER 1

INB2:

 MVI C,128 ;BUTE COUNT OF XOR

XORLP:

 MOV A,M ;GET A BYTE TO XOR

 XRA B

 MOV M,A ;PUT BYTE BACK

 INX H ;BUMP BUFFER POINTER FOR XORING

 DCR C ;DEC BYTE COUNT

 JNZ XORLP

;

SWRT:

 LXI D,BUF1 ;SET BUFFER ONE AS DMA ADDRESS

 MVI C,SBADDR

 CALL BDOS

 LHLD LISTP ;GET SWAP POSITION

 MOV L,M

 MVI H,00

 SHLD DEFCB+33 ;SET SWAP RECORD NUMBER

 LXI D,DEFCB

 MVI C,WRAND ;WRITE SWAP RECORD

 CALL BDOS

 ORA A ;CHECK ERROR

 JNZ DSKERR

;

 LXI D,BUF2 ;SET BUFFER 2 AS DMA ADDRESS

 MVI C,SBADDR

 CALL BDOS

 LDA CURR ;WRITE CURRENT RECORD

 MOV L,A

 MVI H,00

 SHLD DEFCB+33 ;SET RECORD NUMBER

 LXI D,DEFCB

 MVI C,WRAND ;WRITE THAT RECORD

 CALL BDOS

 ORA A ;CHECK ERROR

 JNZ DSKERR

;

 LDA CURR ;FETCH LOOP PARMS

 MOV B,A

 LHLD LISTP

;

 LDA OPTION ;CHECK OPTION

 CPI 'E'

 JZ INCF ;IF ENCODE INCR FORWARD

;

DECB:

 DCX H ;DECREMENT DOWN THROUGH LOOP

 DCR B

 JMP PSVE ;SAVE PARMS

INCF:

 INX H

 INR B

PSVE:

 SHLD LISTP ;SAVE NEW LIST POSITION

 MOV A,B

 STA CURR

;

 LDA CNTR ;FETCH LOOP COUNTER

 DCR A

 STA CNTR

 JNZ ENCLP ;GO TO LOOP TO PROCESS MORE IF

 ;NOT DONE YET

;

;

;HERE WE ARE DONE WRITING SO LETS CLOSE UP AND GO HOME

;

 LXI D,DEFCB

 MVI C,CLOSE

 CALL BDOS

 INR A ;CHECK ERROR CODE

 JZ DSKERR

;

 MVI C,PRINT ;PRINT DONE MESSAGE

 LXI D,DONMSG

 CALL BDOS

 JMP BOOT ;EXIT

;

;

;EXIT POINT WITH ERROR MESSAGE IF THE DISK WRITE OPERATION

;RESULTED IN AN ERROR

;

DSKERR:

 LXI D,ERRM4 ;PRINT GARBAGE FILE ERROR

 MVI C,PRINT

 CALL BDOS

 JMP BOOT ;EXIT FOR THE POOR GUY

;

;

;PROGRAM OPERATIONAL MESSAGES

;

SNGMSG:

 DB CR,LF,'MICRO RESOURCES Disk File Scramble and'

 DB CR,LF,'Unscramble Utility Designed to Demonstrate'

 DB CR,LF,'CP/M Ver 2.2 Random Record I/O. (1/24/82)','$'

;

DONMSG:

 DB CR,LF,'File Processing Complete','$'

;

ERRM1:

 DB CR,LF,'No File Name Specified or Improper Option','$'

;

ERRM2:

 DB CR,LF,'Specified File Not Found','$'

;

ERRM3:

 DB CR,LF,'Cannot Process Files with 0 or 1 Record(s)','$'

;

ERRM4:

 DB CR,LF,'File I/O Error, This Error Should NOT Normally'

 DB CR,LF,'Happen, But the File is now Garbaged...','$'

;

;

;PROGRAM DATA STORAGE SECTION

;

OPTION:

 DS 1 ;PLACE TO STORE COMMAND LINE OPTION CHAR

;

NR:

 DS 1 ;NUMBER OF RECORDS TO SWAP

;

CNTR:

 DS 1 ;ENCODE/DECODE LOOP COUNTER

;

CURR:

 DS 1 ;CURRENT SWAP SECTOR

;

LISTP:

 DS 2 ;LIST SCAN POINTER

;

LIST:

 DS 128 ;LIST BUFFER

;

BUF1:

 DS 128 ;DATA BUFFER 1

;

BUF2:

 DS 128 ;DATA BUFFER 2

;

 DS 36

STACK EQU $;USER STACK AREA

;

;

 END

;

;

;+++...END OF FILE

